This section discusses optimizations that can be made for
processing WHERE
clauses. The examples use
SELECT
statements, but the same
optimizations apply for WHERE
clauses in
DELETE
and
UPDATE
statements.
Work on the MySQL optimizer is ongoing, so this section is incomplete. MySQL performs a great many optimizations, not all of which are documented here.
Some of the optimizations performed by MySQL follow:
Removal of unnecessary parentheses:
((a AND b) AND c OR (((a AND b) AND (c AND d)))) -> (a AND b AND c) OR (a AND b AND c AND d)
Constant folding:
(a<b AND b=c) AND a=5 -> b>5 AND b=c AND a=5
Constant condition removal (needed because of constant folding):
(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6) -> B=5 OR B=6
Constant expressions used by indexes are evaluated only once.
COUNT(*)
on a single table
without a WHERE
is retrieved directly
from the table information for MyISAM
and
MEMORY
tables. This is also done for any
NOT NULL
expression when used with only
one table.
Early detection of invalid constant expressions. MySQL
quickly detects that some
SELECT
statements are
impossible and returns no rows.
HAVING
is merged with
WHERE
if you do not use GROUP
BY
or aggregate functions
(COUNT()
,
MIN()
, and so on).
For each table in a join, a simpler WHERE
is constructed to get a fast WHERE
evaluation for the table and also to skip rows as soon as
possible.
All constant tables are read first before any other tables in the query. A constant table is any of the following:
An empty table or a table with one row.
A table that is used with a WHERE
clause on a PRIMARY KEY
or a
UNIQUE
index, where all index parts
are compared to constant expressions and are defined as
NOT NULL
.
All of the following tables are used as constant tables:
SELECT * FROM t WHEREprimary_key
=1; SELECT * FROM t1,t2 WHERE t1.primary_key
=1 AND t2.primary_key
=t1.id;
The best join combination for joining the tables is found by
trying all possibilities. If all columns in ORDER
BY
and GROUP BY
clauses come
from the same table, that table is preferred first when
joining.
If there is an ORDER BY
clause and a
different GROUP BY
clause, or if the
ORDER BY
or GROUP BY
contains columns from tables other than the first table in
the join queue, a temporary table is created.
If you use the SQL_SMALL_RESULT
option,
MySQL uses an in-memory temporary table.
Each table index is queried, and the best index is used unless the optimizer believes that it is more efficient to use a table scan. At one time, a scan was used based on whether the best index spanned more than 30% of the table, but a fixed percentage no longer determines the choice between using an index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as table size, number of rows, and I/O block size.
In some cases, MySQL can read rows from the index without even consulting the data file. If all columns used from the index are numeric, only the index tree is used to resolve the query.
Before each row is output, those that do not match the
HAVING
clause are skipped.
Some examples of queries that are very fast:
SELECT COUNT(*) FROMtbl_name
; SELECT MIN(key_part1
),MAX(key_part1
) FROMtbl_name
; SELECT MAX(key_part2
) FROMtbl_name
WHEREkey_part1
=constant
; SELECT ... FROMtbl_name
ORDER BYkey_part1
,key_part2
,... LIMIT 10; SELECT ... FROMtbl_name
ORDER BYkey_part1
DESC,key_part2
DESC, ... LIMIT 10;
MySQL resolves the following queries using only the index tree, assuming that the indexed columns are numeric:
SELECTkey_part1
,key_part2
FROMtbl_name
WHEREkey_part1
=val
; SELECT COUNT(*) FROMtbl_name
WHEREkey_part1
=val1
ANDkey_part2
=val2
; SELECTkey_part2
FROMtbl_name
GROUP BYkey_part1
;
The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:
SELECT ... FROMtbl_name
ORDER BYkey_part1
,key_part2
,... ; SELECT ... FROMtbl_name
ORDER BYkey_part1
DESC,key_part2
DESC, ... ;
User Comments
Indices lose their speed advantage when using them in OR-situations (4.1.10):
SELECT * FROM a WHERE index1 = 'foo'
UNION
SELECT * FROM a WHERE index2 = 'baar';
is much faster than
SELECT * FROM a WHERE index1 = 'foo' OR index2 = 'bar';
The query optimiser also does badly on examples like
SELECT id FROM foo WHERE bar IN (SELECT bar FROM baz WHERE qux='foo')
where foo is a large table and baz a small one. Doing the subselect first would allow the use on an index to eliminate most of foo, which is what happens if you say
SELECT foo.id FROM foo, baz WHERE foo.bar=baz.bar and baz.qux='foo'
However the latter move is not possible if the first operation is DELETE and you want to avoid MySQL specific syntax (DELETE FROM .. USING .. WHERE ... also does the sensible thing but is not SQL-99).
Indexes are ignored for the <> operator:
SELECT * FROM tab WHERE score <> 0;
This can be a problem if the table is very slanted (eg >99% of of the rows have the value that is filtered). The obvious workaround is to use a UNION:
(SELECT * FROM tab WHERE score > 0) UNION
(SELECT * FROM tab WHERE score < 0);
SELECT * FROM tab WHERE score <> 0;
functionally IS NOT THE SAME AS
(SELECT * FROM tab WHERE score > 0) UNION
(SELECT * FROM tab WHERE score < 0);
because UNION filters out duplicates.
If one needs this one has to use UNION ALL.
Add your own comment.