
The Ensembl Xref System

Overview

This document describes the new (November 2004) Ensembl xref system.

The xref process consists of two steps:

1. Downloading xref data, parsing it and loading it into the xref holding database

2. Mapping the xrefs in the holding database to an Ensembl object (gene, transcript, or translation)

The two stages are separate and can be run at different times, although obviously xrefs that haven't been
parsed can't be mapped.

Terminology

xref – an external reference, i.e. a link to something that is stored in a database outside of Ensembl.

source – one of the databases or resources which we produce links to.

primary xref – an xref that has associated sequence, e.g. SwissProt.

dependent xref – an xref that is a “child” of another (usually primary) xref, e.g. PubMed xrefs are
considered dependent on the SwissProt xref in which they are referenced.

synonym – an alternative name for an xref.

direct xref – one where the mapping has already been done outside Ensembl (e.g. CCDS)

The xref holding database

When the xrefs are parsed they are stored in the xref holding database. The MySQL database is created
from the SQL held in
ensembl/misc-scripts/xref_mapping/sql/table.sql
and the metadata required to start using the xref system is held in held in
ensembl/misc-scripts/xref_mapping/sql/populate_metadata.sql
The xref holding database consists of the following tables:

Table name Purpose
xref The central table for storing xrefs. Contains attributes which are common to all types of xrefs.
primary_xref Contains extra columns required for storing xrefs with sequence data. Links to xref table to store

common xref data.
dependent_xref Links pairs of xrefs in a parent-child relationship. Note that the linkage is done by xref_id so the all

the actual data is stored in the xref table.
direct_xref Allows storage of xrefs where the link to Ensembl has already been calculated, e.g. by the maintainers

of the xref's source. Links an entry in the xref table to an Ensembl stable ID.
synonym Links pairs of xrefs (in the xref table) that are synonyms of each other.
source High-level data about sources from which xref data is obtained.
source_url Stores the actual URLs from which xref data is downloaded. There are generally several rows in

source_url for each source.
species Species information, including any commonly-used aliases for the species.
interpro Stores the relationships between Interpro accessions and protein family IDs.

Parsing xrefs

This is the first of the two stages of creating xrefs. There are separate parsers for each source; while the
details of the parsing are different for each one, the overall functionality can be summarised as follows:

Connect to source FTP or web site
Download appropriate file(s)
Compare checksum of file with previous checksum
If different:

Parse the file and load into holding database.
Generate xrefs, primary xrefs, dependent xrefs and synonyms as appropriate.

All species have the same "core" set of xrefs which consists of the following:

Source name Website Parser(s) used to populate
Uniprot/SPtrembl ftp://ftp.ebi.ac.uk/pub/databases/SPp

roteomes/swissprot_files
UniProtParser.pm

Uniprot/Swissprot ftp://ftp.ebi.ac.uk/pub/databases/SPp
roteomes/swissprot_files

UniProtParser.pm

Refseq_peptide,
RefSeq_peptide_predicted

ftp://ftp.ncbi.nih.gov/refseq/ RefSeqGPFFParser.pm

Refseq_dna,
RefSeq_dna_predicted

ftp://ftp.ncbi.nih.gov/refseq/ RefSeqParser.pm

UniGene ftp://ftp.ncbi.nih.gov/repository/Uni
Gene/

UniGeneParser.pm

IPI ftp://ftp.ebi.ac.uk/pub/databases/IPI/c
urrent/

IPIParser.pm

MIM secondary3 UniProtParser.pm
RefSeqGPFFParser.pm

PDB secondary3 UniProtParser.pm
EMBL secondary3 UniProtParser.pm
Protein_id secondary3 UniProtParser.pm
EntrezGene secondary3 RefSeqGPFFParser.pm
GO ftp://ftp.ebi.ac.uk/pub/databases/GO/

goa/
GOParser.pm

Interpro ftp://ftp.ebi.ac.uk/pub/databases/in
terpro/interpro.xml.gz

InterproParser.pm1

1 no link to primary_xref, special case
2 new data source (not stored in old xref system)
3 secondary data source see parser to get more information

ftp://ftp.ncbi.nih.gov/refseq/s
ftp://ftp.ncbi.nih.gov/refseq

There are also certain species-specific xref sources:

Species Source name Website Parser
Human HUGO http://www.gene.ucl.ac.uk/publicfiles/nomen

ens4.txt + ens1.dat

HUGOParser.pm

Human OMIM ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap MIMParser.pm2

Human CCDS Local file CCDSParser.pm
Mouse MarkerSymbol

(MGD/MGI)
ftp://ftp.informatics.jax.org/pub/reports/MRK_SwissProt
_TrEMBL.rpt

MGDParser.pm

Rat RGD ftp://rgd.mcw.edu/pub/data_release/genbank_to_gene_id
s.txt

RGDParser.pm

Zebrafish ZFIN http://zfin.org/data_transfer/Downloads/refseq.txt
http://zfin.org/data_transfer/Downloads/swissprot.txt

ZFINParser.pm

C Elegans WormBase ftp://ftp.sanger.ac.uk/pub/databases/wormpep/wormpep1
40/wormpep.table140

WormPepParser.pm

The following section gives more details on each of the parsers.

UniProtParser.pm
Each record is stored as an xref and a primary_xref.
The accession is the main key and is taken from the AC line.
Any DR line that matches a valid source name (in the database) will be processed and stored as xrefs and dependent
xrefs. Currently these are MIM, PDB, EMBL.
In addition protein_id is taken from the EMBL line.
NOTE: InterPro is not loaded here as Interpro does not match InterPro (note capital P here). This is loaded
separately via the interpro parser.
Species specific files are parsed here so all records are stored.

RefSeqParser.pm
Each record is stored as an xref and a primary_xref.
Only the sequence data and accessions are stored.

RefSeqGPFFParser.pm
Each record is stored as an xref and a primary_xref.
The accession is the main key and is taken from the AC line.
EntrezGene, OMIM and pubmed are stored as xrefs and dependent xrefs.
Species specific files are parsed here so all records are stored.

IPIParser.pm
Each record is stored as an xref and a primary_xref.
Only the sequence data and the id are stored.

UniGeneParser.pm
Each record is stored as an xref and a primary_xref.
The cluster id is the main key and is taken from the /ug field.

CCDSParser.pm
Each record is stored as a direct xref between the ensembl stable id and the CCDS reference.

http://www.gene.ucl.ac.uk/publicfiles/nomen

GOParser.pm
Will only add entries if uniprot or refseq entry has been loaded already.
ENSEMBL entries are also ignored as these will only map onto themselves.
Most GO entries will already exist in the xref table (from Uniprot parsing) but most will not have the description, so
this is added if there is none.
Dependent xrefs are created if they do not exist already.

InterproParser.pm
The xrefs are stored for each Interpro but NO dependent xrefs are stored.
Instead a separate table is populated (interpro) with the interpro/pfam mappings. Uniprot/Refseq accessions are
NOT checked to see if they are already in the database, therefore is species non-specific, but the xref is stored with
the species specified in the run.

MIMParser.pm
Uses the Gene names to map the MIM numbers to the protein accessions via the HUGO numbers. So HUGO has to
be parsed already as well as Uniprot and Refseq.
These are stored as OMIM at present and are expected to replace the disease database.

HUGOParser.pm, MGDParser.pm, RGDParser.pm, ZFINParser.pm
Uniprot and Refseq must be already be parsed. Entries are added to the xref table and the dependent xref linked to
the proteins (if they have been loaded). So Entries are added if the accession is valid for uniprot or refseq for that
particular species.

WormPepParser.pm
Uniprot and Refseq must be already be parsed. Wormbase file is used to correct the wormbase_transcript names and
add new ones if they do not exist already and a swissprot accession is given.

Mapping xrefs to Ensembl objects

Overview
Once the internal xref database has been populated with xref data, the next stage is to map the xrefs to find
which Ensembl objects they're associated with. There are three phases to the mapping process:

Dumping the xref & Ensembl sequences
Finding the best match(es) between each xref and the Ensembl transcripts/translations etc.
Creating the relevant entries in the Ensembl core database xref-related tables

Doing the mapping
The Perl script xref_mapper.pl controls the mapping process. More details on actually running this phase
of the process are in the tutorial at the end of this document.

Package structure

The Perl modules that perform the mapping are part of the XrefMapper package. The BasicMapper.pm
module contains most of the functionality for doing the mapping. It is possible to subclass this class in
order to allow species-specific modifications to some functionality; in most cases the only method that will
need to be overridden is get_set_lists which returns a list of lists specifying the xref source(s) and
species to map, and the mapping method to be used (see below).

xref_mapper.pl looks for species-specific Perl modules in the XrefMapper package. Thus if you want to
introduce some species-specific functionality, you should put your species-specific .pm file (named
appropriately, e.g. homo_sapiens.pm) in the XrefMapper directory, and have it extend BasicMapper.pm.

Mapping methods

There are many different ways to perform a sequence mapping. For this reason it is possible to define your
own mapping method (assuming you're going to use exonerate to do the mapping) simply by creating a
Perl module which extends XrefMapper::Methods::ExonerateBasic and overriding the options()
method to specify which options you want to pass to exonerate. There are several pre-defined mapping
methods in the XrefMapper/Methods directory already.

Note that the exonerate –-bestn 1 option will usually give the best-in-genome result, but it will produce
more than one “best” mapping if two equally-good mappings exist, since there is no other way to
differentiate them.

Use of LSF

The mapping itself is done on the farm using LSF. Separate job arrays are submitted for DNA and protein
alignments. The number of jobs in each array is calculated before submission so that the whole process
takes about 20 minutes to run, in order to make best use of farm resources.

When the mapping is complete the .map files produced by all the exonerate jobs are parsed and files
suitable for loading into the xref-related tables of the core database are produced. If there were errors
during the mapping, .err files of non-zero length will be produced. The system will check for these and
warn if any are found so that you can investigate further.

Dependent xrefs

The sequence mapping is done between xrefs with DNA/protein sequence and Ensembl
transcripts/translations respectively. Of course there are many xrefs which do not have associated
sequence. If these have been stored correctly in the internal xref database, any dependent xrefs that are
associated with a primary xref will be automatically mapped to the same Ensembl object as the primary
xref.

Loading xref data into the core database

The end result of the mapping process is a set of files containing the xref data and mappings to Ensembl
objects in a format suitable for loading into an Ensembl core database. There are two groups of files:

• .txt files containing tab-delimited values which are suitable for loading into database tables using the
mysqlimport utility or the LOAD DATA INFILE command from a MySQL client. The part of the
filename before the .txt is the name of the table into which it should be loaded.

• .sql files used to update existing data, e.g. display_xrefs

Filename Purpose
xref.txt Contains all primary and dependent xrefs that were mapped.
object_xref.txt Relationships between all xrefs in xref.txt and their associated

ensembl objects.
identity_xref.txt Data about the quality of each object-xref mapping.
external_db.txt The sources from which the xrefs were taken.
external_synonym.txt Synonym information.
transcript_display_xref.sql SQL that can be executed to set the display_xref column of existing

transcripts.

Note that in the case of the .txt files, internal databases IDs are numbered to start after the highest
existing internal ID; this allows you to load xrefs, object_xrefs etc into existing tables without the risk of
overwriting existing internal IDs.
Note that if you specify the -upload option to xref_mapper.pl, the data in the files above will automatically be
loaded into the core database.

Tutorial

Two scripts need to be run: xref_parser.pl to download and parse the xrefs into the xref holding
database, and xref_mapper.pl to map them to Ensembl objects.

Parsing

The Perl script to create and populate the database is xref_parser.pl

 xref_parser --help produces

xref_parser.pl -user {user} -pass {password} -host {host} -port {port}
-dbname {database} -species {species1,species2}
-source {source1,source2} -skipdownload -create

If no source is specified then then all sources are loaded. The same is done for all species so it is best to
specify this one or the script may take a while.

Before running the script, look at populate_metadata.sql; in particular, towards the end, there is a
section which populates the source_url table with the locations of the files for each source. Please verify
that these are correct and complete for the species in question, particularly if it is the first time the new xref
system has been run for a new species.

So to load/parse all the xrefs for the human the command would be:-

 xref_parser.pm -host host1 -port 3350 -user admin -pass password -dbname xref_store
-species human -create

Note: Due to the fact that some Uniprot/Refseq entries may no longer be valid (loaded) some xrefs are
ignored, so do not worry if you see xref ignored messages with values.

So we now have a set of xrefs that are dependent on the Uniprot and Refseq entries loaded. These can then
be mapped to the Ensembl entities with the xref_mapper.pl script.

Note: adding new xref sources

To add a brand new xref source you will have to edit sql/populate_metadata.sql.

Add an entry to the source table first, i.e.

INSERT INTO source VALUES (2000, 'NEW', 1, 'Y', 4);

Becouse some sources are dependent on others being loaded the last argument is the order. Lower numbers
are processed first. i.e. For HUGO to be loaded the Refseq and Uniprot data must already be loaded as
these give the list of valid values to load.

You will also have to specify the files to down load and the parser to use. i.e.

INSERT INTO source_url (source_id, species_id, url, checksum, file_modified_date,
upload_date, parser) VALUES (2000, 9606,'ftp://ftp.new.org/new.gz', '',now(), now(),
"NEWParser");

You will have to create XrefParser/NEWparser.pm

Mapping

The script to create and populate the database is xref_mapper.pl

 xref_mapper --help produces

usage: perl xref_mapper <options>
options:
 -file <input_file> input file with keyword pairs for 'species','host',
 'port', 'dbname' ,'user', 'password' and 'directory'
 -maxdump <int> dump only <int> sequences.
 -dumpcheck only dump if files do not exist.
 -location only dump a subset of the genome. Format:
 coord_system:version:name:start:end:strand
 e.g.
 chromosome:NCBI34:X:1000000:2000000:1
 start, end, strand are optional
 coord_system can also be 'seqlevel' or 'toplevel'
 USE WITH CAUTION - MAY GIVE CONFLICTING RESULTS!
 -useexistingmapping use existing *.map files

 -upload upload xref, object_xref, identity_xref data, and set
 display_xrefs for genes and transcripts. Data is written
 to *.txt etc regardless of whether this option is used.
 If external_db in core database is empty, it's populated
 from ../external_db/external_dbs.txt
 -deleteexisting delete existing data from xref, object_xref,
 identity_xref and external synonym tables. Also set all
 existing display_xref_id columns in gene and transcript
 to null.
 -help display this message

It is important to get the contents of the input file (xref_mapper.input here) correct. There should be an
xref section containing details of the xref holding database that you created in the previous step, for
example

xref
host=ecs4
port=3350
dbname=glenn_human_xref
user=ensembl
password=ensembl
dir=/nfs/acari/gp1/work/ensembl/misc-scripts/xref_mapping/xref

The key/value pairs should be fairly self-explanatory. Note that lines beginning with # are treated as
comments.

After the xref section there should be one section for each species you want to map, for example

species=homo_sapiens
host=ecs4
port=3350
dbname=glenn_homo_sapiens_core_29_35b
user=ensembl
password=ensembl
dir=/nfs/acari/gp1/work/ensembl/misc-scripts/xref_mapping/human

again this is fairly straightforward. Note however that the species name must be of the form
genus_species, e.g. homo_sapiens, you cannot use human or other aliases as you could in the parsing
step. This is because species-specific mapping options (see later) are specified in files named e.g.
homo_sapiens.pm.

Once you've set the appropriate values in the file, the script can be run, for example:

perl xref_mapper.pl -file xref_mapper.input -upload -deleteexisting

The script will dump the xref & Ensembl sequences to .fasta files, run exonerate via LSF on the farm,
then parse the exonerate output and upload it to the core database (if the -upload option is specified).

Times of the various phases, based on the human xref mapping:

Fasta dumping Approximately 40 mintues
Exonerate mapping Approximately 20 minutes
Parsing & uploading Approximately 15 minutes

Note that if for some reason some part of the mapping script needs to be re-run subsequently, the already-
dumped .fasta files can be used by specifying the -dumpcheck option, and the existing exonerate
mappings can be used by specifying the -useexistingmapping option.

At the end of the process, all the xref data will have been dumped to tablename.txt files, which can then be
loaded into the MySQL database. There are also two .sql files produced, which can be executed to set the
transcript and gene display xrefs.

Note that if you do not specify the -upload option, no data will be uploaded to the core database.

If you do specify -upload, the data will all be loaded into the core database. The .txt and .sql files are
still written to disk.

Species-specific configuration

You can configure species-specific settings by creating or editing the file called homo_sapiens.pm (or
whatever the species is) in the XrefMapper/ directory. You can override the following:

• get_set_lists – link mapping methods to species
• gene_description_filter_regexps – regexps matching xref descriptions to ignore when building gene

descriptions

Mapping methods

If you need to run exonerate with different options, use different query/target thresholds, or even use some
other sequence-matching program, you'll need to create a mapping method in XrefMapper/Methods/ and
then modify get_set_lists() in BasicMapper.pm and/or your species-specific .pm file.

	Overview
	Terminology
	The xref holding database
	Parsing xrefs
	UniProtParser.pm
	RefSeqParser.pm
	RefSeqGPFFParser.pm	
	IPIParser.pm
	UniGeneParser.pm
	CCDSParser.pm
	GOParser.pm
	InterproParser.pm
	MIMParser.pm
	HUGOParser.pm, MGDParser.pm, RGDParser.pm, ZFINParser.pm
	WormPepParser.pm
	Mapping xrefs to Ensembl objects
	Overview
	Doing the mapping
	Package structure
	Mapping methods
	Use of LSF
	Dependent xrefs
	Loading xref data into the core database

	Tutorial
	Parsing
	Mapping

