
EnsEMBL Compara Perl API Tutorial
By Cara Woodwark, Abel Ureta-Vidal and Javier Herrero
Revisions: CW Jun 04, AUV Aug 04, Nov 04, JH Nov 04, Apr 05, BB Jan 07, LG Nov 08
NB: this tutorial has been tested to work with branch-ensembl-51, and with EnsEMBL databases release
51. However you may find still errors in it. Please email ensembl-dev@ebi.ac.uk, so that we can correct
them.

Introduction
This tutorial is an introduction to the EnsEMBL Compara API. A knowledge of the EnsEMBL core API is
presumed, it is assumed that concepts and conventions presented in the EnsEMBL core API tutorial
have been assimilated by the user. The EnsEMBL core API tutorial can be found at
http://www.ensembl.org/info/docs/api/core/core_tutorial.html (and in Nov'2008 a slightly outdated CVS
version in ensembl/docs/tutorial/ensembl_tutorial.pdf) and should be read first as it provides a
comprehensive guide to the EnsEMBL environment.
A documentation about the Compara database schema is available at
http://www.ensembl.org/info/docs/api/compara/compara_schema.html and while not absolutely
necessary for this tutorial, an understanding of the database tables may help, as many of the Adaptor
modules are table-specific.

Obtaining the code
To use the EnsEMBL Compara API you have the same requirement that when using the EnsEMBL core
API i.e. perl 5.6 or later, bioperl 1.2 or later, DBI, DBD::mysql and EnsEMBL core code. Please refer to
the EnsEMBL core API tutorial that will tell you everything about these modules, how and where to get
them.
You may start by creating a directory for storing the API in your home directory:
cd
mkdir src
cd src

In addition, you will need the EnsEMBL Compara code that is available by CVS from the EnsEMBL CVS
repository using the following CVS commands:
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl login

When prompted the password is "CVSUSER".
cvs -d :pserver:cvsuser@cvs.sanger.ac.uk:/cvsroot/ensembl co -r branch-ensembl-51
ensembl-compara

This will check out ensembl-compara code for stable branch 51. Make sure the EnsEMBL core code
you have already checked out is on the same branch. Note that the branch that is checked out should
correspond to the database version being used. Thus ensembl_compara_51 and e.g.
homo_sapiens_core_51_36m and mus_musculus_core_51_37d should be used with the above
ensembl branch 51 code.

Environment Variables
The following PERL5LIB environment variables should be set up:
- under tcsh/csh shell with
setenv PERL5LIB ${PERL5LIB}:{HOME}/src/bioperl-live: \
${HOME}/src/ensembl/modules:${HOME}/src/ensembl-compara/modules

- under bash shell with
export PERL5LIB=${PERL5LIB}:{HOME}/src/bioperl-live: \
${HOME}/src/ensembl/modules:${HOME}/src/ensembl-compara/modules

These presume that bioperl and ensembl are in a directory called src set up in your home directory.

mailto:ensembl-dev@ebi.ac.uk
http://www.ensembl.org/info/docs/api/compara/compara_schema.html
http://www.ensembl.org/info/docs/api/core/core_tutorial.html

Connecting to an EnsEMBL Compara database
Connection parameters
Starting from release 48 EnsEMBL is running two public MySQL servers on
host=ensembldb.ensembl.org with two different port numbers. The server on port=3306 hosts
all databases prior to rel.48 and the server on port=5306 hosts all newer databases starting
from rel.48.

There are two API ways to connect to the EnsEMBL Compara database:
 In most cases you will prefer the implicit way - using Bio::EnsEMBL::Registry module,

which can read either a global or a specific configuration file or auto-configure itself.
 However there are cases where you might want more flexibility provided by the

explicit creation of a Bio::EnsEMBL::Compara::DBSQL::DBAdaptor.

Implicitly, using the Bio::EnsEMBL::Registry auto-configuration feature
(recommended)
For using the auto-configuration feature, you will first need to supply the connection
parameters to the Registry loader. For instance, if you want to connect to the the
public EnsEMBL databases you can use the following command in your scripts:

use Bio::EnsEMBL::Registry;

Bio::EnsEMBL::Registry->load_registry_from_db(

-host => 'ensembldb.ensembl.org',

-user => 'anonymous',

-port => 5306

);

This will initialize the Registry, from which you will be able to create object-specific
adaptors later. Alternatively, you can use a shorter version based on a URL:

use Bio::EnsEMBL::Registry;

Bio::EnsEMBL::Registry>load_registry_from_url(

'mysql://anonymous@ensembldb.ensembl.org:5306/');

Implicitly, using the Bio::EnsEMBL::Registry configuration file
You will need to have a registry configuration file set up. By default, it takes the file
defined by the ENSEMBL_REGISTRY environment variable or the file named
.ensembl_init in your home directory if the former is not found. Additionally, you can
use a specific file (see perldoc Bio::EnsEMBL::Registry or later in this document for
some examples on how to use a different file). Please, refer to the EnsEMBL Registry
documentation (http://www.ensembl.org/info/docs/api/registry.html) for details
about this option.

http://www.ensembl.org/info/docs/api/registry.html
mailto://anonymous@ensembldb.ensembl.org

Explicitly, using the Bio::EnsEMBL::Compara::DBSQL::DBAdaptor
EnsEMBL Compara data, like core data, is stored in a MySQL relational database. If you want
to access a Compara database, you will need to connect to it. This is done in exactly the
same way as to connect to an EnsEMBL core database, but using a Compara-specific
DBAdaptor. One parameter you have to supply in addition to the ones needed by the Registry
is the -dbname, which by convention contains the release number:

use Bio::EnsEMBL::Compara::DBSQL::DBAdaptor

my $host = 'ensembldb.ensembl.org';

my $user = 'anonymous';

my $port = 5306;

my $dbname = 'ensembl_compara_51';

my $comparadb= new Bio::EnsEMBL::Compara::DBSQL::DBAdaptor(

 -host => $host,

 -port => $port,

 -user => $user,

 -dbname => $dbname,

);

EnsEMBL Compara object-specific adaptors
EnsEMBL Compara adaptors are used to fetch data from the database. Data are returned as
EnsEMBL objects. For instance, the GenomeDBAdaptor returns
Bio::EnsEMBL::Compara::GenomeDB objects.

Below is a non exhaustive list of EnsEMBL Compara adaptors that are most often used
GenomeDBAdaptor to fetch Bio::EnsEMBL::Compara::GenomeDB objects
DnaFragAdaptor to fetch Bio::EnsEMBL::Compara::DnaFrag objects
GenomicAlignBlockAdaptor to fetch Bio::EnsEMBL::Compara::GenomicAlignBlock objects
DnaAlignFeatureAdaptor to fetch Bio::EnsEMBL::DnaDnaAlignFeature objects

(note that this adaptor returns an EnsEMBL core object)
SyntenyAdaptor to fetch Bio::EnsEMBL::Compara::SyntenyRegion objects
MemberAdaptor to fetch Bio::EnsEMBL::Compara::Member objects
HomologyAdaptor to fetch Bio::EnsEMBL::Compara::Homology objects
FamilyAdaptor to fetch Bio::EnsEMBL::Compara::Family objects
PeptideAlignFeatureAdaptor to fetch Bio::EnsEMBL::Compara::PeptideAlignFeature

objects

Only some of these adaptors will be used for illustration as part of this tutorial through
commented perl scripts code.

You can get the adaptors from the Registry with the get_adaptor command. You need to
specify three arguments: the species name, the type of database and the type of object.
Therefore, in order to get the GenomeDBAdaptor for the Compara database, you will need
the following command:

my $genome_db_adaptor = Bio::EnsEMBL::Registry->get_adaptor(
 'Multi', 'compara', 'GenomeDB');

Note: As the EnsEMBL Compara DB is a multi-species database, the standard species name is
'Multi'. The type of the database is 'compara'.

Code Conventions
Refer to the EnsEMBL core tutorial (http://www.ensembl.org/info/docs/api/core/index.html)
for a good description of the coding conventions normally used in EnsEMBL.
We can divide the fetching methods of the ObjectAdaptors into two categories: the fetch_by
and fetch_all_by. The former return one single object while the latter return a reference to an
array of objects.

my $this_genome_db = $genome_db_adaptor

->fetch_by_name_assembly("Homo sapiens", "NCBI36");

my $all_genome_dbs = $genome_db_adaptor->fetch_all();

foreach my $this_genome_db (@{$all_genome_dbs}) {

 print $this_genome_db->name, "\n";

}

Whole Genome Alignments
The Compara database contains a number of different types of whole genome alignments. A listing
about what are these different types can be found in the ensembl-compara/docs/schema_doc.html
document in method_link section.

GenomicAlignBlock objects (pairwise/multiple alignments)
GenomicAlignBlocks are the preferred way to store and fetch genomic alignments. A
GenomicAlignBlock contains several GenomicAlign objects. Every GenomicAlign object corresponds to
a piece of genomic sequence aligned with the other GenomicAlign in the same GenomicAlignBlock. A
GenomicAlign object is always related with other GenomicAlign objects and this relation is defined
through the GenomicAlignBlock object. Therefore the usual way to fetch genomic alignments is by
fetching GenomicAlignBlock objects. We have to start by getting the corresponding adaptor:

Getting the GenomicAlignBlock adaptor:
my $genomic_align_block_adaptor = Bio::EnsEMBL::Registry->get_adaptor(

'Multi, 'compara', 'GenomicAlign');

In order to fetch the right alignments we need to specify a couple of data: the type of alignment and the
piece of genomic sequence in which we are looking for alignments. The type of alignment is a more
tricky now: you need to specify both the alignment method and the set of genomes. In order to simply
this task, you could use the new Bio::EnsEMBL::Compara::MethodLinkSpeciesSet object. The
best way to use them is by fetching them from the database:

Getting the GenomeDB adaptor:
my $genome_db_adaptor = Bio::EnsEMBL::Registry->get_adaptor(

$dbname, 'compara', 'GenomeDB');
Fetching GenomeDB objects for human and mouse:
my $human_genome_db = $genome_db_adaptor->fetch_by_name_asembly('Homo sapiens');
my $mouse_genome_db = $genome_db_adaptor->fetch_by_name_asembly('Homo sapiens');
Getting the MethodLinkSpeciesSet adaptor:
my $method_link_species_set_adaptor = Bio::EnsEMBL::Registry->get_adaptor(

$dbname, 'compara', 'MethodLinkSpeciesSet');
Fetching the MethodLinkSpeciesSet object corresponding to BLASTZ_NET
alignments between human and mouse genomic sequences:
my $human_mouse_blastz_net_mlss =

$method_link_species_set_adaptor->fetch_by_method_link_type_GenomeDBs(
'BLASTZ_NET',
[$human_genome_db, $mouse_genome_db]

);

There are two ways to fetch GenomicAlignBlocks. One is uses Bio::EnsEMBL::Slice objects while
the second one is based on Bio::EnsEMBL::Compara::DnaFrag objects for specifying the piece of
genomic sequence in which we are looking for alignments.

my $query_species = 'human';
my $seq_region = '14';
my $seq_region_start = 75000000;
my $seq_region_end = 75010000;

Getting the Slice adaptor:
my $slice_adaptor = Bio::EnsEMBL::Registry->get_adaptor(

$query_species, 'core', 'Slice');
Fetching a Slice object:
my $query_slice = $qy_sa->fetch_by_region('toplevel', $seq_region, $seq_region_start,

$seq_region_end);
Fetching all the GenomicAlignBlock corresponding to this Slice:
my $genomic_align_blocks =

$genomic_align_block_adaptor->fetch_by_MethodLinkSpeciesSet_Slice(
$human_mouse_blastz_net_mlss, $query_slice);

Here is an example script with all of this:

use strict;
use Bio::EnsEMBL::Registry;
use Bio::EnsEMBL::Utils::Exception qw(throw);
use Bio::SimpleAlign;
use Bio::AlignIO;
use Bio::LocatableSeq;
use Getopt::Long;

my $usage = qq{
perl DumpMultiAlign.pl
 Getting help:
 [--help]

 General configuration:
 [--reg_conf registry_configuration_file]
 the Bio::EnsEMBL::Registry configuration file. If none given,
 the one set in ENSEMBL_REGISTRY will be used if defined, if not
 ~/.ensembl_init will be used.
 [--dbname compara_db_name]
 the name of Compara DB in the registry_configuration_file or any
 of its aliases. Uses "compara" by default.

 For the query slice:
 [--species species]
 Query species. Default is "human"
 [--coord_system coordinates_name]
 Query coordinate system. Default is "chromosome"
 --seq_region region_name
 Query region name, i.e. the chromosome name
 --seq_region_start start
 --seq_region_end end

 For the alignments:
 [--alignment_type method_link_name]
 The type of alignment. Default is "BLASTZ_NET"
 [--set_of_species species1:species2:species3:...]
 The list of species used to get those alignments. Default is
 "human:mouse". The names should correspond to the name of the
 core database in the registry_configuration_file or any of its
 aliases

 Ouput:
 [--output_format clustalw|fasta|...]
 The type of output you want. "clustalw" is the default.
 [--output_file filename]
 The name of the output file. By default the output is the
 standard output
};

my $reg_conf;
my $dbname = "compara";
my $species = "human";
my $coord_system = "chromosome";
my $seq_region = "14";
my $seq_region_start = 75000000;

my $seq_region_end = 75010000;
my $alignment_type = "BLASTZ_NET";
my $set_of_species = "human:mouse";
my $output_file = undef;
my $output_format = "clustalw";
my $help;

GetOptions(
 "help" => \$help,
 "reg_conf=s" => \$reg_conf,
 "dbname=s" => \$dbname,
 "species=s" => \$species,
 "coord_system=s" => \$coord_system,
 "seq_region=s" => \$seq_region,
 "seq_region_start=i" => \$seq_region_start,
 "seq_region_end=i" => \$seq_region_end,
 "alignment_type=s" => \$alignment_type,
 "set_of_species=s" => \$set_of_species,
 "output_format=s" => \$output_format,
 "output_file=s" => \$output_file,
);

Print Help and exit
if ($help) {
 print $usage;
 exit(0);
}

if ($output_file) {
 open(STDOUT, ">$output_file") or die("Cannot open $output_file");
}

Configure the Bio::EnsEMBL::Registry
Uses $reg_conf if supllied. Uses ENV{ENSMEBL_REGISTRY} instead if defined.
Uses ~/.ensembl_init if all the previous fail.
Bio::EnsEMBL::Registry->load_all($reg_conf);

Getting all the Bio::EnsEMBL::Compara::GenomeDB objects
my $genome_dbs;
my $genome_db_adaptor = Bio::EnsEMBL::Registry->get_adaptor($dbname, 'compara',

'GenomeDB');
throw("Registry configuration file has no data for connecting to <$dbname>")

if (!$genome_db_adaptor);
foreach my $this_species (split(":", $set_of_species)) {
 my $this_meta_container_adaptor = Bio::EnsEMBL::Registry->get_adaptor(
 $this_species, 'core', 'MetaContainer');
 throw("Registry configuration file has no data for connecting to <$this_species>")
 if (!$this_meta_container_adaptor);
 my $this_binomial_id = $this_meta_container_adaptor->get_Species->binomial;
 # Fetch Bio::EnsEMBL::Compara::GenomeDB object
 my $genome_db = $genome_db_adaptor->fetch_by_name_assembly($this_binomial_id);
 # Add Bio::EnsEMBL::Compara::GenomeDB object to the list
 push(@$genome_dbs, $genome_db);
}

Getting Bio::EnsEMBL::Compara::MethodLinkSpeciesSet obejct
my $method_link_species_set_adaptor = Bio::EnsEMBL::Registry->get_adaptor(

$dbname, 'compara', 'MethodLinkSpeciesSet');
my $method_link_species_set =

$method_link_species_set_adaptor->fetch_by_method_link_type_GenomeDBs(
$alignment_type, $genome_dbs);

throw("The database do not contain any $alignment_type data for $set_of_species!")
if (!$method_link_species_set);

Fetching the query Slice:
my $slice_adaptor = Bio::EnsEMBL::Registry->get_adaptor($species, 'core', 'Slice');
throw("Registry configuration file has no data for connecting to <$species>")

if (!$slice_adaptor);
my $query_slice = $slice_adaptor->fetch_by_region('toplevel', $seq_region,
$seq_region_start, $seq_region_end);
throw("No Slice can be created with coordinates $seq_region:$seq_region_start-".

"$seq_region_end") if (!$query_slice);

Fetching all the GenomicAlignBlock corresponding to this Slice:
my $genomic_align_block_adaptor = Bio::EnsEMBL::Registry->get_adaptor(
 $dbname, 'compara', 'GenomicAlignBlock');
my $genomic_align_blocks =
 $genomic_align_block_adaptor->fetch_all_by_MethodLinkSpeciesSet_Slice(
 $method_link_species_set, $query_slice);

my $all_aligns;
Create a Bio::SimpleAlign object from every GenomicAlignBlock
foreach my $this_genomic_align_block (@$genomic_align_blocks) {
 my $simple_align = Bio::SimpleAlign->new();
 $simple_align->id("GAB#".$this_genomic_align_block->dbID);

 $simple_align->score($this_genomic_align_block->score);

 my $all_genomic_aligns = $this_genomic_align_block->get_all_GenomicAligns;
 # Create a Bio::LocatableSeq object from every GenomicAlign
 foreach my $this_genomic_align (@$all_genomic_aligns) {
 my $seq_name = $this_genomic_align->dnafrag->genome_db->name;
 $seq_name =~ s/(.)\w* (.)\w*/$1$2/;
 $seq_name .= $this_genomic_align->dnafrag->name;
 my $aligned_sequence = $this_genomic_align->aligned_sequence;
 my $seq = Bio::LocatableSeq->new(
 -SEQ => $aligned_sequence,
 -START => $this_genomic_align->dnafrag_start,
 -END => $this_genomic_align->dnafrag_end,
 -ID => $seq_name,
 -STRAND => $this_genomic_align->dnafrag_strand
);
 # Add this Bio::LocatableSeq to the Bio::SimpleAlign
 $simple_align->add_seq($seq);
 }
 push(@$all_aligns, $simple_align);
}

print all the genomic alignments using a Bio::AlignIO object
my $alignIO = Bio::AlignIO->newFh(
 -interleaved => 0,
 -fh => *STDOUT,
 -format => $output_format,
 -idlength => 10
);

foreach my $this_align (@$all_aligns) {
 print $alignIO $this_align;
}

exit;

Homologies and Protein clusters

All the homologies and families refer to Members. Homology objects store orthologous and
paralogous relationships between Members and Family objects are clusters of Members.

Member objects
A Member represent either a gene or a protein. Most of them are defined in the corresponding
EnsEMBL core database. For instance, the sequence for the human gene
ENSG00000004059 is stored in the human core database.
The fetch_by_source_stable_id method of the MemberAdaptor takes two arguments. The first
one is the source of the Member and can be:

 ENSEMBLPEP, derived from an EnsEMBL translation
 ENSEMBLGENE, derived from an EnsEMBL gene
 Uniprot/SWISSPROT, derived from a Uniprot/Swissprot entry
 Uniprot/SPTREMBL, derived from a Uniprot/SP-TrEMBL entry

The second argument is the identifier for the Member. Here is a simple example:

get the MemberAdaptor
my $member_adaptor = Bio::EnsEMBL::Registry->get_adaptor(
 'Multi','compara','Member');

fetch a Member
my $member = $member_adaptor->fetch_by_source_stable_id(
 'ENSEMBLGENE','ENSG00000004059');

print out some information about the Member
print $member->chr_name, " (", $member->chr_start, " - ", $member->chr_end,
 "): ", $member->description, "\n";

The Member object has several attributes:
 source_name and stable_id define this Member.
 chr_name, chr_start, chr_end, chr_strand locate this Member on the genome but are

only available for ENSEMBLGENE and ENSEMBLPEP.
 taxon_id corresponds to the NCBI taxonomy identifier (see

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ for more details).
 taxon returns a Bio::EnsEMBL::Compara::NCBITaxon object. From this object you

can get additional information about the species.

my $taxon = $member->taxon;
print "common_name ", $taxon->common_name,"\n";
print "genus ", $taxon->genus,"\n";
print "species ", $taxon->species,"\n";
print "binomial ", $taxon->binomial,"\n";
print "classification ", $taxon->classification,"\n";

In our example the species is human, so the output will look like this:
common_name: human

genus: Homo

species: sapiens

binomial: Homo sapiens

classification: sapiens Homo Hominidae Catarrhini Haplorrhini Primates
Euarchontoglires Eutheria Mammalia Euteleostomi Vertebrata Craniata Chordata Metazoa
Eukaryota

Homology Objects
A Homology object represents either an orthologous or paralogous relationships between two
or more Members.
Typically you want to get homologies for a given gene. The HomologyAdaptor has a fetching
method called fetch_all_by_Member(). You will need the Member object for your query gene,
therefore you will fetch the Member first like in this example:

first you have to get a Member object. In case of homology is a gene, in
case of family it can be a gene or a protein

my $member_adaptor = Bio::EnsEMBL::Registry
->get_adaptor('Multi', 'compara', 'Member');

my $member = $member_adaptor
->fetch_by_source_stable_id('ENSEMBLGENE','ENSG00000004059');

then you get the homologies where the member is involved

my $homology_adaptor = Bio::EnsEMBL::Registry
->get_adaptor('Multi', 'compara', 'Homology');

my $homologies = $homology_adaptor->fetch_all_by_Member($member);

That will return a reference to an array with all homologies (orthologues in
other species and paralogues in the same one)
Then for each homology, you can get all the Members implicated

foreach my $homology (@{$homologies}) {
 # You will find different kind of description
 # UBRH, MBRH, RHS, YoungParalogues
 # see ensembl-compara/docs/docs/schema_doc.html for more details

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/

 print $homology->description," ", $homology->subtype,"\n";

 # And if they are defined dN and dS related values

 print " dn ", $homology->dn,"\n";
 print " ds ", $homology->ds,"\n";
 print " dnds_ratio ", $homology->dnds_ratio,"\n";
}

Each homology relation has 2 or more members, you should find there the initial member
used as a query. The get_all_MemberAttribute method returns an array of pairs of Member
and Attributes. The Member corresponds to the gene or protein and the Attribute object
contains information about how this Member has been aligned.

my $homology = $homologies->[0]; # take one of the homologies and look into it

foreach my $member_attribute (@{$homology->get_all_Member_Attribute}) {

 # for each Member, you get information on the Member specifically and in
 # relation to the homology relation via Attribute object

 my ($member, $attribute) = @{$member_attribute};
 print (join " ", map { $member->$_ } qw(stable_id taxon_id))."\n";
 print (join " ", map { $attribute->$_ } qw(perc_id perc_pos perc_cov))."\n";

}

You can get the original alignment used to define an homology:

use Bio::AlignIO;

my $simple_align = $homology->get_SimpleAlign();
my $alignIO = Bio::AlignIO->newFh(
 -interleaved => 0,
 -fh => *STDOUT,
 -format => "clustalw",
 -idlength => 20);

print $alignIO $simple_align;

Family Objects
Families are clusters of proteins including all the EnsEMBL proteins plus all the metazoan
SwissProt and SP-Trembl entries. The object and the adaptor are really similar to the
previous ones.

my $member_adaptor = Bio::EnsEMBL::Registry
->get_adaptor('Multi', 'compara', 'Member');

my $member = $member_adaptor
->fetch_by_source_stable_id('ENSEMBLGENE','ENSG00000004059');

my $family_adaptor = Bio::EnsEMBL::Registry->get_adaptor('Multi','compara','Family');
my $families = $family_adaptor->fetch_all_by_Member($member);

foreach my $family (@{$families}) {
 print join(" ", map { $family->$_ } qw(description description_score))."\n";

 foreach my $member_attribute (@{$family->get_all_Member_Attribute}) {
 my ($member, $attribute) = @{$member_attribute};
 print $member->stable_id," ",$member->taxon_id,"\n";
 }

 my $simple_align = $family->get_SimpleAlign();
 my $alignIO = Bio::AlignIO->newFh(
 -interleaved => 0,
 -fh => *STDOUT,
 -format => "phylip",
 -idlength => 20);

 print $alignIO $simple_align;

 $simple_align = $family->get_SimpleAlign('cdna');
 $alignIO = Bio::AlignIO->newFh(
 -interleaved => 0,
 -fh => *STDOUT,
 -format => "phylip",
 -idlength => 20);

 print $alignIO $simple_align;
}

Further help
For additional information or help mail the ensemb-dev@ebi.ac.uk mailing list. You will need to
subscribe to this mailing list to use it (see how to subscribe in
http://www.ensembl.org/info/about/contact/mailing.html).

http://www.ensembl.org/info/about/contact/mailing.html
mailto:ensemb-dev@ebi.ac.uk

	Introduction
	Obtaining the code
	Environment Variables
	Connecting to an EnsEMBL Compara database
	Whole Genome Alignments
	Homologies and Protein clusters
	Further help

