Ensembl Perl API Tutorial

By Michele Clamp. Updated, revised, and rewritten by Michele Clamp, Ewan Birney,
Graham McVicker and Dan Andrews.

Revisions: EB Oct 01, MC Jan 02, MC Mar 02, DA Jul 02, DA Oct 02, GM Oct 02, DA Feb
03, GM Feb 04, GM Aug 04

Introduction

This tutorial describes how to use the Ensembl Perl API. ltis intended to be an introduction
and demonstration of the general API concepts. This tutorial is not comprehensive, but it will
hopefully enable to reader to become quickly productive, and facilitate a rapid understanding
of the core system. This tutorial assumes at least some familiarity with Perl.

The Perl API provides a level of abstraction over the Ensembl databases and is used by the
Ensembl web interface, pipeline, and genebuild systems. To external users the APl may be
useful to automate the extraction of particular data, to customize Ensembl to fulfill a particular
purpose, or to store additional data in Ensembl. As a brief introduction this tutorial focuses
primarily on the retrieval of data from the Ensembl databases.

The Perl APl is only one of many ways of accessing the data stored in Ensembl. Additionally
there is a Java API, the genome browser web interface, and the EnsMart system. If you are
a Java programmer then the Java APl is likely to be of more interest to you. Similarly,
EnsMart may be a more appropriate tool for certain types of data mining.

Other Sources of Information

The Perl API has a decent set of code documentation in the form of PODs (Plain Old
Documentation). This is documentation is mixed in with the actual code, but can be
automatically extracted and formatted using some software tools. One version of this
documentation is available at: www.ensembl.org/Docs/Pdoc/

If you have your PERL5LIB environment variable set correctly (see the section on Setting Up
the Environment) you can use the command perldoc. For example the following command
will bring up some documentation about the Slice class and each of its methods:

perl doc Bio::EnsEMBL:: Slice

For additional information you can contact ensembl-dev, the Ensembl development mailing
list (see www.ensembl.org/Docs/Lists)).

Perl

The Ensembl Perl APl is compatible with Perl versions 5.6.0 and later. You can tell what
version of Perl you are using by typing perl -v. This will give you version information like the
following:

perl -v

This is perl, v5.6.0 built for i386-1inux

Obtaining the Code

Before you start, you will need to have the relevant Ensembl and BioPerl modules installed.

These are :

bioperl-1.2 (or greater)
ensembl

These modules can be obtained via anonymous CVS as in the following examples. Notice
the -rargument in the CVS commands which is used to specify the branch of code to obtain.
Branches are stable versions of the code. If no branch is specified the bleeding edge HEAD
code will be obtained (not recommended). In this example we are obtaining branch-1-2 of
BioPerl and branch-ensembl-24 of the Ensembl core. The branch of Ensembl code that you
use should correspond to the version of the Ensembl database that you are using. For
example if you are using the database homo_sapiens_core_24_34e you should use branch-
ensembl-24.

To obtain the BioPerl code perform the following CVS commands:

cvs -d :pserver:cvs@vs. bi operl.org:/home/repository/bioperl \
I ogin

when prompted, the password is 'cvs'

cvs -d :pserver:cvs@vs. bi operl.org:/home/repository/bioperl \
checkout -r branch-1-2 bioperl-live

To obtain the Ensembl API code perform these CVS commands, substituting 24 with the
appropriate branch number:

cvs -d :pserver:cvsuser @vsro. sanger. ac. uk: /cvsroot/ CvSmaster \
| ogin

when prompted, the password is 'CVSUSER'

cvs -d :pserver:cvsuser @vsro. sanger. ac. uk: /cvsroot/ CvSmaster \
checkout -r branch-ensenbl - 24 ensenbl

Database Access

If you don't have, or don't want to install, the Ensembl database locally you can point your
scripts at a publicly available database at the Sanger Centre. Use the following connection
information in your scripts (where X_Y'is the latest version of the database, for example
24_34e):

host ensenbl db. ensenbl . org
dbnane hono_sapi ens_core_X Y
user anonynous

DBI and DBD::mysql

You will need to install the Perl DBI and DBD::mysql modules from CPAN if they are not
already present on your system. See the CPAN site (www.cpan.org) for installation
instructions and further information on DBI and DBD::mysq|.

Setting up the Environment

Perl needs to know the location of the BioPerl and Ensembl API modules in order for any
scripts that you write to work. You can do this by setting the PERL5LIB environment variable
from your shell. Assuming that you have placed the source in an src directory under your
home directory the following tcsh/csh commands could be used:

setenv PERL5LIB ${PERL5LIB}:${HOME}/src/bioperl-live
setenv PERL5LIB ${PERL5LIB}:${HOME}/src/ensembl/modules

The same example in bash would be:

export PERL5LIB=${PERL5LIB}:${HOME}/src/bioperl-live
export PERL5LIB=${PERL5LIB}:${HOME}/src/ensembl/modules

Alternatively you can use the perl pragma use lib at the top of your scripts to point to the
location of the perl modules you wish to use.

use lib 'Ymy/modules/directory/ensembl/modules’;
use lib Ymy/modules/directory/bioperl1.2/;

Code Conventions

Several naming conventions are used throughout the API. Learning these conventions will
aid in your understanding of the code.

Variable names are underscore separated all-lowercase words.

$slice, @exons, %exon_hash, $database_adaptor

Class and package names are mixed-case words that begin with capital letters.

Bio::EnsEMBL::GeneAdaptor, Bio::EnsEMBL::Exon,
Bio::EnseEMBL.::Slice , Bio::EnsEMBL::DBSQL::DBAdaptor

Method names are entirely lowercase, underscore separated words. Class names in the
method are an exception to this convention; these words begin with an uppercase letter and
are not underscore separated. The word dbID is another exception which denotes the
unique database identifier of an object. No method names begin with a capital letter, even if
they refer to a class.

fetch_all_by_Slice, get_all_Genes, traslation, fetch_by dbID

Method names that begin with a an underscore '_' are intended to be private and should not
be called externally from the class in which they are defined.

ObjectAdaptors are responsible for the creation of various objects. The adaptor should be
named after the object it creates, and the methods responsible for the retrieval of these
objects should all start with the word fetch. All of the fetch methods should return only
objects of the type that the adaptor creates. Therefore the object name is not required in the
method name. For example, all fetch methods in the GeneAdaptor return Gene objects.
Non-adaptor methos generally avoid the use of the word fetch.

fetch_all_by_Slice, fetch_by_dblD, fetch_by_region

Methods which begin with get_all or fetch_all return references to lists. Many methods in
Ensembl pass lists by reference, rather than by value, for efficiency. This takes some getting
used to, but it results in more efficient code, especially when very large lists are passed
around (as they often are in Ensembl).

get_all_Transcripts, fetch_all_by_Slice, get_all_Exons

The following examples demonstrate some of perl's list reference syntax. You do not need to
understand the API concepts in this example. The important thing to note is the language
syntax; the concepts will be described later.

#fetch all clones from the slice adaptor (returns listref)
my $clones_ref = $slice_adaptor->fetch_all(‘clone’);

#f you want a copy of the referenced array, do this:
ny @l ones = @cl ones_ref;

get the first clone fromthe list via the reference:
ny $first_clone = $cl ones_ref->[0];

anot her way of getting the same thing:
($first_clone) = @clones_ref;

iterate through all of the genes on a clone
foreach ny $gene (@$first_clone->get_all_Cenes()}) {
print $contig->stable_id() . "\n";

anot her way of doing the sane thing:
ny $genes = $first_clone->get _all _Genes();
foreach ny $contig (@genes) {

print $contig->nane . "\n";

retrieve a single Slice object (not a listref)

$clone = $slice_adaptor->fetch_by region('clone', 'AL031658.11");
no dereferenci ng needed:

print $clone->seq_region_nane() . "\n";

Connecting to the Database - The DBAdaptor

All data used and created by Ensembl is stored in a MySQL relational database. If you want
to access this database the first thing you have to do is to connect to it. This is done behind
the scenes by Ensembl using the DBI module. You will need to know three things before you
start :

host - the hosthame where the Ensembl database lives
dbname - the name of the Ensembl database
user - the username to access the database

First, we need to import any Perl modules that we will be using. Since we need a connection
to an Ensembl database we first have to import the DBAdaptor modules that we use to
establish this connection. Almost every Ensembl script that you will write will contain a use
statement like the following:

use Bi o:: EnsEMBL: : DBSQ.: : DBAdapt or ;

Then we set the some variables containing the location of the database:

ny $host = 'ensenbl db. ensenbl . org’;
ny $user = 'anonynous';
ny $dbnanme = ' hono_sapi ens_core_20_34c';

Now we can make a database connection:

ny $db = new Bi o:: EnsEMBL: : DBSQL: : DBAdapt or (- host => S$host,
- user => $user,
-dbname => $dbnane);

We've made a connection to an Ensembl database and passed parameters in using the
-attribute => 'somevalue'syntax present in many of the Ensembl object constructors.
Formatted correctly, this syntax lets you see exactly what arguments and values you are
passing.

In addition to the parameters provided above the optional port, driver and pass parameters
can be used specify the TCP port to connect via, the type of database driver to use, and the
password to use respectively. These values have sensible defaults and can often be

omitted.

Object Adaptors

Before we launch into the ways the API can be used to retrieve and process data from the
Ensembl databases it is best to mention the fundamental relationships the Ensembl objects
have with the database.

The Ensembl API allows manipulation of the database data through various objects. For
example, some of the more heavily used objects are the Gene, Slice and Exon objects.

More details of how to effectively use these objects will be covered later. These objects are
retrieved and stored in the database through the use of object adaptors. Object adaptors
have internal knowledge of the underlying database schema and use this knowledge to fetch,
store and remove objects (and data) from the database. This way you can write code and
use the Ensembl API without having to know anything about the underlying databases you
are using. The database adaptor that we created in the previous section is a special adaptor
which has the responsibility of maintaining the database connection and creating other object
adaptors.

Object adaptors are obtained from the main database adaptor via a suite of methods with the
naming convention get_ObjectAdaptor. To obtain a SliceAdaptor or a GeneAdaptor (which
retrieve Slice and Gene objects) do the following:

ny $gene_adaptor = $db- >get _CeneAdaptor();
ny $slice_adaptor = $db->get_SliceAdaptor();

Don't worry if you don't immediately see how useful this could be. Just remember that you
don't need to know anything about how the database is structured, but you can retrieve the
necessary data (neatly packaged in objects) by asking for it from the correct adaptor.
Throughout the rest of this document we are going to work through the ways the Ensembl
objects can be used to derive the information you want.

Slices

A Slice object represents a single continuous region of a genome. Slices can be used to
obtain sequence, features or other information from a particular region of interest. To
retrieve a Slice it is first necessary to get a SliceAdaptor:

ny $slice_adaptor = $db->get_SliceAdaptor();

The SliceAdaptor provides several ways to obtain Slices, but we will start with the
fetch_by_region method which is the most commonly used. This method takes numerous
arguments but most of them are optional. In order, the arguments are: coord_system_name,
seq_region_name, start, end, strand, coord_system_version. The following are several
examples of how to use the fetch_by_region method:

obtain a slice of the entire chronpsone X
ny $slice = $slice_adaptor->fetch_by_region(' chromosone', 'X);

obtain a slice of the entire clone AL359765. 6
$slice = $slice_adaptor->fetch_by region('clone','AL359765.6');

obtain a slice of an entire NT contig
$slice = $slice_adaptor->fetch_by region('supercontig',
"' NT_011333")

’

obt ai
$slice

a slice of 1-2MB of chronosone 20
$slice_adaptor->fetch_by_region(' chronosone', '20',
le6, 2e6);

1=

Another useful way to obtain a Slice is with respect to a gene:

my $slice =
$slice_adaptor->fetch_by gene_stable_id('ENSG00000099889', 5000);

This will return a Slice that contains the sequence of the gene specified by its stable Ensembl
id. It also returns 5000bp of flanking sequence at both the 5" and 3' ends, which is useful if
you are interested in the environs that a gene inhabits. You needn't have the flanking
sequence it you don't want it - in this case set the number of flanking bases to 0 or omit the
second argument entirely. Note that for historical reasons the fetch_by_gene_stable_id
method always returns a slice on the forward strand even if the gene is on the reverse
strand.

To retrieve a set of slices from a particular coordinate system the fetch_all method can be
used:

retrieve slices of every chromosome in the database
@slices = @{$slice_adaptor->fetch_all('‘chromosome")};

retrieve slices of every BAC clone in the database
@slices = @{$slice_adaptor->fetch_all('clone")};

For certain types of analysis it is necessary to break up regions into smaller manageable
pieces. The method split_Slices can be imported from the Bio::EnsEMBL.::Utils::Slice module
to break up larger slices into smaller component slices.

use Bio::EnsEMBL.::Utils::Slice qw(split_Slices);
#..
my $slices = $slice_adaptor->fetch_all('chromosome');

basepairs overlap between returned slices
my $overlap = 0;

maximum size of returned slices
my $max_size = 100000;

break chromosomal slices into smaller 100k component slices
$slices = split_Slices($slices, $max_length, $overlap);

To obtain sequence from a slice the seq or subseq methods can be used:

my $sequence = $slice->seq();
print “$sequence\n”;

$sequence = $slice->subseq(100, 200);
We can query the Slice for information about itself:
coord_system() returns a Bio::EnsEMBL::CoordSystem object

my $coord_sys = $slice->coord_system()->name();
my $seq_region = $slice->seq_region_name();

my $start = $slice->start();
my $end = $slice->end();
my $strand = $slice->strand();

print “Slice: $coord_sys $seq_region $start-$end ($strand)\n”;

Many object adaptors can provide a set of features which overlap a slice. The Slice itself
also provides a means to obtain features which overlap its region. The following are two
ways to obtain a list of genes which overlap a Slice:

my @genes = @{$gene_adaptor->fetch_all_by_Slice($slice)};

anot her way of doing the sane thing:
@enes = @$slice->get_all_GCenes()};

Features

Features are objects in the database which have a defined location on the genome. All
features in Ensembl inherit from the Bio::EnsEMBL::Feature class and have the following
location defining attributes: start, end, strand, slice.

In addition to locational attributes all features have internal database identifiers accessed via
the method dbID. All feature objects can be retrieved from their associated object adaptors
using a Slice object or the feature's internal identifer (dbID). The following example
illustrates how Transcript features and DnaDnaAlignFeature features can be obtained from
the database. All features in the database can be retrieved in similar ways from their own
object adaptors.

my $tr_adaptor

$db- >get _Transcri pt Adaptor();
ny $daf _adapt or

= $db- >get _DnaAl i gnFeat ur eAdapt or () ;

get a slice of chr20 10MB- 11MB

ny $slice = $slice_adaptor->fetch_by_region(' chromobsone', '20',
10e6, 11le6);

fetch all of the transcripts overlapping chr20 10-11MB
ny $transcripts = $tr_adaptor->fetch_all _by_ Slice($slice);
foreach ny $tr (@transcripts) {

my $dblD = $tr->dbl D();

ny $start = $tr->start();

ny $end = $tr->end();

nmy $strand = $tr->strand();

nmy $stable_id = $tr->stab I |d()

print “Transcrlpt $stabl e [$de D] $start-$end($strand)\n”;

}

fetch all of the dna-dna alignnents overl apping chr20 10-11MB
ny $dafs = $daf _adaptor->fetch_all _by Slice($slice);
foreach ny $daf (@dafs)

ny $dbl D = $daf - >dbl D() ;

ny $start = $daf->start();
ny $end = $daf - >end();

ny $strand = $daf->strand();
ny $hsegnane = $daf - >hseqname()

print “DNA Alignnent $hsegnane [$de D] $start-$end($strand)\n”;

}

fetch a transcript by its internal identifier
ny $transcript = $tr_adaptor->fetch_by_dbl D(100);
#
ny

fetch a dnaAlignFeature by its internal identifiers
$dna_al i gn_feat = $daf _adaptor->fetch_by_dbl D(100);

All features also have the methods transform, transfer, and project which are described in
detail in the Transform, Transfer and Project sections of this tutorial.

Genes, Transcripts, Exons

Genes, Exons and Transcripts are also features and can be treated in the same way as any
other feature within Ensembl. A Transcript in Ensembl is a grouping of Exons. A Gene in
Ensembl is a grouping of Transcripts which share any overlapping (or partially overlapping)
Exons. Transcripts also have an associated Translation object which defines the UTR and
and CDS composition of the Transcript. Introns are not defined explicitly in the database but
can be obtained by the transcript method get_all_Introns.

Like all Ensembl features the start of an Exon is always less than or equal to the end of the
Exon, regardless of the strand it is on. The start of the Transcript is the start of the first Exon
of a forward strand Transcript or the start of the last Exon of a reverse strand Transcript. The
start and end of a Gene are defined to be the lowest start value of its Transcripts and the
highest end value respectively.

Genes, Translations, Transcripts and Exons all have stable identifiers. These are identifiers
that are assigned to Ensembl's predictions, and maintained in subsequent releases. For
example, if a Transcript (or a sufficiently similar Transcript) is re-predicted in a future release
then it will be assigned the same stable identifier as its predecessor.

The following is an example of the retrieval of a set of Genes, Transcripts and Exons:

sub feature2string {

nmy $f = shift;

ny $stable_id = $f->stable_id();

ny $seq_region = $f->slice->seq_regi on_name();
ny $start = $f->start();

ny $end = $f->end();

ny $strand = $f->strand();

return “$stable_id : $seq_region: $start-$end ($strand)”;

$slice_adaptor = $db->get_ SliceAdaptor();
$slice = $slice_adaptor->fetch_by region('chronosone',' X,
1le6, 10e6);

foreach ny $gene (@ $slice->get_all_Genes()}) {
nmy $gstring = feature2string($gene);
print “$gstring\n”;

foreach ny $trans (@ $gene->get _all _Transcripts()}) {
ny $tstring = feature2string($trans);
print “ $tstring\n”;

foreach ny $exon (@$trans->get_all_Exons()}) {
ny $estring = feature2string($exon);
print “ $estring\n”;
}
}
}

In addition to the methods which are present on every feature, the transcript class has many
other methods which are commonly used. Several methods can be used to obtain transcript
related sequences. For historical reasons some of these methods return strings while others
return Bio::Seq objects. The following example demonstrates the use of some of these
methods:

spliced_seq returns the concatenation of the exon sequences.
This is the cDNA of the transcript
print “cDNA: “, $trans->spliced_seq(), “\n”;

transl ateabl e_seq returns only the CDS of the transcript
print “CDS: “, $trans->transl ateabl e_seq(), “\n”";

UTR sequences are obtained via the five_prinme_utr and
three_prinme_utr nethods

ny $fiv_utr = $trans->five_prine_utr();
ny $thr_utr = $trans->three_prinme_utr();

print ($fiv_utr) ? $fiv_utr->seq() : 'No 5 UTR, “\n”;
print ($thr_utr) ? $thr_utr->seq() : 'No 3' UTR, “\n”";

The peptide sequence is obtained fromthe translate nethod
undef 1s returned if this transcript is non-coding

ny $pep = $trans->translate();

print ($pep) ? $pep->seq() : 'No Translation', “\n”;

Translations and ProteinFeatures

Translation objects and peptide sequence can be extracted from a Transcript object. Itis
important to remember that some Ensembl transcripts are non-coding (pseudogenes,
ncRNAs, etc.) and have no translation. The primary purpose of a Translation object is to
define the CDS and UTRs of its associated Transcript object. Peptide sequence is obtained
directly from a Transcript object — not a Translation object as might be expected. The
following example obtains the peptide sequence of a Transcript and the Translation's stable
identifier:

ny $stable_id = ' ENSTO0000044768' ;
ny $transcript_adaptor = $db->get_Transcri pt Adaptor();
my $transcript =

$transcri pt _adaptor->fetch_by stable_id($stable_id);

print $transcript->translation()->stable_id(), “\n";
print $transcript->translate()->seq(), “\n”;

ProteinFeatures are features which are on an amino acid sequence rather than a nucleotide
sequence. The method get_all_ProteinFeatures can be used to obtain a set of protein
features from a Translation object.

$translation = $transcript->translation();
ny $protein_feats = $transl ati on->get _all _Protei nFeatures();

foreach ny $pf (@protein_feats) {
nmy $l ogi c_nane = $pf->anal ysi s()->l ogi c_nane();
print $pf->start(), '-', $pf->end(), ' ', $logic_nanme, ' ',
$pf->interpro_ac(), ' ', $pf->idesc(), "\n";
}

If only the protein features created by a particular analysis are desired the name of the
analysis can be provided as an argument. To obtain the subset of features which are
considered to be 'domain’ features the convenience method get_all_DomainFeatures can be
used:

ny $seg feats = $translation->get_all _Protei nFeatures(' Seg');
ny $donmmi n_feats = $transl ati on->get _al | _Donmi nFeat ures();

PredictionTranscripts

PredictionTranscripts are the results of ab initio gene finding programs that are stored in
Ensembl. Example programs include Genscan and SNAP. Prediction transcripts have the
same interface as normal transcripts and thus they can be used in the same way.

ny $ptranscripts = $slice->get_all _PredictionTranscripts;

foreach ny $ptrans (@ptranscripts) {
ny $exons = $ptrans->get _al | _Exons();
nmy $type = $ptrans->anal ysi s->l ogi c_nane();
print "$type prediction has ".scal ar (@exons).” exons\n";

foreach ny $exon (@exons) {
print $exon->start . " - "
$exon- >end St
$exon->strand .

$exon- >phase ."\n";

Alignment Features

Two types of alignments are stored in the core Ensembl database: alignments of DNA
sequence to the genome and aligments of peptide sequence to the genome. These can be
retrieved as DnaDnaAlignFeatures and DnaPepAlignFeatures respectively. A single gapped
alignment is represented by a single feature with a CIGAR line. A CIGAR line is a concise
representation of a gapped alignment as single string containing letters M (match) D
(deletion), and I (insertion) prefixed by integer lengths (the number may be omitted if it is 1).
A gapped alignment feature can be broken into its component ungapped alignments by the
method ungapped_features which returns a list of FeaturePair objects. The following
example shows the retrieval of some alignment features.

retrieve dna-dna alignment features fromthe slice region
ny $feats = $slice->get_all _DnaAlignFeatures(' Vertrna');
print_align_features($feats);

retrieve protein-dna alignnent features fromthe slice region
$feats = $slice->get_all_Protei nAlignFeatures(' Swall');
print_align_features($feats);

sub print_align_features {
ny $feats = shift;

foreach ny $feat (@feats) {

print_feature pairs([$feat]);

print "Percent identity: ", $feat->percent_id(), "\n";
print "

print "ClGAR:. ", $feat->cigar_string(), "\n";

ny @ngapped = $f eat - >ungapped_features();

print "ungapped:\n";
print_feature_pairs(\ @ngapped);
print "\n";
}
}

sub print_feature_pairs {
nmy $feats = shift;

foreach ny $feat (@feats) {
print out the "hit' name and coordi nates

print $feat->hseqnane()," ", $feat->hstart, '-', $feat->hend(),
(', $feat->hstrand(), ')', ' =>",
print out the genom c coordi nates
$feat->start, '-', $feat->end(),
"(', $feat->strand(), ")\n";
}
}
Repeats

Repetitive regions found by RepeatMasker and TRF (Tandem Repeat Finder) are
represented in the Ensembl database as RepeatFeatures. Short non-repetitive regions
between repeats are found by the program Dust and are also stored as RepeatFeatures.
RepeatFeatures can be retrieved and used in the same way as other Ensembl features.

ny $repeats = $slice->get_al |l _Repeat Features();

foreach ny $repeat (@repeats) {
print $repeat->display_id(), “ “,
$repeat->start(), “-", $repeat->end(), “\n”;
}

RepeatFeatures are used to perform repeat masking of the genomic sequence. Hard or
softmasked genomic sequence can be retrieved from Slice objects using the
get_repeatmasked_seq method. Hardmasking replaces sequence in repeat regions with Ns.
Softmasking replaces sequence in repeat regions with lowercase sequence.

ny $unnmasked_seq = $slice->seq();
ny $hardnmasked_seq = $sli ce->get _repeat nasked_seq();
ny $soft masked_seq = $sli ce->get _repeat masked_seq(undef, 1);

soft mask sequence using TRF results only
ny $tandem nmasked_seq = $slice->get _repeat masked_seq([' TRF'], 1);

Markers

Markers are imported into the Ensembl database from UniSTS and several other sources. A
marker in Ensembl consists of a pair of primer sequences, an expected product size and a
set of associated identifiers known as synonyms. Markers are placed on the genome
electronically using an analysis program such as ePCR and their genomic positions are
retrievable as MarkerFeatures. Map locations (genetic, radiation hybrid and in situ
hybridization) for markers obtained from actual experimental evidence are also accessible.

Markers can be fetched via their name from the MarkerAdaptor.

ny $mar ker _adapt or = $db->get _Mar ker Adapt or () ;

obtain narker by one of its nanes
nmy ($marker) @ $mar ker _adapt or -
>f etch_all _by_ synonyn(D9S1038E') };

print the various names associated with the sane marker

foreach ny $synonym ($mar ker->get _al | _Marker Synonyns()}) {
print $synonym >source(), ':' if($synonym >source());
print $synonym >nane(), P

print the primer info

print “\nleft prinmer: ", $marker->left_primer(), “\n”;
print “right primer: ", $marker->right_priner(), “\n”;
print “product size: ", $marker->m n_primer_di st()

$mar ker - >max_primer_dist(), “\n”;

print out genetic/RH FISH map information
print “Map |ocations:\n”;
foreach ny $map_l oc (@ $narker - >get _ aII _MapLocations()}) {
print “ “, $map_|l oc->map_nane(), ' ',
$map_I| oc- >chr onosone name() o
$map_l oc->position(), “\n”;

}

MarkerFeatures, which represent genomic positions of markers, can be retrieved and
manipulated in the same way as other Ensembl features.

obtain the positions for an already retrieved marker
foreach ny $marker_feat (@ $marker->get_all _MarkerFeatures()}) {
print $marker _feat->seq_regi on_nanme(),
$nmar ker _feat->start(), '-', $marker_feat->end(), “\n”;

retrieve all marker features in a given region
ny $marker _feats = $slice->get _all _MarkerFeatures();
foreach ny $marker_feat (@narker _feats) {

print $marker_feat->display_id(), ,
$nmar ker _feat - >seq_regi on_nane(),
$marker _feat->start(), '-', $nmarker_feat->end(), “\n”;

}
MiscFeatures

MiscFeatures are features with arbitrary attributes which are placed into arbitrary groupings.
MiscFeatures can be retrieved as any other feature and are classified into distinct sets by a
set code. Generally it only makes sense to retrieve all features which have a particular set
code because very diverse types of MiscFeatures are stored in the database.

MiscFeature attributes are represented by Attribute objects and can be retrieved via a
get_all_Attributes method.

The following example retrieves all MiscFeatures representing ENCODE regions on a given
slice and prints out their attributes:

ny $enc_regions = $slice->get_all M scFeatures('encode_regions');
foreach ny $enc_region (@enc_regions) {
foreach ny $attr (@ $enc_regi on->get_all _Attributes()}) {
print $attr->nanme(), ':', S$attr->value(), “\n”;

}

This example retrieves all misc features representing a BAC clone via its name and prints out
their location and other information:

ny $nfa = $db->get M scFeat ureAdaptor();
ny $clones = $nfa->fetch_all _by attribute_type_val ue(' Nane',
"RP11- 62N12');

foreach ny $cl one (@cl ones) {
ny $slice = $clone->slice();
print $slice->coord_system >name(), ' ',

$slice->seq_regi on_nane(), ,
$clone->start(), '-', $clone->end(), "\n";

foreach ny $a (@ $clone->get _all _Attributes()}) {

print ' ', $a->panme, ':', $a->value, "\n";

External References

Ensembl cross references its genes, transcripts and translations with identifiers from other
databases. A DBEntry object represents a cross reference and is often referred to as an
'xref'. The following code snippet retrieves and prints DBEntries for a gene, its transcripts
and its translations:

define a hel per subroutine to print DBEnties
sub print_DBEntries {
nmy $db_entries = shift;
foreach ny $dbe (@db_entries) {
print $dbe->dbname(),"“ - “, $dbe->di splay_id(),“\n";

}

print “GENE “, $gene->stable_id(), “\n";
print_DBEntries($gene->get_all _DBEntries());

foreach ny $trans(@ $gene->get_all _Transcripts()}){
print “TRANSCRI PT “, $trans->stable_id(), “\n”;
print_DBEntries($trans->get _all_DBEntries());
wat ch out: pseudogenes have no translation
if($trans->translation())
ny $transl = $trans->translation();
print “TRANSLATION “, $transl ->stabl e_i d(
print_DBEntries($transl->get_all_DBEntri

),”\n”;
es());

Often it is useful to obtain all of the DBEntries associated with a gene and its associated
transcripts and translation as in the above example. As a shortcut to calling
get_all_DBEntries on all of the above objects the get_all_DBLinks method can be used
instead. The above example could be shortened by using the following:

print_DBEntries($gene->get_al | _DBLi nks());

Coordinates

We have already discussed the fact that Slices and features have coordinates, but we have
not defined exactly what these coordinates mean.

Ensembl, and many other bioinformatics applications, use inclusive coordinates which start
at 1. The first nucleotide of a DNA sequence is 1 and the first amino acid of a peptide
sequence is also 1. The length of a sequence is defined as end - start + 1.

In some rare cases inserts are specified with a start which is one greater than the end. For
example a feature with a start of 10 and an end of 9 would be a zero length feature between
basepairs 9 and 10.

Slice coordinates are relative to the start of the underlying DNA sequence region. The strand
of the Slice represents its orientation relative to the default orientation of the sequence
region. By convention the start of the Slice is always less than or equal to the end - 1, and
does not vary with its strandedness. Most Slices you will encounter will have a strand of 1,
and this is what we will consider in our examples. Itis legal to create a Slice which extends
past the boundaries of a sequence region. Sequence retrieved from regions where the
sequence is not defined will consist of Ns.

All features retrieved from the database have an associated Slice (accessible via the slice
method). A feature's coordinates are always relative to this associated Slice. l.e. the start
and end attributes define a feature's position relative to the start of the Slice the feature is on
(or the end of the Slice if it is a negative strand Slice). The strand attribute of a feature is
relative to the strand of the Slice. By convention the start of a feature is always less than or
equal to the end of the feature regardless of its strand (except in the case of an insert). ltis
legal to have features with coordinates which are less than one or greater than the length of
the slice. Such cases are common when features that partially overlap a slice are retrieved
from the database.

Consider, for example, the following figure of two features associated with a Slice:

| ::::::::::::::::::::::::::::::::| (S| i Ce)
[--------] (Feature B)

A CTAAATUCT T G (Sequence)
1 2 3 4 5 6 7 8 9 10 11 12 13

The Slice itself has a start of 2, an end of 13, and a length of 12 even though the underlying
sequence region only has a length of 11. Retrieving the sequence of such a slice would give
the string CTAAATCTTGNN -- the undefined region of sequence is represented by Ns.
Feature A has a start of 0, an end of 2, and a strand of 1. Feature B has a start of 3, an end
of 6, and a strand of -1.

Coordinate Systems

Sequences stored in Ensembl are associated with coordinate systems. What the coordinate
systems are varies from species to species. For example, the homo_sapiens database has
the following coordinate systems: contig, clone, supercontig, chromosome. Sequence and
features may be retrieved from any coordinate system despite the fact they are only stored
internally in a single coordinate system. The database stores the relationship between these
coordinate systems and the API provides means to convert between them. The API has a
CoordSystem object and object adaptor, however, these are most often used internally. The
following example fetches a chromosome coordinate system object from the database:

ny $csa = $db->get _Coor dSyst emAdapt or () ;
ny $cs = $csa->fetch_by nane(' chronpsone');

print “Coord system “ . $cs->nane()." “.$cs->version.”\n";

A coordinate system is uniquely defined by its name and version. Most coordinate systems
do not have a version, and the ones that do have a default version, so it is usually sufficient
to use only the name when requesting a coordinate system. For example, chromosome
coordinate systems have a version which is the assembly that defined the construction of the
coordinate system. The version of human chromosome coordinate system might be NCBI33
or NCBI34.

Slice objects have an associated CoordSystem object and a seq_region_name that uniquely
defines the sequence that they are positioned on. You may have noticed that the coordinate
system of the sequence region was specified when obtaining a Slice in the fetch_by_region
method. Similarly the version may also be specified (though it can almost always be
omitted):

$slice = $slice_adaptor->fetch_by region('chronosone', 'X,
le6, 10e6, 'NCBI33');

Sometimes it is useful to obtain full Slices of every sequence in a given coordinate system;
this may be done using the SliceAdaptor method fetch_all.

ny @hronmosones = @ $slice_adaptor->fetch_all (' chronmosone')};
ny @lones = @%$slice_adaptor->fetch_all('clone')};

Now suppose that you wish to write code which is independent of the species used. Not all
species have the same coordinate systems; the available coordinate systems depends on
the style of assembly used for that species (WGS, clone-based, etc.). You can obtain the list
of available coordinate systems for a species using the CoordSystemAdaptor and there is
also a special pseudo-coordinate system named toplevel. The toplevel coordinate system is
not a real coordinate system, but is used to refer to the highest level coordinate system in a
given region. The toplevel coordinate system is particulary useful in genomes that are
incompletely assembled. For example, the latest zebrafish genome consists of a set of
assembled chromosomes, and a set of supercontigs that are not part of any chromosome. In
this example, the toplevel coordinate system sometimes refers to the chromosome
coordinate system and sometimes to the supercontig coordinate system depending on the

region it is used in.

#list all coordinate systenms in this database:
ny @oord_systems = @$csa->fetch_all()};
foreach $cs (@oord_systens)
print “Coord system “.$cs->name().“ “.$cs->version.”\n";

#get all slices on the highest coordinate system
ny @lices = @%$slice_adaptor->fetch_all ('toplevel')};

Transform

Features on a Slice in a given coordinate system may be moved to another slice in the same
coordinate system or to another coordinate system entirely. This is useful if you are working
with a particular coordinate system but you are interested in obtaining the features
coordinates in another coordinate system.

The method transform can be used to move a feature to any coordinate system which is in
the database. The feature will be placed on a Slice which spans the entire sequence that the
feature is on in the requested coordinate system.

if(my $new feature = $feature->transform(' clone')) {
print “Feature's clonal position is:”,
$new feature->slice->seq_region_nane(), ' ',
$new feature->start(),'-', $feature->end(),"' (',
$new feature->strand(), “)\n";
} else {
print “Feature is not defined in clonal coordinate systemn”

The transform method returns a copy of the original feature in the new coordinate system, or
undefif the feature is not defined in that coordinate system. A feature is considered to be
undefined in a coordinate system if it overlaps an undefined region or if it crosses a
coordinate system boundary. Take for example the tiling path relationship between
chromosome and contig coordinate systems:

| ~~~~~~~ | (Feature A) |~~~~| (Feature B)

(ctg 3) (- - ::::::::::::] (ct 93)

Both Feature A and Feature B are defined in the chromosomal coordinate system described
by the tiling path of contigs. However, Feature A is not defined in the contig coordinate
system because it spans both Contig 1 and Contig 2. Feature B, on the other hand, is still
defined in the contig coordinate system.

The special toplevel coordinate system can also be used in this instance to move the feature
to the highest possible coordinate system in a given region:

ny $new feature = $feature->transforn(’' toplevel');
print “Feature's toplevel position is:”

$new_f eat ure->slice->coord_system >nan’e() B
$new f eat ure->slice- >seq region_nane(), '

$new feature->start(), , $f eat ur e- >end() (' ,
$new f eat ur e- >st rand() !) \n”;

Transfer

Another method that is available on all Ensembl features is the transfer method. The
transfer method is similar to the perviously described transform method, but rather than
taking a coordinate system argument it takes a Slice argument. This is useful when you
want a feature's coordinates to be relative to a certain region. Calling transform on the
feature will return a copy of the which is shifted onto the provided Slice. If the feature would
be placed on a gap or across a cooridinate system boundary, then undefis returned instead.
Itis illegal to transfer a feature to a Slice on a sequence region which is cannot be placed on.
For example, a feature which is on chromosome X cannot be transferred to a Slice on
chromosome 20 and attempting to do so will raise an exception. It is legal to transfer a
feature to a Slice on which it has coordinates past the slice end or before the slice start. The
following example illustrates the use of the transfer method:

$slice = $slice_adaptor->fetch_by region('chronosone',"'?2",
le6, 2e6);

$new _slice = $slice_adaptor->fetch_by region('chronosone, '2',
1 _500_000, 2_000_000);

foreach $sf (@ $slice->get_all _Sinpl eFeatures(' Eponine')}) {
print “Before: “, $sf->start, '-', $sf->end, “\n”;
$new feat = $sf->transfer($Snew slice);
i f(!$new feat)
print “Could not transfer feature\n”;
} else {
print “After: “, $new feat->start, '-', $new feat->end, “\n”;

In the above example a Slice from another coordinate system could also have been used,
provided you had an idea about what sequence region the features would be mapped to.

Project

When moving features between coordinate systems it is usually sufficient to use the transfer
or transform methods. Sometimes, however, it is necessary to obtain coordinates in a
another coordinate system even when a coordinate system boundary is crossed. Even
though the feature is considered to be undefined in this case, the feature's coordinates in can
still be obtained in the requested coordinate system using the project method.

Both Slices and features have their own project methods, which take the same arguments
and have the same return values. The project method takes a coordinate system name as
an argument and returns a reference to a list of ProjectionSegment objects. A projection
segment has three attributes: from_start, from_end, to_Slice. The from_start and from_end
methods return integers representing the part of the feature or Slice that is used to form that
part of the projection. The to_Slice method returns a Slice object representing the part of the
region that the slice or feature was projected to. The following example illustrates the use of
the project method on a feature. The project method on a Slice can be used in the same
way. As with the Feature transform method the pseudo coordinate system toplevel can be
used to indicate you wish to project to the highest possible level.

$projection = $feature->project('clone);

ny $seq_region $f eat ur e- >seq_r egi on_nane() ;

ny $start = $feature->start();
ny $end = $feat ure->end();
ny $strand = $feature->strand();

print “Feature at: $seq_region $start-$end ($strand) projects *
“ t O\ nu ,

foreach ny $segnent (@projection) {
ny $to_slice = $segnent->to_Slice();

nmy $to_seq_region $to_slice->seq_regi on_nane();

nmy $to_start = $to_slice->start();

ny $to_end = $to_slice->end();

nmy $to_strand = $to_slice->strand();

print © $to_seq_region to_start-to_end ($to_strand)\n”;

Feature Convenience Methods

We have described how a feature's position on the genome is defined by an associated Slice
and a start, end, and strand on that slice. Often it is more convenient to retrieve a feature's
absolute position on the underlying sequence region rather than its relative position on a
Slice. For convenience a number of methods are provided that can be used to easily obtain
a feature's absolute coordinates.

shortcuts to doing $feat->slice()->coord_systen()->nane()
and $feat->slice()->seq_regi on_nane();
print $feat->coord_systemnane(),' ', $feat->seq_region_nane(),' ';

get the feature's position on the sequence region
print $feature->seq_region_start(),'-"', $feature->seq_regi on_end(),
"(', $feature->seq_region_strand(), “)\n";

Another useful method is display_id. This will return a string that can be used as the name or
identifier for a particular feature. For a gene or transcript this method would return the
stable_id, for an alignment feature this would return the hit sequence name (hsegname), etc.

display_id returns a suitable display value for any feature type
print $feat->display_id(), “\n";

The feature_Slice method will return a Slice which is the exact overlap of the feature the
method was called on. This slice can then be used to obtain the underlying sequence of the
feature or to retrieve other features that overlap the same region, etc.

$feat _slice = $feat->feature_Slice();

print the sequence of the feature region
print $feat_slice->seq(), “\n”;

print the sequence of the feature region + 5000bp fl anking
sequence
print $feat_slice->expand(5000, 5000)->seq(), “\n";

get all genes which overlap the feature
$genes = $feat_slice->get_all _CGenes();

The Registry

The registry is a convienient storage/retrieval area for all the adaptors and provides an easy
way to access them. If you have an Ensembl Web Server setup then you can automatically
load all it's adaptors with the load_registry_with_web_adaptors method from the Registry
module.

use Bio::EnsEMBL::Registry;
my $reg = "Bio::EnsEMBL::Registry";

Sreg->load_registy_with_web_adaptors();

my $ga = S$Sreg>get_adaptor ("Homo_sapiens", "estgene",”Gene”) ;
my $gene = $ga->fetch_by_stable_id("ENSESTG00000015126");

print S$gene->seqg()."\n";

The above gives an example of using the database data held in the Ensembl Web Server to
ease the maintainance of code as we do not need to add the host, database name, host etc
as this will already be set up. Plus it should now be more readable.

Another example of a general script is given below and takes four arguments the species,
chromosome, start and end. This script will print out all the gene names with their start and
end points and from which group database they were found for all genes found on the named
chromosome between the start and end points specified.

#test2.pl
use Bio::EnsEMBL: :Registry;
my $Sreg = "Bio::EnsEMBL::Registry";

my ($species, $chrom, S$start, $end) = QGARGV;

die ("Error species chrom start and end needed\n") unless
defined ($end) ;

Sreg->load_registry_with_web_adaptors();
Sspecies = $Sreg->get_alias ($Sspecies);

my @dbs = S$reg->get_all_DBAdaptors();
foreach my $db (Q@dbs) {
if ($db->species eqg S$species) {
my $slice_adap = Sreg->get_adaptor
($db->species, S$db->group,"Slice");
if (defined ($slice_adap)) {
my $slice = $slice_adap->fetch_by_region
('"chromosome', $Schrom, $start, S$end);
foreach $gene (@{$slice->get_all_Genes}) {
my S$gene2= $gene->transform('chromosome') ;
my S$name = $gene->stable_id() || $gene->type().".".
$gene->dbID () ;
print S$db->group."\t".Sname."\t".$gene2->start."\t".
Sgene2->end."\n";

Note the path to the SiteDefs.pm module must first be added to the PERL5LIB enviroment
variable if you want to use the load_registry_with_web_adaptors method. The next example
will list all the databases that have been set up for the Ensembl Web Server :-

use Bio::EnsEMBL::Registry;
my $Sreg = "Bio::EnsEMBL::Registry";

Sreg->load_registry_with_web_adaptors();

my @dbs = S$reg->get_all_DBAdaptors();
foreach my $db (Qdbs) {

print $db->species () ."\t".
Sdb->group () ."\t".
Sdb—>dbc—->dbname () . "\t".
Sdb—>dbc—->host () ."\t".
S$db->dbc—>port () ."\n";

}

To ensure the Registry stores the Adaptors in an organised way two new arguments have
been added to the DBAdaptor new method, these are species and group. Default values are
used if these are not given. Configuration scripts can be written to enable an easy setup of
the Registry for all scriptsto use. Below is an example of a configuration script.

use Bio::EnsEMBL::DBSQL: :DBAdaptor;
use Bio::EnsEMBL::Utils::ConfigRegistry;
my $Sreg = "Bio::EnsEMBL::Registry";

my @a = ('H_Sapiens', 'homo sapiens', 'human',
'Homo_Sapiens', "Homo sapiens");

Bio::EnsEMBL::Utils::ConfigRegistry—>
add_alias(—-species => "Homo_sapiens",
—alias => \Qa);

new Bio::EnsEMBL: :DBSQL: :DBAdaptor (
—-species => "Homo_sapiens",

—group => "core",

-host => 'hostl',

-user => 'anonymous',

—dbname => 'homo_sapiens_core_24_34e’',
-port => '3306"');

my $db = new Bio::EnsEMBL: :DBSQL: :DBAdaptor (
—-species => "Homo_sapiens",

—group => "estgene",

—host => 'hostl',

-user => 'anonymous',

—dbname => 'homo_sapiens_estgene_24_34e',
-port => '3306"');

Sreg->add_DNAAdaptor ($db->species, S$db->group, "core");

The script is ran by calling the method load_all and passing it the file name. Alternatively if
there is no file name the Enviroment Variable ENSEMBL _REGISTRY is checked for a valid
file. If that fails the file ./ensembl_initrc is checked. So a central configuration script can be
setup and occasional API programmers will no longer have to remember what databases are
where and on what port etc. So to use the above configuration to get the sequence from a
estgene stable_id would be :- This presumes i have set up ENSEMBL_REGISTRY.

use Bio::EnsEMBL::Registry;
my S$Sreg = "Bio::EnsEMBL::Registry";

Sreg->load_all();
my S$gadap = $reg->get_adaptor ("human", "estgene", ”Gene”);
my $gene = $gadap->fetch_by_stable_id("ENSESTG00000015126");

print S$gene->seq."\n";

