Asterisk Documentation

Asterisk Development Team <asteriskteam@digium.com>

1.1 Asterisk 1.8 DOCUMENIAtION e e e
L L L NEW N L 8 ottt e e e

1.1.2 Getting Startedo
1.1.2.1 Precursors, Background and BUSINESSottt e et e
1.1.2.1.0 AStEriSK CONCEPES . o ot ittt e e e e e e
1.1.2.2 Beginning ASteriSKot
1.1.2.2.2 Installing ASteriSK . . . ot
1.1.2.2.2 Asterisk Configuration FIleS
1.1.2.2.3 BasiC PBX FUNCHONAIITYt e e e e e e e
1.1.2.2.4 Dialplan FuNdamentals e
1.1.2.2.5 Auto-attendant and IVR MENUSo e
1.1.2.2.6 Dialplan ArChiteCtUre e e e e e e e e e
1.1.2.2.7 Installing Asterisk From SOUICEo ottt e e e e e e e e
1.1.2.2.8 Getting Started With ASteriSK e
1.1.2.2.9 Asterisk ArChiteCtUrE oo
1.1.2.2.10 Asterisk on (Open)SOlarsttt

1.1.3 Asterisk Command RefereNCE e

1.1.3. 2 AGE COMMANGS . . ot ottt ettt et e e e e e e e e e e e e
1.1.3.1.1 AGIComMmMand_ANSWER
1.1.3.1.2 AGICommand_ASYNCAGI BREAK e e e e
1.1.3.1.3 AGICommand_CHANNEL STATUS e e e e e e e e e e e
1.1.3.1.4 AGICommand_CONTROL STREAM FILE e e e e
1.1.3.1.5 AGICommand_DATABASE DELt e e e e e e e e
1.1.3.1.6 AGICommand_DATABASE DELTREE e
1.1.3.1.7 AGICommand_DATABASE GETttt e e e e e e e e
1.1.3.1.8 AGICommand_DATABASE PUT e e
1.1.3.1.9 AGICommaNd_EXEC e
1.1.3.1.10 AGIComMmMaNd _GET DAT A . e e
1.1.3.1.11 AGICommand_GET FULL VARIABLE e e e
1.1.3.1.12 AGICommand_GET OPTION e e e e e e e e e
1.1.3.1.13 AGICommand_GET VARIABLE
1.1.3.1.14 AGICommand_GOSUBt e
1.1.3.1.15 AGICommand_HANGUP
1.1.3.1.16 AGICommand_NOOP
1.1.3.1.17 AGICommand_RECEIVE CHAR e e e
1.1.3.1.18 AGICommand_RECEIVE TEXTttt e e e e e e e
1.1.3.1.19 AGICommand_RECORD FILE e e e e e e
1.1.3.1.20 AGICommand_SAY ALPHA ...
1.1.3.1.21 AGICommMaNnd_SAY DATE ...t
1.1.3.1.22 AGICommand_SAY DATETIME e e e
1.1.3.1.23 AGICommand_SAY DIGITS ...t e e
1.1.3.1.24 AGICommand_SAY NUMBER
1.1.3.1.25 AGICommand_SAY PHONETIC e e e e e e e
1.1.3.1.26 AGICommMaNd_SAY TIME e
1.1.3.1.27 AGICommand_SEND IMAGE
1.1.3.1.28 AGICommaNnd_SEND TEXTttt e e e e
1.1.3.1.29 AGICommand_SET AUTOHANGUP e e e
1.1.3.1.30 AGICommand_SET CALLERID e e e e e e e e e
1.1.3.1.31 AGICommand_SET CONTEXTttt e e e e e e e e e e e e e e
1.1.3.1.32 AGICommand_SET EXTENSION e
1.1.3.1.33 AGICommand_SET MUSIC e e
1.1.3.1.34 AGICommand_SET PRIORITY ... e e e
1.1.3.1.35 AGICommand_SET VARIABLE e e e e e e
1.1.3.1.36 AGICommand_SPEECH ACTIVATE GRAMMAR e e e
1.1.3.1.37 AGICommand_SPEECH CREATE i e e e e e e e e e e
1.1.3.1.38 AGICommand_SPEECH DEACTIVATE GRAMMAR e
1.1.3.1.39 AGICommand_SPEECH DESTROYt e e e e e e e e e
1.1.3.1.40 AGICommand_SPEECH LOAD GRAMMAR e e e
1.1.3.1.41 AGICommand_SPEECH RECOGNIZE e e e e
1.1.3.1.42 AGICommand_SPEECH SET e
1.1.3.1.43 AGICommand_SPEECH UNLOAD GRAMMAR e e
1.1.3.1.44 AGICommand_STREAM FILE e e e e e e e
1.1.3.1.45 AGICommand_TDD MODE e e e
1.1.3.1.46 AGICommand_VERBOSEttt e e e e e
1.1.3.1.47 AGICommand_WAIT FOR DIGIT e e e e e
1.1.3.1.48 AGI Command Template Paget e e e e e

1.1.3.2 AMI ACHONS . .ottt e

1.1.3.2.1 AMI Action Template Page 113

1.1.3.2.2 ManagerAction_AbsoIUteTIMEOULo e e e e 114
1.1.3.2.3 ManagerAction_AgentLogoff 114
1.1.3.2.4 ManagerACtON_AQENTS ottt et e 115
1.1.3.2.5 ManagerACtiON_AGIo 115
1.1.3.2.6 ManagerACtion_AOCMESSAQTEt v ittt et et e e e e e e 116
1.1.3.2.7 ManagerACtion _ATXIEr ot 118
1.1.3.2.8 ManagerAction_Bridge 118
1.1.3.2.9 ManagerAction_Challenge 119
1.1.3.2.10 ManagerAction_ChangeMOnNitort e 120
1.1.3.2.11 ManagerAction_COmmMaANGttt e e e 120
1.1.3.2.12 ManagerAction_COreSetlingSo\ttt ettt e e 121
1.1.3.2.13 ManagerAction_CoreShowChannels 121
1.1.3.2.14 ManagerAction_CoreStatUsttt ettt e e e e 122
1.1.3.2.15 ManagerAction_CreateConfigt 122
1.1.3.2.16 ManagerAction_DAHDIDIalOffhooK e 123
1.1.3.2.17 ManagerAction_DAHDIDNDOff 123
1.1.3.2.18 ManagerAction_DAHDIDNDORNttt e e e 124
1.1.3.2.19 ManagerAction_DAHDIHANQUDot e e 124
1.1.3.2.20 ManagerAction_DAHDIRESIArt 125
1.1.3.2.21 ManagerAction_DAHDIShowChannels 125
1.1.3.2.22 ManagerAction_DAHDITransfer 126
1.1.3.2.23 ManagerACtioN_DataGetttt 126
1.1.3.2.24 ManagerAction_DBDeEl 127
1.1.3.2.25 ManagerAction_DBDEITreeo 128
1.1.3.2.26 ManagerAction_DBGEt 128
1.1.3.2.27 ManagerAction_DBPUL 129
1.1.3.2.28 ManagerACtioN_EVENTSo 129
1.1.3.2.29 ManagerAction_EXtENSIONSTate 130
1.1.3.2.30 ManagerAction_GetCoNfigottt 131
1.1.3.2.31 ManagerAction_GetConfigISON 131
1.1.3.2.32 ManagerACHON _GoIVAT . ..ottt i et e e e 132
1.1.3.2.33 ManagerACtioN_HaNQUPDot e e e e e 132
1.1.3.2.34 ManagerAction_IAXNELSIatSo 133
1.1.3.2.35 ManagerAction_|AXPEerliSt 133
1.1.3.2.36 ManagerACtioN_LAXDEEISottt 134
1.1.3.2.37 ManagerACtion_|AXIEgIStrYt 134
1.1.3.2.38 ManagerAction_JabberSend 135
1.1.3.2.39 ManagerAction_LiStCategoriesttt ittt e e 135
1.1.3.2.40 ManagerAction_ListCOMMANASttt it e e e e e e 136
1.1.3.2.41 ManagerAction_LocalOptimMiZEAWAYttt et e e 136
1.1.3.2.42 ManagerACtioN_LOGINottt e e 137
1.1.3.2.43 ManagerAction_Logoff 138
1.1.3.2.44 ManagerAction_MailboxCoUNt e 138
1.1.3.2.45 ManagerAction_MailboXStatusttt 139
1.1.3.2.46 ManagerAction_MeetmeLiSt 140
1.1.3.2.47 ManagerAction_MeetmeMULEt e 140
1.1.3.2.48 ManagerAction_MeetmeUNMUIEttt e e et e 141
1.1.3.2.49 ManagerAction_MiXMoNItOrMULE oo 141
1.1.3.2.50 ManagerAction_ModuleChecCK 142
1.1.3.2.51 ManagerAction_ModuleLoad e 143
1.1.3.2.52 ManagerAction_MONITOr 143
1.1.3.2.53 ManagerAction_OFgiNateottt ettt e e e e e 144
1.1.3.2.54 ManagerACtioN_Park 145
1.1.3.2.55 ManagerAction_ParkedCalls 146
1.1.3.2.56 ManagerAction_PauseMONItOrt e 146
1.1.3.2.57 ManagerACtON _PiNgttt e 147
1.1.3.2.58 ManagerAction_PlayDTMF 147
1.1.3.2.59 ManagerAction_QUEUEATTt 148
1.1.3.2.60 ManagerAction_QUEUELOGttt ittt et e e e e e e 149
1.1.3.2.61 ManagerAction_QUEUEPAUSEottt ittt et e e 149
1.1.3.2.62 ManagerAction_QUEUEPENAILY 150
1.1.3.2.63 ManagerAction_QuUeUEREI0Ad e 151
1.1.3.2.64 ManagerAction_QUEUEREMOVEttt ittt et ettt e e et e 151
1.1.3.2.65 ManagerAction_QUEUERESEL it e e 152
1.1.3.2.66 ManagerAction_QUEUERUIE 152
1.1.3.2.67 ManagerACtioN_QUEBUESottt et e e e e et e e e e e e e 153
1.1.3.2.68 ManagerAction_QUEUESTALUSo\ttt ettt e e et e e e 153
1.1.3.2.69 ManagerAction_QUEUESUMMAIYt vttt et e et et e e e e e e e e e et e et i 154
1.1.3.2.70 ManagerAction_RedireCt 154
1.1.3.2.71 ManagerAction_Reload 155
1.1.3.2.72 ManagerACtion_SendTeXtt 156
1.1.3.2.73 ManagerACHON _SeIVaAr . ..ttt i e e e 156
1.1.3.2.74 ManagerAction_ShowDialPlan 157

1.1.3.2.75 ManagerAction_SIPnotify 157

1.1.3.2.76 ManagerACtioN _SIPPEeIS 158

1.1.3.2.77 ManagerAction_SIPqualifypeer 159
1.1.3.2.78 ManagerAction_SIPShOWPEEr 159
1.1.3.2.79 ManagerAction_SIPShOWIEgiStrYt e e 160
1.1.3.2.80 ManagerAction_SKINNYTEVICESttt e e e e 160
1.1.3.2.81 ManagerAction_SKINNY I INES 161
1.1.3.2.82 ManagerAction_SKINNYShOWAEVICEottt e e e 161
1.1.3.2.83 ManagerAction_SKINNYShOWIINe e 162
1.1.3.2.84 ManagerACtiON_STAtUSottt et e e e e 162
1.1.3.2.85 ManagerAction_StOPMONITOrot e e 163
1.1.3.2.86 ManagerAction_UnpauseMOonitort 164
1.1.3.2.87 ManagerAction_UpdateConfigt e 164
1.1.3.2.88 ManagerAction_USErEVENt 165
1.1.3.2.89 ManagerAction_VoicemailUSersListt 166
1.1.3.2.90 ManagerAction_WaitEVent 166
1.1.3.3 Dialplan AppliCatioNSot e 167
1.1.3.3.1 Application_AddQUeUEMEMDIET e 167
1.1.3.3.2 ApPlicatiON_ADSIPIOg . . .t ottt 168
1.1.3.3.3 Application_AELSUD 168
1.1.3.3.4 Application_AgentLoginot 169
1.1.3.3.5 Application_AgentMOoNItorOULGOING o v vttt et e e e et e e e e 170
1.1.3.3.6 Application_AGo 171
1.1.3.3.7 Application_AIarmRECEIVETttt et e e e e 171
1.1.3.3.8 ApplicatioN_AMD . .. o 172
1.0.3.3.9 APPICatiON _ANSW T . .ttt e 173
1.1.3.3.10 Application_AuthentiCate e 174
1.1.3.3.11 Application_BackGround 175
1.1.3.3.12 Application_BackgroundDetecCtt 175
1.1.3.3.13 Application_Bridge 176
1.1.3.3.14 ApPlICAtION_BUSYttt 177
1.1.3.3.15 Application_CallCompletionCancelt e 178
1.1.3.3.16 Application_CallCompletionReqUESEt e e 178
1.1.3.3.17 Application_CELGENUSEIEVENL e 179
1.1.3.3.18 Application_ChangeMonitort 179
1.1.3.3.19 Application_ChanlsAvail 180
1.1.3.3.20 Application_ChannelRedirect 180
1.1.3.3.21 Application_ChanSpy 181
1.1.3.3.22 Application_ClearHash 182
1.1.3.3.23 Application_ConfBridgettt 183
1.1.3.3.24 Application_Congestion i 184
1.1.3.3.25 Application_ContinUeWhile 184
1.1.3.3.26 Application_ControlPlayback 185
1.1.3.3.27 Application_DAHDIACCEPtR2CaAll 186
1.1.3.3.28 Application_DAHDIBAIQEttt e e e 186
1.1.3.3.29 Application_DAHDIRAS 187
1.1.3.3.30 Application_DAHDISCANottt 187
1.1.3.3.31 Application_DAHDISendCallreroutingFacility e 188
1.1.3.3.32 Application_DAHDISendKeypadFacilityt i e 188
1.1.3.3.33 Application_DateTime e 189
1.1.3.3.34 Application_DBdel 189
1.1.3.3.35 Application_DBdeltree 190
1.1.3.3.36 Application_DeadAGI 191
1.1.3.3.37 Application_Dial 192
1.1.3.3.38 Application_DICtate 194
1.1.3.3.39 ApPliCatioN_DIrECIOTY . . . o i\ttt ettt e e e e e e 195
1.1.3.3.40 Application_DIS A .. 196
1.1.3.3.41 Application_DUumpPChan 197
1.1.3.3.42 Application_EAGI 197
1.1.3.3.43 Application_EChO 198
1.1.3.3.44 Application_EndWhile 199
1.1.3.3.45 AppPliCatioN_EXECo 199
1.1.3.3.46 Application_EXeCH 200
1.1.3.3.47 Application_EXeCHTIMe 201
1.1.3.3.48 Application_EXitWhile e e 201
1.1.3.3.49 Application_EXIENSPDYo 202
1.1.3.3.50 Application_ExXternallVR 203
1.1.3.3.51 Application_Festival e 204
1.1.3.3.52 Application_Flash 204
1.1.3.3.53 Application_FolloWMeo 205
1.1.3.3.54 Application_FOrkCDR 206
1.1.3.3.55 Application_GetCPEID 207
1.1.3.3.56 Application_GoSUD 208
1.1.3.3.57 Application_GosUbIf e 209
1.1.3.3.58 Application_GOt0ot 209

1.1.3.3.59 Application_GOtolf 210

1.1.3.3.60 Application_GotolfTime 211

1.1.3.3.61 Application_HanQUPottt 212
1.1.3.3.62 Application_IAX2ProviSiOn 212
1.1.3.3.63 Application_ICES 213
1.1.3.3.64 Application_IMportVar e 213
1.1.3.3.65 Application_INComplete 214
1.1.3.3.66 Application_IVRDEMOottt et e 215
1.1.3.3.67 Application_JabberJoin 215
1.1.3.3.68 Application_JabberLeave 216
1.1.3.3.69 Application_JabberSend 216
1.1.3.3.70 Application_JabberSendGroup 217
1.1.3.3.71 Application_JabberStatus 217
1.1.3.3.72 Application_JACK .. 218
1.1.3.3.73 APPIICAtION_LOG . . .ottt 219
1.1.3.3.74 Application_IMACIOottt 219
1.1.3.3.75 Application_MacCroEXCIUSIVE it e e 221
1.1.3.3.76 Application_MaCrOEXIt e 221
1.1.3.3.77 Application_Macrolf 222
1.1.3.3.78 Application_MailboXEXIStS 222
1.1.3.3.79 Application_MeetMe 223
1.1.3.3.80 Application_MeetMeAdMIN 225
1.1.3.3.81 Application_MeetMeChannelAdmin 226
1.1.3.3.82 Application_MeetMeCOUNLttt e e e 226
1.1.3.3.83 Application_MillIwatt 227
1.1.3.3.84 Application_MiniVIMACCMESSttt e e e e 227
1.1.3.3.85 Application_MinivmbDelete e 228
1.1.3.3.86 Application_MINIVIMGIEEBLo 229
1.1.3.3.87 Application_MinivIMWI . . .o 229
1.1.3.3.88 Application_MinivmNOLiIfy 230
1.1.3.3.89 Application_ MINIVMRECOITt e e e e e e 231
1.1.3.3.90 Application_MiXMORNITOro e e e 232
1.1.3.3.91 Application_IMONITOr 233
1.1.3.3.92 Application_MOrsecodet 233
1.1.3.3.93 Application_MP3PIaYErt 234
1.1.3.3.94 Application_IMS et 234
1.1.3.3.95 Application_MusicONHOIA 235
1.1.3.3.96 Application_INBSCatt e 236
1.1.3.3.97 Application_NOCDR 236
1.1.3.3.98 ApPlication_INOOD . ..ttt et 237
1.1.3.3.99 Application_ODBC_COMIMILottt e et e e e e e e e e e e e e e e e e 237
1.1.3.3.100 Application_ODBC_ROIIbaCKt e 238
1.1.3.3.101 Application_ODBCFINISN 238
1.1.3.3.102 Application_Originate 239
1.1.3.3.103 Application_OSPAULN 240
1.1.3.3.104 Application_OSPFINISN 240
1.1.3.3.105 Application_OSPLOOKUDottt e e e 241
1.1.3.3.106 Application_OSPINEXt 243
1.1.3.3.007 AppliCation _Pageot 244
1.1.3.3.108 Application_Park e 245
1.1.3.3.109 Application_ParkANdANNOUNCEt e e e e e e e e 246
1.1.3.3.110 Application_ParkedCall 246
1.1.3.3.111 Application_PauseMonitor 247
1.1.3.3.112 Application_PauseQueueMember 248
1.1.3.3.113 Application_PiCKUDo 249
1.1.3.3.114 Application_PickupChan 249
1.1.3.3.115 Application_Playback 250
1.1.3.3.116 Application_PlayTOnesottt 251
1.1.3.3.117 Application_PrivaCyManagerttt e e e e e 251
1.1.3.3.118 Application_ProCeedingttt 252
1.1.3.3.119 AppliCatiON_PrOgreSSottt e e e e e 252
1.1.3.3.120 Application_QUEUEt et e 253
1.1.3.3.121 Application_QUEUELOQG o\ttt et et e e e e e 254
1.1.3.3.122 Application_RaiSEEXCEPLIONottt e 255
1.1.3.3.123 Application_Readt 256
1.1.3.3.124 Application_ReadEXIeN e 257
1.1.3.3.125 Application_ReadFile 257
1.1.3.3.126 Application_RECEIVEFAXt e e 258
1.1.3.3.127 Application_ReceiveFAX (app_fax)o 259
1.1.3.3.128 Application_ReceiveFax (res_faX)t 259
1.1.3.3.129 Application_ReCOrdo 260
1.1.3.3.130 Application_RemoveQueueMember 261
1.1.3.3.131 Application_ReSetCDR 262
1.1.3.3.132 Application_RetryDialt 263
1.1.3.3.133 Application_RetUINo 263

1.1.3.3.134 Application_RINGING oot 264

1.1.3.3.135 Application_SayAlpha 264

1.1.3.3.136 Application_SayCountedAd]t 265
1.1.3.3.137 Application_SayCountedNOUNttt e e e 266
1.1.3.3.138 Application_SayCountPL 267
1.1.3.3.139 Application_SayDigitsSt e 267
1.1.3.3.140 Application_SayNUumber 268
1.1.3.3.141 Application_SayPhonetiC 268
1.1.3.3.142 Application_SayUniXTImettt e e e e e e e e e e 269
1.1.3.3.143 Application_SendDTMFE 270
1.1.3.3.144 Application_SeNaFaXt e e 270
1.1.3.3.145 Application_SendFAX (@pp_faX) 271
1.1.3.3.146 Application_SendFax (reS_faX)t 272
1.1.3.3.147 Application_Sendimage 272
1.1.3.3.148 Application_SendTextttt 273
1.1.3.3.149 Application_SendURL 274
1.1.3.3.050 AppPliCation Stt e 275
1.1.3.3.151 Application_SetAMAFIAgSo it e 276
1.1.3.3.152 Application_SetCallerPres 276
1.1.3.3.153 Application_SetMusiCONHOID 277
1.1.3.3.154 Application_SIPAddHeader 277
1.1.3.3.155 Application_SIPDIMIMOGEo 278
1.1.3.3.156 Application_SIPRemoveHeader 278
1.1.3.3.157 Application_SKel 279
1.1.3.3.158 Application_SLASIAtIONot 280
1.1.3.3.159 Application_SLATIUNK o e e 281
1.1.3.3.160 Application_SMS . .. 281
1.1.3.3.161 Application_SoftHangQupPt 282
1.1.3.3.162 Application_SpeecChACtivateGramMmMarttt e e 283
1.1.3.3.163 Application_SpeechBackgroundttt 283
1.1.3.3.164 Application_SpeeChCreatettt e 284
1.1.3.3.165 Application_SpeechDeactivateGrammarttt e i 285
1.1.3.3.166 Application_SPEECNDESIIOYttt ettt e 285
1.1.3.3.167 Application_SpeechLoadGrammarttt e e 286
1.1.3.3.168 Application_SpeechProcessingSoundttt 286
1.1.3.3.169 Application_SpPeeChStart e 287
1.1.3.3.170 Application_SpeechUnloadGrammarttt e 287
1.1.3.3.171 Application_StackPoOp 287
1.1.3.3.172 Application_StartMusicONHOId 288
1.1.3.3.173 Application_StopMiXMONITOrot e e 289
1.1.3.3.174 Application_StOpMONItOr 289
1.1.3.3.175 Application_StopMusiCONHOId e e 289
1.1.3.3.176 Application_StopPlayTONESt 290
1.1.3.3.177 Application_SyStem 290
1.1.3.3.178 Application_TestClient 291
1.1.3.3.179 Application_TeStSeIVEr 292
1.1.3.3.180 Application_Transfer 292
1.1.3.3.181 ApplicationN_TrYEXEC . . . oottt e e e e e e e e 293
1.1.3.3.182 Application Ty Sy S emM . .ttt 293
1.1.3.3.183 Application_UnpauseMOnitor e 294
1.1.3.3.184 Application_UnpauseQueueMembEr 295
1.1.3.3.185 Application_USErEVENt 296
1.1.3.3.186 Application_Verbose 296
1.1.3.3.187 Application_VMAUNENTICAtEo\ttt e e e 297
1.1.3.3.188 Application_VMSayName 297
1.1.3.3.189 Application_VoiceMail 298
1.1.3.3.190 Application_VoiceMailMain 299
1.1.3.3.291 Application_WWait 300
1.1.3.3.192 Application_WaitEXIEN 301
1.1.3.3.193 Application_WaitFOrNOISE 301
1.1.3.3.194 Application_WaitFOrRINGo e 302
1.1.3.3.195 Application_WaitForSilence 302
1.1.3.3.196 Application_WaitMusicONHOId 303
1.1.3.3.197 Application_WaitUntil 304
1.1.3.3.198 Application_While e e 305
1.1.3.3.199 Application_Zapateller 305
1.1.3.3.200 Dialplan Application Template Page 306
1.1.3.4 Dialplan FUNCLONSt e e e e e e e e e e e e 306
1.1.3.4.1 Dialplan Function Template Pagettt e 306
1.1.3.4.2 Function_AES DECRY P T . .. 307
1.1.3.4.3 Function_AES ENCRY P T .t 308
1.1.3.4. 4 FUNCHON _AG C ...t e e 308
1.1.3.4. 5 FUNCHON _AGENT . .o 309
1.1.3.4.6 FUNCHON _ARR AY . . 310
1.1.3.4.7 FUNCtioN_AST_CONFIG ... e e e e 310

1.1.3.4.8 Function_ AUDIOHOOK _INHERIT e e 311

1.1.3.4.9 Function_BASEGB4_DECODE 312

1.1.3.4.10 Function_BASEBA ENCODEt e e 312
1.1.3.4.01 Function_BLACKLIST ... e e 313
1.1.3.4.12 Function_CALENDAR _BUSY e 313
1.1.3.4.13 Function_CALENDAR _EVENT ... e e e e e e e e e 314
1.1.3.4.14 Function_CALENDAR _QUERY e e 315
1.1.3.4.15 Function_CALENDAR_QUERY _RESULT ...\ .\ttt et e e e 315
1.1.3.4.16 Function_CALENDAR _WRITE e e e e 316
1.1.3.4.17 Function_CALLCOMPLETION ...t e e e e e e e e e 317
1.1.3.4.18 FUNCLON_CALLERID e e e e e 318
1.1.3.4.09 Function_CALLERPRES 319
1.1.3.4.20 FUNCHON_CD R ... e e e e e e 320
1.1.3.4.21 Function_CHANNEL 321
1.1.3.4.22 Function_CHANNELS e e e 323
1.1.3.4.23 Function_CHECKSIPDOMAIN e e e e e e e 323
1.1.3.4.24 Function_CONNECTEDLINEt e e e e e e e e e e 324
1.1.3.4.25 FUNction_CSV_QUOTEt e e e e e 325
1.1.3.4.26 FUNCHON_CUT ... e e e e e e e e e 325
1.1.3.4.27 FUNCHON DB ... e e 326
1.1.3.4.28 Function_DB_DELETE 327
1.1.3.4.29 FUNCLiON_DB_EXIST S ... i e e e e 327
1.1.3.4.30 FUNCHON_DEC e e e e e 328
1.1.3.4.3L FUNCLION_DENOISE e e e 328
1.1.3.4.32 Function_DEVICE _STATE e 329
1.1.3.4.33 FUNCtion_DIALGROUP 330
1.1.3.4.34 Function_DIALPLAN _EXIST S .. 331
1.1.3.4.35 Function_DUNDILOOKUP e e e e 331
1.1.3.4.36 Function_DUNDIQUERY e e e e e e 332
1.1.3.4.37 Function_DUNDIRESULT e e e e 333
1.1.3.4.38 Function_ENUMLOOKUP e e e e e e e e e e 333
1.1.3.4.39 Function_ENUMQUERY e 334
1.1.3.4.40 Function_ENUMRESULTt e e e e e e e e e e e 334
1.1.3.4. 41 FUNCHON _ENV . . 335
1.1.3.4.42 FUNCHON _EV AL ..o 335
1.1.3.4.43 Function_EXCEPTION e e 336
1.1.3.4.44 FUNCHON_EXIST S .o 337
1.1.3.4.45 Function_EXTENSION _STATE e e e e e e e e e 337
1.1.3.4.46 FUNCHON _FAXO P T . e e e e e 338
1.1.3.4.47 Function_FIELDNUM e e e 338
1.1.3.4.48 FUNCHON_FIELD QT Y .ottt e e e e e e e e e e e 339
1.0.3.4.40 FUNCHON _FILE . . . 340
1.1.3.4.50 Function_FILE_COUNT _LINE e e e e e e 342
1.1.3.4. 51 Function_FILE _FORMAT .. e e 343
1.1.3.4.52 FUNCLON_FILTER e e e e e e 343
1.1.3.4.53 Function_FRAME _TRACEt e 344
1.1.3.4.54 FUNCHON_GLOBALt e e 345
1.1.3.4.55 FUNCHON_GROUP . .. 345
1.1.3.4.56 FUNction_GROUP _COUNT ... it e e e e e e e e e 346
1.1.3.4.57 FUNCtion_GROUP _LIST ... e e 346
1.1.3.4.58 Function_GROUP_MATCH _COUNT e e e e e e 347
1.1.3.4.59 FUNCHON _HASH . .. 347
1.1.3.4.60 Function_HASHKEY S 348
1.1.3.4. 6L FUNCHON_HINT .o e e 349
1.1.3.4.62 FUNCtion_IAXPEER 349
1.1.3.4.63 FUNCHON _IAXV AR L e 350
1.1.3.4.64 FUNCHON_ICONY . 350
1.0.3.4.65 FUNCHON _IF o e 351
1.1.3.4.66 FUNCtiON_IFMODULE e 351
1.1.3.4.67 FUNCHON _IFTIME .. e e e e e e e 352
1.1.3.4.68 FUNCHON _IMP O R T ... e e e e e e 352
1.1.3.4.69 FUNCHON_INC e e e 353
1.1.3.4.70 FUNCHON _ISNULL e e e 353
1.1.3.4.71 Function_JABBER_RECEIVE e 354
1.1.3.4.72 Function_JABBER _STATUS e e e e 355
1.1.3.4.73 Function_KEYPADHASHo 355
1.0.3.4. 74 FUNCHON_LEN . 356
1.1.3.4.75 FUNCtiON_LISTFILTERo e e e e e e e e e e 356
1.1.3.4.76 FUNCHON_LOC AL .. . e e 357
1.1.3.4.77 Function_LOCAL_PEEK e e e 358
1.1.3.4.78 FUNCHON_LOCK . . 358
1.1.3.4.79 Function_MAILBOX _EXIST S ...t e e e e 359
1.1.3.4.80 Function_MASTER_CHANNEL e e e e 359
1.0.3.4.81 FUNCHON _MATH . 360
1.1.3.4.82 FUNCHON _ MDD . . . e 360

1.1.3.4.83 Function_MEETME_INFO e e 361

1.1.3.4.84 Function_MINIVMACCOUNT e e e 361

1.1.3.4.85 Function_MINIVMCOUNTERt e e e e e e e e 362
1.1.3.4.86 FUNCtion_MUTEAUDIOttt e e e e e 363
1.1.3.4.87 FUNCHON_ODBCottt et et e e e e 364
1.1.3.4.88 FuNCtion_ODBC_FETCH e e e e e e e e 364
1.1.3.4.89 FUNCHON_PASSTHRU ... e e e e 365
1.1.3.4.90 Function_PITCH _SHIFT e e 365
1.1.3.4.91 FUNCHON PO . 366
1.1.3.4.92 Function_PP_EACH_EXTENSION e e e 367
1.1.3.4.93 Function_PP_EACH_USER e 367
1.1.3.4.94 FUNCHON_PUSH 368
1.1.3.4.95 Function_QUEUE _EXISTSt e 369
1.1.3.4.96 Function_QUEUE_MEMBERt e e 369
1.1.3.4.97 Function_QUEUE_MEMBER_COUNTttt e e e 370
1.1.3.4.98 Function_QUEUE_MEMBER _LISTt e e e 371
1.1.3.4.99 Function_QUEUE_MEMBER _PENALTY e 372
1.1.3.4.100 Function_QUEUE_VARIABLES e 373
1.1.3.4.101 Function_QUEUE_WAITING _COUNTttt 374
1.1.3.4.102 Function_QUOTE i 374
1.1.3.4.103 FUNCHON_RAND . ..ottt e 375
1.1.3.4.104 Function_REALTIME 375
1.1.3.4.105 Function_REALTIME_DESTROY . ..\ttt e e e e e 376
1.1.3.4.106 Function_REALTIME_FIELD e e e e 377
1.1.3.4.107 Function_REALTIME _HASH 377
1.1.3.4.108 Function_REALTIME_STORE e 378
1.1.3.4.109 Function_REDIRECTINGttt e e e e e e e 379
1.1.3.4.110 FUNCtioN_REGEXo 381
1.1.3.4.111 FUNCtion_REPLACE 381
1134002 FUNCHON _SET .ottt et e e e e e e 382
1.1.3.4. 018 FUNCHON_SHA L .. e e 382
1.1.3.4.114 FUNCtioN_SHARED 383
1.1.3.4.005 FUNCHON_SHELL e e 384
1.1.3.4.116 FUNCHON _SHIFT ... e e e e 384
1.1.3.4.117 Function_SIP_HEADER 385
1.1.3.4.118 Function_SIPCHANINFO e e e 386
1.1.3.4.119 FUNCHON_SIPPEER e 386
1.1.3.4.120 FUNCLON_SMDI_MS G e e e 387
1.1.3.4.121 Function_SMDI_MSG_RETRIEVE e e e 388
1.1.3.4.022 FUNCHON_SOR T ..ttt e e e e e e e 389
1.1.3.4.123 FUNCHON_SPEECH 389
1.1.3.4.124 Function_SPEECH_ENGINE 390
1.1.3.4.125 Function_SPEECH_GRAMMAR e 390
1.1.3.4.126 Function_SPEECH_RESULTS _TYPEt e e 391
1.1.3.4.127 Function_SPEECH_SCOREt 391
1.1.3.4.128 FUNCHON_SPEECH _TEXT ...ttt et e e et e e e e 392
1.1.3.4.020 FUNCHON_SPRINTF .. e e e 392
1.1.3.4.130 FUNCtiON_SQL_ESC 393
1.1.3.4.131 Function_SRVOQUERY e e 393
1.1.3.4.132 FUNCtion_SRVRESULT e 394
1.1.3.4.133 FUNCHON ST AT ottt e e e e e e e 394
1.1.3.4.134 FUNCtion_STRFTIME e e 395
1.1.3.4.135 FUNCHON_STRPTIMEt et e e e e e e e 395
1.1.3.4.136 FUNCHON_SYSINFO ... e 396
1.1.3.4.137 FUNCHON_TESTTIME . ..ottt e e e e e e e e e e e 397
1.1.3.4.138 FUNCHON_TIMEOUT ...ttt et e et e e e e e e e e e e e 397
1.1.3.4.139 FUNCtiON_TOLOWER ottt e e e e e e e e e e e e 398
1.1.3.4.140 Function_TOUPPER e 399
1.1.3.4.141 FUNCtioN_TRYLOCK ... e e e e 399
1.1.3.4.142 FUNction_TXTCIDNAME . . . ottt e e 400
1.1.3.4.043 FUNCHON_UNLO CK ... e e e e e 400
1.1.3.4. 144 FUNCHON_UNSHIFT L.t e e e 401
1.1.3.4.145 Function_URIDECODEt 401
1.1.3.4.146 Function_URIENCODEttt e e e e 402
1.1.3.4.147 Function_VALID_EXTEN 402
1.1.3.4.148 FUNCHON_VERSIONt e e e e e e e 403
1.1.3.4.149 FUNCHON_VMCOUNT ..ottt e e e e e e e e e e 403
1.1.3.4.150 FUNCtion_VOLUME e e e 404
1.1.4 Configuration and OPEerationt e e 405
1.1.4.1 Asterisk Calendaringottt 405
1.1.4.1.1 Configuring Asterisk Calendaringt 405
1.1.4.1.2 Calendaring Dialplan FUNCLIONSot e e e 406
1.1.4.1.3 Calendaring Dialplan EXamples 407
1.1.4.2 Asterisk Channel DIIVEIS e e e e e e 409
1.1.4.2.1 Inter-Asterisk eXchange protocol, version 2 (IAX2)t 409

1142 2 MISDIN . 411

1.1.4.2.3 Local Channel e 416

1.1.4.2.4 Mobile Channel 425
1.1.4.3 Asterisk Configuration 430
1.1.4.3.1 General Configuration Information 430
1.1.4.3.2 Database Support Configurationt e 442
1.1.4.3.3 Privacy Configurationt e e e 448
1.1.4.4 Asterisk Extension Language (AEL)ot 455
1.1.4.4.0 Introduction 10 AEL . . oo 455
1.1.4.4.2 AEL and Asterisk in a Nutshell 455
1.1.4.4.3 Getting Started With AEL 456
1.1.4.4.4 AEL DEDUGING . . o o ottt e e e e e e e e e e 457
1.1.4.4.5 ADOUL eI ParSE . . o e
1.1.4.4.6 General Notes about AEL SYNaXottt e 458
1.1.4.4.7 AEL KEYWOIAS . . . oottt it et et e e e e e e e e e e e 458
1.1.4.4.8 AEL Procedural Interface and Internals 459
1.1.4.4.9 AEL EXaMPIE USAQES .. .ttt t ittt et et e et e e e e 464
1.1.4.4.00 AEL EXamples . . .o 475
1.1.4.4.11 AEL Semantic Checkso 476
1.1.4.4.12 Differences with the original version of AEL 477
1.1.4.413 AEL HINtS @Nd BUQGS . . . oottt et ettt e et e e e e e e 478
1.1.4.4.14 The Full POwer Of AEL o e e 478
1.1.4.5 Asterisk Manager Interface (AMI)o 478
1.1.4.5.1 The Asterisk Manager TCP [P APl ... e e e e e e e e e 478
1.1.4.5.2 AMI CommaNd SYNTAX oottt ettt e e e e e e e e e e 479
1.1.4.5.3 AMI Manager COmMMaAaNASttt ittt et e e e e e et e e e e e e 479
1.1.4.5.4 AMI EXamMPIESo 479
1.1.4.5.5 Ensuring all modules are loaded with AMI 480
1.1.4.5.6 Device Status Reports With AMI 480
1.1.4.5.7 Some Standard AMI Headers 480
1.1.4.5.8 Asynchronous Javascript Asterisk Manger (AJAM) 482
1.1.4.6 ASEENSK QUEBUES . . .ottt et e e 483
1.1.4.6.1 Configuring Call QUEUESttt e e e e e e 483
1.1.4.6.2 QUEBUE LOGS . ..ottt e 495
1.1.4.7 Asterisk Security Framework 496
1.1.4.7.1 Security Framework OVEIVIEWottt e e e e e e e e 496
1.1.4.7.2 Security EVent GENErationo 497
1.1.4.7.3 Asterisk Security EVENt LOGOETottt et e e et e e e e e 497
1.1.4.7.4 Security EVENES 10 LOQG . . . o oottt 497
1.1.4.7.5 Security Log File FOrMato e e 499
1.1.4.8 Asterisk Sounds Packages 500
1.1.4.8.1 Getting the SouNds TO0ISt e e 500
1.1.4.8.2 About the SoUNdS TOOISo 500
1.1.4.9 Call Completion Supplementary Services (CCSS)ttt e e e 501
1.1.4.9.1 CCSS GlOSSAIY . . vttt ittt et e e e e e e e 502
1.1.4.9.2 The Call Completion PrOCESSttt e e e e e e e 502
1.1.4.9.3 Call Completion INfo @nd TIPSottt ettt e e e e e 505
1.1.4.9.4 Generic Call Completion EXample e 506
1.1.4.10 Call Detail Records (CDR)ttt i e e e e e e e e e e 507
1.1.4.10.1 CDR AppPliCatioNSo 507
1.1.4.00.2 CDR FIelas . ..ottt 507
1.1.4.10.3 CDR Variables 508
1.1.4.10.4 CDR Storage Backends 508
1.1.4.11 Calling USING GOOGIEo\ttt et e e e 517
1.1.4.12 Channel Event Logging (CEL) it e e 522
1.1.4.12.1 CEL DESIgN GO@IS . . . oottt ettt et e e e e e e e e 522
1.1.412.2 CEL Events and Fields 541
1.1.4.12.3 CEL Applications and FUNCLONSttt e et e et e e e e 542
1.1.4.12.4 CEL Configuration Files e e e 543
1.1.4.12.5 Generating Billing Information from CEL 543
1.1.4.12.6 CEL Storage Backends 543
1.1.4.13 Channel Variables 5562
1.1.4.13.1 Parameter QUOLINGot ottt ettt e e e e e e e e e e 552
1.1.4.13.2 About Variables 552
1.1.4.13.3 Variable Inheritance 553
1.1.4.13.4 Selecting Characters from Variables 553
1.1.4.13.5 EXPrESSIONS . o ot ittt et e e et e e e e e 554
1.1.4.13.6 Asterisk standard channel variables 563
1.1.4.14 Distributed Universal Number Discovery (DUNDI) e e 567
1.1.4.14.1 Introduction t0 DUNDI o 567
1.1.4.14.2 DUNDIQUERY and DUNDIRESULTttt ettt e e e e e e e e e 568
1.1.4.14.3 DUNDI Peering AQre@MENT . . . o\ttt et et et e e e e e e e e e e e e 568
1.1.4.15 E.164 NUmber Mapping (ENUM) . ..o e e e e 580
1.1.4.15.1 The ENUMLOOKUP Dialplan FUNCtioN e 580
LLLA LB FRAIUINES .. . ittt it ittt ettt e et et e e e e e 586

1.1.4.16.1 Asterisk AppliCatioNSo 586

1.1.4.16.2 Asterisk Call FIleso e e 590

1.1.4.16.3 Asterisk Command Line Interface 592
1.1.4.16.4 Asterisk Manager Interface (AMI) Changesttt e 593
1.1.4.16.5 BUIldiNg QUEBUES . . . oottt e e et e e 606
1.1.4.16.6 Call Completion Supplementary SErVICESttt e 627
1.1.4.16.7 Call QUBUES . . .ottt et e e e 627
1.1.4.16.8 Channel DriVErSottt et e e e e e 628
1.1.4.16.9 Database TranSacCtioNSttt et it e e e e e e e 631
1.1.4.16.10 Distributed Device State with AlS 632
1.1.4.16.11 Distributed Device State with XMPP PubSub 638
1.1.4.16.12 DUNDi - Distributed Universal Number DISCOVErY e 647
1.1.4.16.13 External IVR INterface 663
1.1.4.16.14 Followme - Realtime 666
1.1.4.16. 15 IAX2 SECUIMLY o ottt ittt e e e e e e e e e e e e e e e 667
1.1.4.16.16 Jabber in ASteriSKo 677
1.1.4.16.17 Jingle in AStEriSKo 680
1.1.4.16.18 LDAP Realtime DIriVEr e e 680
1.1.4.16.19 Open Settlement Protocol (OSP) User GUIde e 682
1.1.4.16.20 PSTN CONNECHIVILY\ttt e e e e e e e e e e e e e e e e e 706
1.1.4.16.21 Real-time Text (T.140)ttt ettt e e e e e e e e e e e 715
1.1.4.16.22 RTP Packetizationttt et e e e e 717
1.1.4.16.23 Simple Message Desk Interface (SMDI) Integration it 718
1.1.4.16.24 Simple Network Management Protocol (SNMP) SUPPOItot e 721
1.1.4.16.25 SIP RetransSmiSSIONSottt e e 741
1.1.4.16.26 SIP TLS TranSPOIt . . . oottt ettt ettt et e e e e e e e e e 743
1.1.4.16.27 Speech Recognition APl 745
1.1.4.16.28 SQLite Tablesot 751
1.1.4.16.29 Storing Voicemail in PostgreSQL via ODBC 755
1.1.4.16.30 TIMING INtEIACES . . . o .ot e e e e 766
1.1.4.16.31 Using the Hoard Memory Allocator with ASterisk e 768
1.1.4.16.32 VIideo CONSOIE . . .ottt e 769
1.1.4.16.33 Video Telephony o e 773
1.1.4.17 Manipulating Party ID Information 774
1.1.4.18 Packet Loss Concealment (PLC)ottt e e 780
1.1.4.18.1 PLC Background on Translation 780
1.1.4.18.2 PLC Restrictions and CaVEALSttt ittt et e 781
1.1.4.18.3 Requirements for PLC USE it e e e e 781

L1 14084 PLC TIPS o« et ittt e et e e e e e e e 781
1.1.4.19 Phone Provisioning in ASterisko 782
1.1.4.19.1 Configuration of phoneprov.CONf e 782
1.1.4.19.2 Creating Phone Profiles e e e e e 783
1.1.4.19.3 Configuration Of USErS.CONf 784
1.1.4.19.4 Phone Provisioning Templates 785
1.1.4.19.5 Phone Provisioning, Putting it all together 786
1.1.4.20 Reference Information INtrodUCtiON 788
1.1.4.20.1 License INfOrmationttt 788
1.1.4.20.2 Important Security Considerations i 789
1.1.4.20.3 Telephony Hardwarettt e et e e e e e 791
1.1.4.21 Secure Callingot 793
1.1.4.21.1 Secure Calling SPECIfiCS ot 793
1.1.4.21.2 Secure Calling Tutorial e e 794
1.1.4.22 Shared Line Appearances (SLA)ot 802
1.1.4.22.1 Introduction to Shared Line Appearances (SLA)t 802
1.1.4.22.2 SLA Configuration 802
1.1.4.22.3 SLA Configuration EXamples 804
1.1.4.22.4 SLAand Call Handlingot 808
1.1.4.23 Short Message ServiCe (SMS) ... i e e 809
1.1.4.23.1 Introduction t0 SMS . .. L. L 809
1.1.4.23.2 SMS and eXtensioNS.CONT 810
1.1.4.23.3 SMS BacCKgroUuNdo 811
1.1.4.23.4 SMS DeliVery REPOIS . . oot ottt e e e e 811
1.1.4.235 SMS File FOrMALSottt ettt e e e e e e e e 812
1.1.4.23.6 SMS SUD AdAreSSottt e 813
1.1.4.23.7 SMS TeIMINOIOQY . o .t ittt et e e e e e e e e e e e 813
1.1.4.23.8 SMS Typical Use With ASteriSK e e e e 813
1.1.4.23.9 USING SIMSO . . oo ottt ittt 814
1.1.4.24 VoICEMAIl . ..o 815
1.1.4.24.1 ODBC Voicemail STOrageo\ttt et e e e e e 815
1.1.4.24.2 IMAP Voicemail SIOraget 816
1.1.4.25 Asterisk SIP CONNECHIONSottt et e e e e e e e e e e e 820
1.1.4.26 ASterisk GUI . ..o 820
1 2 DEVRIOPMENT . . .o e e 823
1.2.1 Policies and ProCedUIES ot 823
1.2.2.1 COMMIE MESSAGES . . . v o ot ettt et e e e e e et e e e e e e 823

1.2.1.2 Issue Tracker WorKilOW o 824

1.2.1.3 ReVIEWDOArd USAgEt ottt e 827

1.2.2 DEbUGOING . . oo 829
1.2.2.1 Collecting Debug Information 829
1.2.2.2 Getting @ BaCKIraCeot 831
12,2 3 ValgriNd . .o 837

1.2.3 SUBVEISION USAQEt ottt ettt e et e e e e e 838

1.2.4 Other Reference INfOrmation it et e e e 844
1.2.4.1 Asterisk Channel Data StOres i 844
1.2.4.2 Asterisk Soundfiles SUDMISSION ProCeSSo 845
1.2.4.3 Build System ArChiteCture e 858
1.2.4.4 Coding GUIAEIINESo 859
1.2.4.5 JanitOr PrOJECES . . o oottt 872
1.2.4.6 Locking in ASterisko 873
1.2.4.7 Measuring SIP Channel Performancet e 877
1.2.4.8 MOTUIES .. o 880

1.2.5 CONfIUBNCE TIPS .« oottt e et e et e e e 880

12,6 ROAAMAD . . .o ittt e e e e e e e e 882
1.2.6.1 AStriDEVCON 2010 . ..ottt ettt e e e 884
1.2.6.2 ASteriSk 1.8 PrOJECESot 888

1.2.6.2.1 CCSS ArChItECIUIEottt e e e e e e e e e e e e 889
1.2.6.2.2 CODEC Bit EXPANSION o\ttt ettt e e e e e e e e e e e e 889
1.2.6.3 Asterisk 1.10 ProjECtS oottt e 889
1.2.6.3.1 chan_sip Transaction Support Proprosal 890
1.2.6.3.2 Documentation IMpProVEMENLSttt et e et e e e e e e 891
1.2.6.3.3 Media Architecture Proposalttt e e e 893
1.2.6.3.4 Media Overhaul 933
1.2.6.3.5 SIP SecCuUrity EVENtS 934
1.2.6.3.6 T.38 GAEWAY ottt ettt et e e e e e e e e e 943

1.2.7 Asterisk Developer Conference Call 950
1.2.7.1 Asterisk Developer Call - 01272011 - 1700 ESTottt e e 951
1.2.7.2 Asterisk Developer Call - 02032011 - 1000 ESTottt e e e 951
1.2.7.3 Asterisk Developer Call - 02102011 - 1700 ESTttt e e e e e e e 952
1.2.7.4 Asterisk Developer Call - 02172011 - 1000 ESTottt e e 952
1.2.7.5 Asterisk Developer Call - 03102011 - 1700 ESTottt e e 953
1.2.7.6 Asterisk Developer Call - 05122011 - 1700 ESTottt e e e 953
1.2.7.7 Asterisk Developer Call - 05262011 - 1000 ESTottt e e 954
1.2.7.8 Asterisk Developer Call - 06232011 - 1000 ESTttt e e 954

1.3 ASEEriSK VEISIONS . . oottt e e e 955
1.4 FOSDEM 2011 Open Source Telephony DeVIOOMttt e e e e e e e e e e 956
1.5 Asterisk 1.10 DOCUMENTALIONot et ettt e e e e e 958
151 CoNfBridge 110 ...t 958
1.5.2 Device State information for the CCSS generic agent.ttt e 979
1.6 ASteriSk PaCKagES oottt 980

16,1 PrereqUISItES . . . oottt e e e 982

1.6.2 Creating @ Build ENVIFONMENto 983

1.6.3 Updating an Ubuntu Package 988

L1.6.4 rebUIldd . ..o 989

1.6.5 Working With SOUrCe PacCKages i ittt e e e e e e 991

Home

This is the home of the official wiki for The Asterisk Project.

This is not the first wiki that has existed for Asterisk, but there are some significant things that are
different about this wiki than others. The most significant difference is that this wiki was created
to be the official source of documentation for the Asterisk project, maintained by the same
development team that manages the code itself. That means that we are committed to the
content being correct and up to date. To make that happen, editing the content is not open to the
general public. However, all Asterisk users are encouraged to participate by leaving comments
on pages.

If you are an Asterisk expert and would like to get involved with the development and
maintenance of content for the Asterisk wiki, contact Russell Bryant.

Thank you very much for your continued support of Asterisk!

Recently Updated

® Asterisk Developer Call - 06232011 - 1000 EST
created by Bryan M. Johns
Jun 23, 2011

® Application_Gotolf
updated by Wiki Bot
(view change)
Jun 18, 2011

® Application_Goto
updated by Wiki Bot
(view change)
Jun 18, 2011

® ManagerAction_Login
updated by Wiki Bot
(view change)
Jun 18, 2011

® Application_MeetMeChannelAdmin
updated by Wiki Bot
(view change)
Jun 18, 2011

¢ ConfBridge 1.10
updated by Malcolm Davenport
(view change)
Jun 15, 2011

® Creating SIP Accounts
commented by Tim Osman
Jun 15, 2011

® Commit Messages
updated by Russell Bryant
(view change)
Jun 14, 2011

® AGICommand_HANGUP
updated by Wiki Bot
(view change)
Jun 14, 2011

® MySQL CEL Backend
commented by Jose P. Espinal
Jun 08, 2011

® Asterisk Packages
updated by Malcolm Davenport

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://wiki.asterisk.org/wiki/display/~russell/Home
https://wiki/display/~bmj
https://wiki/display/~wikibot
https://wiki/pages/diffpagesbyversion.action?pageId=5767540&selectedPageVersions=6&selectedPageVersions=5
https://wiki/display/~wikibot
https://wiki/pages/diffpagesbyversion.action?pageId=5767539&selectedPageVersions=6&selectedPageVersions=5
https://wiki/display/~wikibot
https://wiki/pages/diffpagesbyversion.action?pageId=5767504&selectedPageVersions=6&selectedPageVersions=5
https://wiki/display/~wikibot
https://wiki/pages/diffpagesbyversion.action?pageId=5767262&selectedPageVersions=6&selectedPageVersions=5
https://wiki/display/~mdavenport
https://wiki/pages/diffpagesbyversion.action?pageId=13076234&selectedPageVersions=68&selectedPageVersions=67
https://wiki/display/~obeliks
https://wiki/display/~russell
https://wiki/pages/diffpagesbyversion.action?pageId=3702833&selectedPageVersions=8&selectedPageVersions=7
https://wiki/display/~wikibot
https://wiki/pages/diffpagesbyversion.action?pageId=5767576&selectedPageVersions=6&selectedPageVersions=5
https://wiki/display/~khratos
https://wiki/display/~mdavenport

(view change)
Jun 07, 2011

® Asterisk Packages
commented by Malcolm Davenport
Jun 06, 2011

® Asterisk Packages
commented by Anonymous
Jun 04, 2011

® Alternate Install Methods
updated by Jason Parker
(view change)
Jun 02, 2011

® Calling using Google
commented by John Knuth
Jun 02, 2011

® More

Navigate space

Asterisk 1.8 Documentation

New in 1.8
® QOverview
® |n Brief

® Detailed Listing
® S|P Changes
IAX2 Changes
MGCP Changes
XMPP Google Talk/Jingle changes
Applications
Dialplan Functions
Dialplan Variables
Queue changes
mISDN channel driver (chan_misdn) changes
thirdparty mISDN enhancements
libpri channel driver (chan_dahdi) DAHDI changes
Asterisk Manager Interface
Channel Event Logging
CDR
Calendaring for Asterisk
Call Completion Supplementary Services for Asterisk
Multicast RTP Support
Security Events Framework
Fax
Miscellaneous
CLI Changes

Overview
A listing of new capabilities in Asterisk 1.8
In Brief

Asterisk 1.8 introduces a number of new features since the previous 1.6.2 release. Highlights
include:

Secure RTP (SRTP)

IPv6 Support for SIP

Connected Party Identification Support - COLP and CONP.
Calendaring Integration for CalDAV, iCal, Exchange or EWS calendars

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://wiki/pages/diffpagesbyversion.action?pageId=10650223&selectedPageVersions=30&selectedPageVersions=29
https://wiki/display/~mdavenport
https://wiki/display/~jparker
https://wiki/pages/diffpagesbyversion.action?pageId=4817566&selectedPageVersions=4&selectedPageVersions=3
https://wiki/display/~sultanj
https://wiki/plugins/recently-updated/changes.action?theme=concise&pageSize=15&startHandle=com.atlassian.confluence.pages.Page-7667733&spaceKeys=AST&contentType=-mail,page,comment,blogpost,attachment,userinfo,spacedesc,personalspacedesc,status

® A new call logging system, Channel Event Logging (CEL)

® Distributed Device State, including Message Waiting Indicator using Jabber/XMPP PubSub

Call Completion Supplementary Services (CCSS) Support, including Call Completion on Busy Subscriber (CCBS) and Call Completion
on No Response (CCNR)

Advice of Charge, including AOC-S, AOC-D, and AOC-E Support

Multicast RTP

ISDN Q.SIG Call Rerouting and Call Deflection

Google Talk and Google Voice integration

Audio Pitch Shifting (for fun and profit)

Detailed Listing
SIP Changes

® Added preferred_codec_only option in sip.conf. This feature limits the joint
codecs sent in response to an INVITE to the single most preferred codec.

® Added SIP_CODEC_OUTBOUND dialplan variable which can be used to set the codec
to be used for the outgoing call. It must be one of the codecs configured
for the device.

® Added tlsprivatekey option to sip.conf. This allows a separate .pem file
to be used for holding a private key. If tisprivatekey is not specified,
tiscertfile is searched for both public and private key.

® Added tlsclientmethod option to sip.conf. This allows the protocol for
outbound client connections to be specified.

® The sendrpid parameter has been expanded to include the options
'rpid' and 'pai’. Setting sendrpid to 'rpid' will cause Remote-Party-1D
header to be sent (equivalent to setting sendrpid=yes) and setting
sendrpid to 'pai’ will cause P-Asserted-ldentity header to be sent.

® The 'ignoresdpversion' behavior has been made automatic when the SDP received
is in response to a T.38 re-INVITE that Asterisk initiated. In this situation,
since the call will fail if Asterisk does not process the incoming SDP, Asterisk
will accept the SDP even if the SDP version number is not properly incremented,
but will generate a warning in the log indicating that the SIP peer that sent
the SDP should have the ‘ignoresdpversion' option set.

® The 'nat' option has now been been changed to have yes, no, force_rport, and
comedia as valid values. Setting it to yes forces RFC 3581 behavior and enables
symmetric RTP support. Setting it to no only enables RFC 3581 behavior if the
remote side requests it and disables symmetric RTP support. Setting it to
force_rport forces RFC 3581 behavior and disables symmetric RTP support.
Setting it to comedia enables RFC 3581 behavior if the remote side requests it
and enables symmetric RTP support.

® Slave SIP channels now set HASH(SIP_CAUSE,<slave-channel-name>) on each
response. This permits the master channel to know how each channel dialled
in a multi-channel setup resolved in an individual way.

® Added 'externtcpport' and 'externtlsport' options to allow custom port
configuration for the externip and externhost options when tcp or tls is used.

® Added support for message body (stored in content variable) to SIP NOTIFY message
accessible via AMI and CLI.

* Added 'media_address' configuration option which can be used to explicitly specify
the IP address to use in the SDP for media (audio, video, and text) streams.

® Added ‘'unsolicited_mailbox' configuration option which specifies the virtual mailbox
that the new/old count should be stored on if an unsolicited MWI NOTIFY message is
received.

® Added 'use_g850_reason' configuration option for generating and parsing
if available Reason: Q.850;cause=<cause code> header. It is implemented
in some gateways for better passing PRI/SS7 cause codes via SIP.

® When dialing SIP peers, a new component may be added to the end of the dialstring
to indicate that a specific remote IP address or host should be used when dialing
the particular peer. The dialstring format is SIP/peer/exten/host_or_IP.

® SRTP SDES support for encrypting calls to/from Asterisk over SIP. The
ability to selectively force bridged channels to also be encrypted is also
implemented. Branching in the dialplan can be done based on whether or not
a channel has secure media and/or signaling.

® Added directmediapermit/directmediadeny to limit which peers can send direct media
to each other

® Added the 'snom_aoc_enabled' option to turn on support for sending Advice of
Charge messages to snom phones.

® Added support for G.719 media streams.

® Added support for 16khz signed linear media streams.

® SIP is now able to bind to and communicate with IPv6 addresses. In addition,
RTP has been outfitted with the same abilities.

® Added support for setting the Max-Forwards: header in SIP requests. Setting is
available in device configurations as well as in the dial plan.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Addition of the 'subscribe_network_change' option for turning on and off
res_stun_monitor module support in chan_sip.

® Addition of the ‘auth_options_requests' option for turning on and off
authentication for OPTIONS requests in chan_sip.

IAX2 Changes

® Added rtsavesysname option into iax.conf to allow the systname to be saved
on realtime updates.

® Added the ability for chan_iax2 to inform the dialplan whether or not
encryption is being used. This interoperates with the SIP SRTP implementation
so that a secure SIP call can be bridged to a secure IAX call when the
dialplan requires bridged channels to be "secure".

® Addition of the 'subscribe_network_change' option for turning on and off
res_stun_monitor module support in chan_iax.

MGCP Changes

® Added ability to preset channel variables on indicated lines with the setvar
configuration option. Also, clearvars=all resets the list of variables back
to none.

® PacketCable NCS 1.0 support has been added for Docsis/Eurodocsis Networks.
See configs/res_pktccops.conf for more information.

XMPP Google Talk/Jingle changes

® Added the externip option to gtalk.conf.
® Added the stunaddr option to gtalk.conf which allows for the automatic
retrieval of the external ip from a stun server.

Applications

® Added 'p' option to PickupChan() to allow for picking up channel by the first
match to a partial channel name.

® Added .m3u support for Mp3Player application.

® Added progress option to the app_dial D() option. When progress DTMF is
present, those values are sent immediately upon receiving a PROGRESS message
regardless if the call has been answered or not.

® Added functionality to the app_dial F() option to continue with execution
at the current location when no parameters are provided.

® Added the 'a’ option to app_dial to answer the calling channel before any
announcements or macros are executed.

® Modified app_dial to set answertime when the called channel answers even if
the called channel hangs up during playback of an announcement.

® Modified app_dial 'r' option to support an additional parameter to play an
indication tone from indications.conf

® Added c() option to app_chanspy. This option allows custom DTMF to be set
to cycle through the next available channel. By default this is still "',

® Added x() option to app_chanspy. This option allows DTMF to be set to
exit the application.

® The Voicemail application has been improved to automatically ignore messages
that only contain silence.

® If you set maxmsg to O in voicemail.conf, Voicemail will consider the
associated mailbox(es) to be greetings-only.

® The ChanSpy application now has the 'S' option, which makes the application
automatically exit once it hits a point where no more channels are available
to spy on.

®* The ChanSpy application also now has the 'E' option, which spies on a single
channel and exits when that channel hangs up.

®* The MeetMe application now turns on the DENOISE() function by default, for
each participant. In our tests, this has significantly decreased background
noise (especially noisy data centers).

® Voicemail now permits storage of secrets in a separate file, located in the
spool directory of each individual user. The control for this is located in
the "passwordlocation” option in voicemail.conf. Please see the sample
configuration for more information.

® The ChanlsAvail application now exposes the returned cause code using a separate
variable, AVAILCAUSECODE, instead of overwriting the device state in AVAILSTATUS.

® Added 'd' option to app_followme. This option disables the "Please hold"

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

announcement.

® Added 'y’ option to app_record. This option enables a mode where any DTMF digit
received will terminate recording.

® Voicemail now supports per mailbox settings for folders when using IMAP storage.
Previously the folder could only be set per context, but has now been extended
using the imapfolder option.

® Voicemail now supports per mailbox settings for nextaftercmd and minsecs.

® Voicemail now allows the pager date format to be specified separately from the
email date format.

® New applications JabberJoin, JabberLeave, and JabberSendGroup have been added
to allow joining, leaving, and sending text to group chats.

®* MeetMe has a new option 'G' to play an announcement before joining a conference.

® Page has a new option 'A(x)' which will playback an announcement simultaneously
to all paged phones (and optionally excluding the caller's one using the new
option 'n") before the call is bridged.

® The 'f' option to Dial has been augmented to take an optional argument. If no
argument is provided, the 'f' option works as it always has. If an argument is
provided, then the connected party information of all outgoing channels created
during the Dial will be set to the argument passed to the 'f' option.

® Dial now inherits the GOSUB_RETVAL from the peer, when the U() option runs a
Gosub on the peer.

® The OSP lookup application adds in/outbound network ID, optional security,
number portability, QoS reporting, destination IP port, custom info and service
type features.

® Added new application VMSayName that will play the recorded name of the voicemail
user if it exists, otherwise will play the mailbox number.

® Added custom device states to ConfBridge bridges. Use 'confbridge:<name>' to
retrieve state for a particular bridge, where <name> is the conference name

® app_directory now allows exiting at any time using the operator or pound key.

® Voicemail now supports setting a locale per-mailbox.

®* Two new applications are provided for declining counting phrases in multiple
languages. See the application notes for SayCountedNoun and SayCountedAdj for
more information.

® Voicemail now runs the externnotify script when pollmailboxes is activated and
notices a change.

® Voicemail now includes rdnis within msgXXXX.txt file.

® Added 'D' command to Externall VR full details in http://wiki.asterisk.org

Dialplan Functions

® SRVQUERY and SRVRESULT functions added. This can be used to query and iterate
over SRV records associated with a specific service. From the CLI, type
‘core show function SRVQUERY"' and 'core show function SRVRESULT' for more
details on how these may be used.

® PITCH_SHIFT dialplan function added. This function can be used to modify the
pitch of a channel's tx and rx audio streams.

® Added new dialplan functions CONNECTEDLINE and REDIRECTING which permits
setting various connected line and redirecting party information.

® CALLERID and CONNECTEDLINE dialplan functions have been extended to
support ISDN subaddressing.

® The CHANNEL() function now supports the "name" and “"checkhangup" options.

® For DAHDI channels, the CHANNEL() dialplan function now allows
the dialplan to request changes in the configuration of the active
echo canceller on the channel (if any), for the current call only.
The syntax is:

exten => s,n,Set(CHANNEL (echocan_mode)=0ff)
The possible values are:

on - normal mode (the echo canceller is actually reinitialized)

off - disabled

fax - FAX/data mode (NLP disabled if possible, otherwise completely
disabled)

voice - voice mode (returns from FAX mode, reverting the changes that
were made when FAX mode was requested)

® Added new dialplan function MASTER_CHANNEL(), which permits retrieving

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://wiki.asterisk.org

and setting variables on the channel which created the current channel.
Administrators should take care to avoid naming conflicts, when multiple
channels are dialled at once, especially when used with the Local channel
construct (which all could set variables on the master channel). Usage
of the HASH() dialplan function, with the key set to the name of the slave
channel, is one approach that will avoid conflicts.

® Added new dialplan function MUTEAUDIO() for muting inbound and/or outbound
audio in a channel.

¢ func_odbc now allows multiple row results to be retrieved without using
mode=multirow. If rowlimit is set, then additional rows may be retrieved
from the same query by using the name of the function which retrieved the
first row as an argument to ODBC_FETCH().

¢ Added JABBER_RECEIVE, which permits receiving XMPP messages from the
dialplan. This function returns the content of the received message.

* Added REPLACE, which searches a given variable name for a set of characters,
then either replaces them with a single character or deletes them.

* Added PASSTHRU, which literally passes the same argument back as its return
value. The intent is to be able to use a literal string argument to
functions that currently require a variable name as an argument.

® HASH-associated variables now can be inherited across channel creation, by
prefixing the name of the hash at assignment with the appropriate number of
underscores, just like variables.

® GROUP_MATCH_COUNT has been improved to allow regex matching on category

® CHANNEL(secure_bridge_signaling) and CHANNEL (secure_bridge_media) to set/get
whether or not channels that are bridged to the current channel will be
required to have secure signaling and/or media.

® CHANNEL(secure_signaling) and CHANNEL(secure_media) to get whether or not
the current channel has secure signaling and/or media.

® For DAHDV/ISDN channels, the CHANNEL() dialplan function now supports the
"no_media_path" option.
Returns "0" if there is a B channel associated with the call.
Returns "1" if no B channel is associated with the call. The call is either
on hold or is a call waiting call.

® Added option to dialplan function CDR(), the 'f' option
allows for high resolution times for billsec and duration fields.

® FILE() now supports line-mode and writing.

® Added FIELDNUM(), which returns the 1-based offset of a field in a list.

®* FRAME_TRACE(), for tracking internal ast_frames on a channel.

Dialplan Variables

¢ Added DYNAMIC_FEATURENAME which holds the last triggered dynamic feature.

* Added DYNAMIC_PEERNAME which holds the unique channel name on the other side
and is set when a dynamic feature is triggered.

® Added PARKINGLOT which can be used with parkeddynamic feature.conf option
to dynamically create a new parking lot matching the value this varible is
set to.

* Added PARKINGDYNAMIC which represents the template parkinglot defined in
features.conf that should be the base for dynamic parkinglots.

¢ Added PARKINGDYNCONTEXT which tells what context a newly created dynamic
parkinglot should have.

* Added PARKINGDYNPOS which holds what parking positions a dynamic parkinglot
should have.

Queue changes

® Added "ready" option to QUEUE_MEMBER counting to count free agents whose wrap-up
timeout has expired.

* Added 'R’ option to app_queue. This option stops moh and indicates ringing
to the caller when an Agent's phone is ringing. This can be used to indicate
to the caller that their call is about to be picked up, which is nice when
one has been on hold for an extened period of time.

® A new config option, penaltymemberslimit, has been added to queues.conf.
When set this option will disregard penalty settings when a queue has too
few members.

® A new option, 'lI' has been added to both app_queue and app_dial.

By setting this option, Asterisk will not update the caller with
connected line changes or redirecting party changes when they occur.

® A 'relative-peroidic-announce’ option has been added to queues.conf. When
enabled, this option will cause periodic announce times to be calculated
from the end of announcements rather than from the beginning.

® The autopause option in queues.conf can be passed a new value, "all." The

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

result is that if a member becomes auto-paused, he will be paused in all
queues for which he is a member, not just the queue that failed to reach
the member.

® Added dialplan function QUEUE_EXISTS to check if a queue exists

®* The queue logger now allows events to optionally propagate to a file,
even when realtime logging is turned on. Additionally, realtime logging
supports sending the event arguments to 5 individual fields, although it
will fallback to the previous data definition, if the new table layout is
not found.

mISDN channel driver (chan_misdn) changes

® Added display_connected parameter to misdn.conf to put a display string
in the CONNECT message containing the connected name and/or number if
the presentation setting permits it.

® Added display_setup parameter to misdn.conf to put a display string
in the SETUP message containing the caller name and/or number if the
presentation setting permits it.

® Made misdn.conf parameters localdialplan and cpndialplan take a -1 to
indicate the dialplan settings are to be obtained from the asterisk
channel.

® Made misdn.conf parameter callerid accept the "name" <number> format
used by the rest of the system.

® Made use the nationalprefix and internationalprefix misdn.conf
parameters to prefix any received number from the ISDN link if that
number has the corresponding Type-Of-Number. NOTE: This includes
comparing the incoming call's dialed number against the MSN list.

® Added the following new parameters: unknownprefix, netspecificprefix,
subscriberprefix, and abbreviatedprefix in misdn.conf to prefix any
received number from the ISDN link if that number has the corresponding
Type-Of-Number.

® Added new dialplan application misdn_command which permits controlling
the CCBS/CCNR functionality.

® Added new dialplan function mISDN_CC which permits retrieval of various
values from an active call completion record.

® For PTP, you should manually send the COLR of the redirected-to party
for an incomming redirected call if the incoming call could experience
further redirects. Just set the REDIRECTING(to-num,i) = ${EXTEN} and
set the REDIRECTING(to-pres) to the COLR. A call has been redirected
if the REDIRECTING(from-num) is not empty.

® For outgoing PTP redirected calls, you now need to use the inhibit(i)
option on all of the REDIRECTING statements before dialing the
redirected-to party. You still have to set the REDIRECTING(to-xxx,i)
and the REDIRECTING(from-xxx,i) values. The PTP call will update the
redirecting-to presentation (COLR) when it becomes available.

® Added outgoing_colp parameter to misdn.conf to filter outgoing COLP
information.

thirdparty mISDN enhancements

mISDN has been modified by Digium, Inc. to greatly expand facility message
support to allow:

® Enhanced COLP support for call diversion and transfer.
® CCBS/CCNR support.

The latest modified mISDN v1.1.x based version is available at:
http://svn.digium.com/svn/thirdparty/mISDN/trunk
http://svn.digium.com/svn/thirdparty/mISDNuser/trunk

Tagged versions of the modified mISDN code are available under:
http://svn.digium.com/svn/thirdparty/mISDN/tags
http://svn.digium.com/svn/thirdparty/mISDNuser/tags

libpri channel driver (chan_dahdi) DAHDI changes

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://svn.digium.com/svn/thirdparty/mISDN/trunk
http://svn.digium.com/svn/thirdparty/mISDNuser/trunk
http://svn.digium.com/svn/thirdparty/mISDN/tags
http://svn.digium.com/svn/thirdparty/mISDNuser/tags

® The channel variable PRIREDIRECTREASON is now just a status variable
and it is also deprecated. Use the REDIRECTING(reason) dialplan function
to read and alter the reason.

® For Q.SIG and ETSI PRI/BRI-PTP, you should manually send the COLR of the
redirected-to party for an incomming redirected call if the incoming call
could experience further redirects. Just set the
REDIRECTING(to-num,i) = CALLERID(dnid) and set the REDIRECTING(to-pres)
to the COLR. A call has been redirected if the REDIRECTING(count) is not
zero.

® For outgoing Q.SIG and ETSI PRI/BRI-PTP redirected calls, you need to
use the inhibit(i) option on all of the REDIRECTING statements before
dialing the redirected-to party. You still have to set the
REDIRECTING(to-xxx,i) and the REDIRECTING(from-xxx,i) values. The call
will update the redirecting-to presentation (COLR) when it becomes available.

® Added the ability to ignore calls that are not in a Multiple Subscriber
Number (MSN) list for PTMP CPE interfaces.

® Added dynamic range compression support for dahdi channels. It is
configured via the rxdrc and txdrc parameters in chan_dahdi.conf.

® Added support for ISDN calling and called subaddress with partial support
for connected line subaddress.

¢ Added support for BRI PTMP NT mode. (Requires latest LibPRI.)

® Added handling of received HOLD/RETRIEVE messages and the optional ability
to transfer a held call on disconnect similar to an analog phone.

® Added CallRerouting/CallDeflection support for Q.SIG, ETSI PTP, ETSI PTMP.
Will reroute/deflect an outgoing call when receive the message.
Can use the DAHDISendCallreroutingFacility to send the message for the
supported switches.

® Added standard location to add options to chan_dahdi dialing:
Dial(DAHDI/g1[/extension[/options]])
Current options:
K(<keypad_digits>)
R Reverse charging indication

® Added Reverse Charging Indication (Collect calls) send/receive option.
Send reverse charging in SETUP message with the chan_dahdi R dialing option.
Dial(DAHDI/g1/extension/R)
Access received reverse charge in SETUP message by: ${CHANNEL (reversecharge)}
(requires latest LibPRI)

* Added ability to send/receive keypad digits in the SETUP message.
Send keypad digits in SETUP message with the chan_dahdi K(<keypad_digits>)
dialing option. Dial(DAHDI/g1/[~mdavenport:extension]/K(<keypad_digits>))
Access any received keypad digits in SETUP message by: ${CHANNEL (keypad_digits)}
(requires latest LibPRI)

® Added ability to send and receive ETSI Explicit Call Transfer (ECT) messages
to eliminate tromboned calls. A tromboned call goes out an interface and comes
back into the same interface. Tromboned calls happen because of call routing,
call deflection, call forwarding, and call transfer.

® Added the ability to send and receive ETSI Advice-Of-Charge messages.

® Added the ability to support call waiting calls. (The SETUP has no B channel
assigned.)

® Added Malicious Call ID (MCID) event to the AMI call event class.

® Added Message Waiting Indication (MWI) support for ISDN PTMP endpoints (phones).

Asterisk Manager Interface

® The Hangup action now accepts a Cause header which may be used to
set the channel's hangup cause.

® sslprivatekey option added to manager.conf and http.conf. Adds the ability
to specify a separate .pem file to hold a private key. By default ssicert
is used to hold both the public and private key.

® Options in manager.conf and http.conf with the 'ssl' prefix have been replaced
for options containing the 'tls' prefix. For example, 'sslenable’ is now
'tlsenable’. This has been done in effort to keep ssl and tls options consistent
across all .conf files. All affected sample.conf files have been modified to
reflect this change. Previous options such as 'sslenable’ still work,
but options with the 'tls' prefix are preferred.

® Added a MuteAudio AMI action for muting inbound and/or outbound audio
in a channel. (res_mutestream.so)

® The configuration file manager.conf now supports a channelvars option, which
specifies a list of channel variables to include in each channel-oriented
event.

® The redirect command now has new parameters ExtraContext, ExtraExtension,
and ExtraPriority to allow redirecting the second channel to a different
location than the first.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

* Added new event "JabberStatus” in the Jabber module to monitor buddies
status.
® Added a "MixMonitorMute" AMI action for muting inbound and/or outbound audio
in a MixMonitor recording.
® The 'iax2 show peers' output is now similar to the expected output of
'sip show peers'.
® Added Advice-Of-Charge events (AOC-S, AOC-D, and AOC-E) in the new
aoc event class.
® Added Advice-Of-Charge manager action, AOCMessage, for generating AOC-D and
AOC-E messages on a channel.
* A DBGetComplete event now follows a DBGetResponse, to make the DBGet action
conform more closely to similar events.
® Added a new eventfilter option per user to allow whitelisting and blacklisting
of events.
® Added optional parkinglot variable for park command.

Channel Event Logging

® A new interface, CEL, is introduced here. CEL logs single events, much like
the AMI, but it differs from the AMI in that it logs to db backends much
like CDR does; is based on the event subsystem introduced by Russell, and
can share in all its benefits; allows multiple backends to operate like CDR;
is specialized to event data that would be of concern to billing sytems,
like CDR. Backends for logging and accounting calls have been produced,
but a new CDR backend is still in development.

CDR

® 'linkedid' and 'peeraccount’ are new CDR fields available to CDR aficionados.
linkedid is based on uniquelD, but spreads to other channels as transfers, dials,
etc are performed. Thus the pieces of CDR can be grouped into multilegged sets.

® Multiple files and formats can now be specified in cdr_custom.conf.

® cdr_syslog has been added which allows CDRs to be written directly to syslog.
See configs/cdr_syslog.conf.sample for more information.

® A'sequence’ field has been added to CDRs which can be combined with
linkedid or uniqueid to uniquely identify a CDR.

® Handling of billsec and duration field has changed. If your table definition
specifies those fields as float,double or similar they will now be logged with
microsecond accuracy instead of a whole integer.

Calendaring for Asterisk

® A new set of modules were added supporing calendar integration with Asterisk.
Dialplan functions for reading from and writing to calendars are included,
as well as the ability to execute dialplan logic upon calendar event notifications.
iCalendar, CalDAV, and Exchange Server calendars (via res_calendar_exchange for
Exchange Server 2003 with no write or attendee support, and res_calendar_ews for
Exchange Server 2007+ with full write and attendee support) are supported (Exchange
2003 support does not support forms-based authentication).

Call Completion Supplementary Services for Asterisk

® Call completion support has been added for SIP, DAHDI/ISDN, and DAHDI/analog.
DAHDI/ISDN supports call completion for the following switch types:
Eurolsdn(ETSI) for PTP and PTMP modes, and Qsig.
See http://wiki.asterisk.org for details.

Multicast RTP Support

® A new RTP engine and channel driver have been added which supports Multicast RTP.
The channel driver can be used with the Page application to perform multicast RTP
paging. The dial string format is: MulticastRTP/<type>/<destination>/<control address>
Type can be either basic or linksys.
Destination is the IP address and port for the RTP packets.
Control address is specific to the linksys type and is used for sending the control
packets unique to them.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://wiki.asterisk.org

Security Events Framework

® Asterisk has a new C API for reporting security events. The module res_security_log
sends these events to the "security" logger level. Currently, AMI is the only
Asterisk component that reports security events. However, SIP support will be
coming soon. For more information on the security events framework, see the
"Security Events" chapter of the included documentation - doc/AST.pdf.

Fax

® A technology independent fax frontend (res_fax) has been added to Asterisk.

® A spandsp based fax backend (res_fax_spandsp) has been added.

® The app_fax module has been deprecated in favor of the res_fax module and
the new res_fax_spandsp backend.

®* The SendFAX and ReceiveFAX applications now send their log messages to a
'fax’ logger level, instead of to the generic logger levels. To see these
messages, the system's logger.conf file will need to direct the 'fax' logger
level to one or more destinations; the logger.conf.sample file includes an
example of how to do this. Note that if the 'fax' logger level is not
directed to at least one destination, log messages generated by these
applications will be lost, and that if the 'fax’ logger level is directed to
the console, the ‘core set verbose' and ‘core set debug' CLI commands will
have no effect on whether the messages appear on the console or not.

Miscellaneous

® The transmit_silence_during_record option in asterisk.conf.sample has been removed.
Now, in order to enable transmitting silence during record the transmit_silence
option should be used. transmit_silence_during_record remains a valid option, but
defaults to the behavior of the transmit_silence option.

® Addition of the Unit Test Framework API for managing registration and execution
of unit tests with the purpose of verifying the operation of C functions.

® SendText is now implemented in chan_gtalk and chan_jingle. It will simply send
XMPP text messages to the remote JID.

® Modules.conf has a new option - "require" - that marks a module as critical for
the execution of Asterisk.
If one of the required modules fail to load, Asterisk will exit with a return
code set to 2.

® An 'X' option has been added to the asterisk application which enables #exec support.
This allows #exec to be used in asterisk.conf.

® jabber.conf supports a new option auth_policy that toggles auto user registration.

® A new lockconfdir option has been added to asterisk.conf to protect the
configuration directory (/etc/asterisk by default) during reloads.

® The parkeddynamic option has been added to features.conf to enable the creation
of dynamic parkinglots.

® chan_dahdi now supports reporting alarms over AMI either by channel or span via
the reportalarms config option.

® chan_dahdi supports dialing configuring and dialing by device file name.
DAHDI/span-namel!local!l will use /dev/dahdi/span-name/local/l . Likewise
it may appear in chan_dahdi.conf as ‘channel => span-namellocal!l".

® A new options for chan_dahdi.conf: ‘ignore_failed_channels'. Boolean.
False by default. If set, chan_dahdi will ignore failed 'channel’ entries.
Handy for the above name-based syntax as it does not depend on
initialization order.

® The Realtime dialplan switch now caches entries for 1 second. This provides a
significant increase in performance (about 3X) for installations using this switchtype.

® Distributed devicestate now supports the use of the XMPP protocol, in addition to
AIS. For more information, please see http://wiki.asterisk.org

® The addition of G.719 pass-through support.

® Added support for 16khz Speex audio. This can be enabled by using ‘allow=speex16'
during device configuration.

® The UNISTIM channel driver (chan_unistim) has been updated to support devices that
have less than 3 lines on the LCD.

® Realtime now supports database failover. See the sample extconfig.conf for details.

® The addition of improved translation path building for wideband codecs. Sample
rate changes during translation are now avoided unless absolutely necessary.

® The addition of the res_stun_monitor module for monitoring and reacting to network
changes while behind a NAT.

CLI Changes

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://wiki.asterisk.org

® The 'core set debug' and 'core set verbose' commands, in previous versions, could
optionally accept a filename, to apply the setting only to the code generated from
that source file when Asterisk was built. However, there are some modules in Asterisk
that are composed of multiple source files, so this did not result in the behavior
that users expected. In this version, ‘core set debug' and 'core set verbose'
can optionally accept module names instead (with or without the .so extension),
which applies the setting to the entire module specified, regardless of which source
files it was built from.

* New 'manager show settings' command showing the current settings loaded from
manager.conf.

® Added ‘all' keyword to the CLI command "channel request hangup" so that you can send
the channel hangup request to all channels.

® Added a "core reload" CLI command that executes a global reload of Asterisk.

Getting Started

A Beginners Guide to Asterisk. Herein, you will find content related to installing Asterisk and
basic usage concepts.

Precursors, Background and Business

Discovering Asterisk

This section of the documentation attempts to explain at a high level what Asterisk is and does. It
also attempts to provide primers on the key technical disciplines that are required to successfully
create and manage Asterisk solutions. Much of the material in this section is optional and may be
redundant for those with a background in communications application development. For the other
99.9875% of the population, this is good stuff. Read on...

Asterisk Concepts

Asterisk is a very large application that does many things. It can be somewhat difficult to
understand, especially if you are new to communications technologies. In the next few chapters
we will do our best to explain what Asterisk is, what it is not, and how it came to be this way. This
section doesn't cover the technology so much as the concept. If you're already familiar with the
function of a telephony engine, feel free to jump ahead to the next section.

Asterisk as a Swiss Army Knife of Telephony

What Is Asterisk?

People often tend to think of Asterisk as an "open source PBX" because that was the focus of the
original development effort. But calling Asterisk a PBX is both selling it short (it is much more)
and overstating it (it can be much less). It is true that Asterisk started out as a phone system for
a small business (see the "Brief History" section for the juicy details) but in the decade since it
was originally released it has grown into a universal tool for building communications
applications. Today Asterisk powers not only IP PBX systems but also VolP gateways, call
center systems, conference bridges, voicemail servers and all kinds of other applications that
involve real-time communications.

Asterisk is not a PBX but is the engine that powers PBXs. Asterisk is not an IVR but is the

engine that powers IVRs. Asterisk is not a call center ACD but is the engine that powers
ACD/queueing systems.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Asterisk is to communications applications what the Apache web server is to web applications.
Apache is a web server. Asterisk is a communication server. Apache handles all the low-level
details of sending and receiving data using the HTTP protocol. Asterisk handles all the low level
details of sending and receiving data using lots of different communication protocols. When you
install Apache, you have a web server but its up to you to create the web applications. When
you install Asterisk, you have a communications server but its up to you to create the
communications applications.

Web applications are built out of HTML pages, CSS style sheets, server-side processing scripts,
images, databases, web services, etc. Asterisk communications applications are built out
Dialplan scripts, configuration files, audio recordings, databases, web services, etc. For a web
application to work, you need the web server connected to the Internet. For a communications
application to work, you need the communications server connected to communication services
(VolP or PSTN). For people to be able to access your web site you need to register a domain
name and set up DNS entries that point "www.yourdomain.com" to your server. For people to
access your communications system you need phone numbers or VoIP URIs that send calls to
your server.

In both cases the server is the plumbing that makes your application work. The server handles
the low-level complexities and allows you, the application developer, to concentrate on the
application logic and presentation. You don't have to be an expert on HTTP to create powerful
web applications, and you don't have to be an expert on SIP or Q.931 to create powerful
communications applications.

Here's a simple example. The following HTML script, installed on a working web server, prints
"Hello World" in large type:

<htnl >
<head>
<title>Hello Wrld Deno</title>
</ head>
<body>
<hl>Hel |l o Worl d! </ h1>
</ body>
</htm >

The following Dialplan script answers the phone, waits for one second, plays back "hello world"
then hangs up.

exten => 100, 1, Answer ()

exten => 100, n, Vi t (1)

exten => 100, n, Pl ayback(hel | o-wor | d)
exten => 100, n, Hangup()

In both cases the server components are handling all of the low level details of the underlying
protocols. Your application doesn't have to worry about the byte alignment, the packet size, the
codec or any of the thousands of other critical details that make the application work. This is the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

power of an engine.
Who Uses Asterisk?

Asterisk is created by communication system developers, for communication system developers.
As an open source project, Asterisk is a collaboration between many different individuals and
companies, all of which need a flexible communications engine to power their applications.

A Brief History of the Asterisk Project

Way, way back in 1999 a young man named Mark Spencer was finishing his Computer
Engineering degree at Auburn University when he hit on an interesting business concept. 1999
was the high point in the .com revolution (aka bubble), and thousands of businesses world-wide
were discovering that they could save money by using the open source Linux operating system
in place of proprietary operating systems. The lure of a free operating system with open access
to the source code was too much to pass up. Unfortunately there was little in the way of
commercial support available for Linux at that time. Mark decided to fill this gap by creating a
company called "Linux Support Services". LSS offered a support hotline that IT professionals
could (for a fee) call to get help with Linux.

The idea took off. Within a few months, Mark had a small office staffed with Linux experts.
Within a few more months the growth of the business expanded demanded a "real" phone
system that could distribute calls evenly across the support team, so Mark called up several local
phone system vendors and asked for quotes. Much to his surprise, the responses all came back
well above $50,000 -- far more than Mark had budgeted for the project. Far more than LSS
could afford.

Rather than give in and take out a small business loan, Mark made a fateful decision. He
decided to write his own phone system. Why not? A phone system is really just a computer
running phone software, right? Fortunately for us, Mark had no idea how big a project he had
take on. If he had known what a massive undertaking it was to build a phone system from the
ground up might have gritted his teeth, borrowed the money and spent the next decade doing
Linux support. But he didn't know what he didn't know, and so he started to code. And he
coded. And he coded.

Mark had done his engineering co-op at Adtran, a communications and networking device
manufacturer in Huntsville, AL. There he had cut his teeth on telecommunications system
development, solving difficult problems generating a prodigious amount of complex code in short
time. This experience proved invaluable as he began to frame out the system which grew into
Asterisk. In only a few months Mark crafted the original Asterisk core code. As soon as he had
a working prototype he published the source code on the Internet, making it available under the
GPL license (the same license used for Linux).

Within a few months the idea of an "open source PBX" caught on. There had been a few other
open source communications projects, but none had captured the imagination of the global
population of communications geeks like Asterisk. As Mark labored on the core system,
hundreds (now thousands) of developers from all over the world began to submit new features
and functions.

Beginning Asterisk

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Installing Asterisk

Now that you know a bit about Asterisk and how it is used, it's time to get you up and running
with your own Asterisk installation. There are various ways to get started with Asterisk on your

own system:

® |nstall an Asterisk-based Linux distribution such as AsteriskNOW. This takes care of installing Linux, Asterisk, and some web-based
interfaces all at the same time, and is the easiest way to get started if you're new to Linux and/or Asterisk.

® |f you're already familiar with Linux or Unix, you can simply install packages for Asterisk and its related tools using the package manager
in your operating system. We'll cover this in more detail below in Section 200.3. Alternate Install Methods.

® For the utmost in control of your installation, you can compile and install Asterisk (and its related tools) from source code. We'll explain
how to do this in Section 201. Installing Asterisk From Source.

Installing AsteriskNOW

Installing AsteriskNOW is easy! Simply visit http://www.asterisknow.org/ and download the latest
version. The file you'll download will have a .iso file extension. Then burn the .iso image to a CD,
and boot your system from the CD.

'33 Installing AsteriskNOW Will Overwrite Data

Please be aware that installing AsteriskNOW will overwrite any existing data on your hard drive.
Anything that is important should first be backed up to a different system.

When you boot from the AsteriskNOW CD, you'll see an introductory screen. Simply press enter
to continue the installation.

Screen shot of ISOLINUX screen

Install-Time Options

As the installer continues, you'll be prompted to enter several pieces of information.

® Hard disk layout. It is recommended to select "Remove all partitions on selected drives and create default layout." and move to the next
screen. This will erase all data on the system.

® Timezone settings. Select the location that is nearest to you and move to the next screen.

® Root password. The root user is the administrative user on Linux systems. Most system configuration requires root access. If this
password is lost, it is difficult to recover. It is recommended that your password contain a mix of lowercase and UPPERCASE letters,

numbers, and/or symbols.

After the final option, installation will begin. This will take approximately 15-30 minutes. Once
installation has completed, the system will reboot into your AsteriskNOW installation.

By default, AsteriskNOW will use DHCP to obtain an IP address on your network. You can use
the ifconfig command under Linux to view your current IP address, or system-config-network to
change your network settings.

Alternate Install Methods
If you already have a Linux system that you can dedicate to Asterisk, simply use the package

manager in your operating system to install Asterisk, DAHDI, and libpri. Most modern Linux
distributions such as Debian, Ubuntu, and Fedora have these packages in their repositories.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisknow.org/

Packages for Red Hat Enterprise Linux and CentOS are also available at
http://packages.asterisk.org/ (see Asterisk Packages for instructions on use).

Validating Your AsteriskNOW Installation
Before continuing on, let's check a few things to make sure your system is in good working order.
First, let's make sure the DAHDI drivers are loaded. After logging in as the root user you can use

the Ismod under Linux to list all of the loaded kernel modules, and the grep command to filter
the input and only show the modules that have dahdi in their name.

[root @erver asterisk-1.6.X Y]# |Isnod | grep dahdi
If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

[root @erver asterisk-1.6.X Y]# service dadhi start

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the
output below. (The exact details may be different, depending on which DAHDI modules have
been built, and so forth.)

[root @erver ~]# |snmod | grep dahdi

dahdi _dunmy 4288 0

dahdi _t ranscode 7928 1 wet cdxxp

dahdi _voi cebus 40464 2 wctdnR4xxp, wet el2xp
dahdi 196544 12

dahdi _dunmy, wct dm24xxp, wect ellxp, wet 1xxp, wect el2xp, wet 4xxp

crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices
in your system. You can also run the dahdi_tool utility to show the various DAHDI-compatible
devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver ~]# service asterisk status
asterisk is stopped

To start Asterisk, we'll use the initscript again, this time giving it the start action:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://packages.asterisk.org/

[root @erver ~]# service asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any
response on the command line. We can check the status of Asterisk and see that it's running by
using the command below. (The process identifier, or pid, will obviously be different on your
system.)

[root @erver ~]# service asterisk status
asterisk (pid 32117) is running...

And there you have it... you have an Asterisk system up and running! You should now continue
on in Section 202. Getting Started with Asterisk.

Asterisk Configuration Files

Intro to Asterisk Configuration Files

In this section, we'll introduce you to the Asterisk configuration files, and show you how to use
some advanced features.

Config File Format

Asterisk is a very flexible telephony engine. With this flexibility, however, comes a bit of
complexity. Asterisk has quite a few configuration files which control almost every aspect of how
it operates. The format of these configuration files, however, is quite simple. The Asterisk
configuration files are plain text files, and can be edited with any text editor.

Sections and Settings

The configuration files are broken into various section, with the section name surrounded by
square brackets. Section names should not contain spaces, and are case sensitive. Inside of
each section, you can assign values to various settings. In general, settings in one section are
independent of values in another section. Some settings take values such as true or false, while
other settings have more specific settings. The syntax for assigning a value to a setting is to write
the setting name, an equals sign, and the value, like this:

[section-nane]
setting=true

[anot her _secti on]
setting=fal se
setting2=true

Objects

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Some Asterisk configuration files also create objects. The syntax for objects is slightly different
than for settings. To create an object, you specify the type of object, an arrow formed by the
equals sign and a greater-than sign (=>), and the settings for that object.

[section-nane]
some_obj ect => settings

@ Confused by Object Syntax?
In order to make life easier for newcomers to the Asterisk configuration files, the developers have made it so that you can also
create objects with an equal sign. Thus, the two lines below are functionally equivalent.

sone_obj ect => settings
some_obj ect =set tings

It is common to see both versions of the syntax, especially in online Asterisk
documentation and examples. This book, however, will denote objects by using the
arrow instead of the equals sign.

[section-nane]
| abel 1=val uel
| abel 2=val ue2
objectl => nanel

| abel 1=val ue0O
| abel 3=val ue3
obj ect2 => nane2

In this example, objectl inherits both labell and label2. It is important to note that object2 also
inherits label2, along with labell (with the new overridden value valueO) and label3.

In short, objects inherit all the settings defined above them in the current section, and later
settings override earlier settings.

Comments

We can (and often do) add comments to the Asterisk configuration files. Comments help make
the configuration files easier to read, and can also be used to temporarily disable certain settings.

Comments on a Single Line

Single-line comments begin with the semicolon (;) character. The Asterisk configuration parser
treats everything following the semicolon as a comment. To expand on our previous example:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[section-nane]
setting=true

[anot her _secti on]

setting=false ; this is a comrent

; this entire line is a conment

; awesome=t r ue

; the semicolon on the |ine above nmakes it a
; comment, disabling the setting

Block Comments

Asterisk also allows us to create block comments. A block comment is a comment that begins on
one line, and continues for several lines. Block comments begin with the character sequence

and continue across multiple lines until the character sequence

is encountered. The block comment ends immediately after --; is encountered.

[section-nane]

setting=true

;-- this is a block coment that begins on this line
and continues across nultiple lines, until we

get to here --;

Using The include and exec Constructs

There are two other constructs we can use within our configuration files. They are #include and
#exec.

The #include construct tells Asterisk to read in the contents of another configuration file, and act
as though the contents were at this location in this configuration file. The syntax is #include
filename, where filename is the name of the file you'd like to include. This construct is most
often used to break a large configuration file into smaller pieces, so that it's more manageabile.

The #exec takes this one step further. It allows you to execute an external program, and place

the output of that program into the current configuration file. The syntax is #exec program,
where program is the name of the program you'd like to execute.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

1 Enabling #exec Functionality

The #exec construct is not enabled by default, as it has some risks both in terms of
performance and security. To enable this functionality, go to the asterisk.conf
configuration file (by default located in /etc/asterisk) and set execincludes=yes in
the [options] section. By default both the [options] section heading and the
execincludes=yes option have been commented out, you you'll need to remove the
semicolon from the beginning of both lines.

Let's look at example of both constructs in action.

[section-nane]

setting=true

#i ncl ude ot herconfi g. conf ; i nclude another configuration file
#exec ot her program ; include output of otherprogram

Adding to an existing section

If you want to add settings to an existing section of a configuration file (either later in the file, or
when using the #include and #exec constructs), add a plus sign in parentheses after the section
heading, as shown below:

[secti on- nane]
settingl=val uel

[section-nane] (+)
setting2=val ue2

This example shows that the setting2 setting was added to the existing section of the
configuration file.

Templates

Another construct we can use within most Asterisk configuration files is the use of templates. A
template is a section of a configuration file that is only used as a base (or template, as the name
suggests) to create other sections from.

Template Syntax

To define a section as a template, place an exclamation mark in parentheses after the section
heading, as shown in the example below.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[tenpl ate-nane] (!)
setting=val ue

Using Templates

To use a template when creating another section, simply put the template name in parentheses
after the section heading name, as shown in the example below. If you want to inherit from
multiple templates, use commas to separate the template names).

[tenpl at e- nane] (!)
setting=val ue

[tenplate-2] (!)
setting2=val ue2

[section-nane] (tenpl at e- nane, t enpl at e- 2)
setting3=val ue3

The newly-created section will inherit all the values and objects defined in the template(s), as
well as any new settings or objects defined in the newly-created section. The settings and
objects defined in the newly-created section override settings or objects of the same name from
the templates. Consider this example:

[test-one] (!)

perm t=192. 168. 0. 2
host =al pha. exanpl e. com
deny=192.168.0.1

[test-two] (!)

perm t=192.168.1.2

host =br avo. exanpl e. com
deny=192.168. 1.1

[test-three] (test-one,test-two)
perm t=192. 168. 3. 1
host =charl i e. exanpl e. com

The [test-three] section will be processed as though it had been written in the following way:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[test-three]
permt=192.168.0. 2

host =al pha. exanpl e. com
deny=192. 168.0. 1
permt=192. 168. 1.2

host =br avo. exanpl e. com
deny=192.168.1.1
permt=192.168.3.1

host =charl i e. exanpl e. com

Basic PBX Functionality

In this section, we're going to guide you through the basic setup of a very primitive PBX. After
you finish, you'll have a basic PBX with two phones that can dial each other. In later modules,
we'll go into more detail on each of these steps, but in the meantime, this will give you a basic
system on which you can learn and experiement.

The Most Basic PBX

While it won't be anything to brag about, this basic PBX that you will build from Asterisk will help
you learn the fundamentals of configuring Asterisk. For this exercise, we're going to assume that
you have access to two phones which speak the SIP voice-over-IP protocol. There are a wide
variety of SIP phones available in many different shapes and sizes, and if your budget doesn't
allow for you to buy phones, feel free to use a free soft phone. Soft phones are simply computer
programs which run on your computer and emulate a real phone, and communicate with other
devices across your network, just like a real voice-over-IP phone would.

Creating SIP Accounts

In order for our two phones to communicate with each other, we need to configure an account for
each phone in the channel driver which corresponds to the protocol they'll be using. Since both
the phones are using the SIP protocol, we'll configure accounts in the SIP channel driver
configuration file, called sip.conf. (This file resides in the Asterisk configuration directory, which
is typically /etc/asterisk.) Let's name your phones Alice and Bob, so that we can easily
differentiate between them.

Open sip.conf with your favorite text editor, and spend a minute or two looking at the file. (Don't
let it overwhelm you — the sample sip.conf has a lot of data in it, and can be overwhelming at
first glance.) Notice that there are a couple of sections at the top of the configuration, such as
[general] and [authentication], which control the overall functionality of the channel driver. Below
those sections, there are sections which correspond to SIP accounts on the system. Scroll to the
bottom of the file, and add a section for Alice and Bob. You'll need to choose your own unique
password for each account, and change the permit line to match the settings for your local
network.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[deno-al i ce]

type=friend

host =dynam ¢

secret=verysecretpassword ; put a strong, unique password here
i nst ead

cont ext =users

deny=0.0.0.0/0

perm t=192. 168. 5. 0/ 255. 255. 255. 0 ; replace with your network
settings

[deno- bob]

type=friend

host =dynam c

secret =ot hersecret password ; put a strong, unique password here
i nst ead

cont ext =users

deny=0.0.0.0/0

perm t=192. 168. 5. 0/ 255. 255. 255. 0 ; replace with your network
settings

@ Be Serious About Account Security
We can't stress enough how important it is for you to pick a strong password for all
accounts on Asterisk, and to only allow access from trusted networks. Unfortunately,
we've found many instances of people exposing their Asterisk to the internet at large
with easily-guessable passwords, or no passwords at all. You could be at risk of toll
fraud, scams, and other malicious behavior.

For more information on Asterisk security and how you can protect yourself, check
out http://www.asterisk.org/security/webinar/.

After adding the two sections above to your sip.conf file, go to the Asterisk command-line
interface and run the sip reload command to tell Asterisk to re-read the sip.conf configuration
file.

server*CLI > sip rel oad
Rel oadi ng SIP

server*CLI >

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisk.org/security/webinar/

.ﬂ Reloading Configuration Files

Don't forget to reload the appropriate Asterisk configuration files after you have made
changes to them.

Registering Phones to Asterisk

The next step is to configure the phones themselves to communicate with Asterisk. The way we
have configured the accounts in the SIP channel driver, Asterisk will expect the phones to
register to it. Registration is simply a mechanism where a phone communicates "Hey, I'm Bob's
phone... here's my username and password. Oh, and if you get any calls for me, I'm at this
particular IP address."

Configuring your particular phone is obviously beyond the scope of this guide, but here are a list
of common settings you're going to want to set in your phone, so that it can communicate with
Asterisk:

® Registrar/Registration Server - The location of the server which the phone should register to. This should be set to the IP address of
your Asterisk system.

® *S|P User Name/Account Name/Address - *The SIP username on the remote system. This should be set to demo-alice on one phone
and demo-bob on the other. This username corresponds directly to the section name in square brackets in sip.conf.

® SIP Authentication User/Auth User - On Asterisk-based systems, this will be the same as the SIP user name above.

® Proxy Server/Outbound Proxy Server - This is the server with which your phone communicates to make outside calls. This should be
set to the IP address of your Asterisk system.

You can tell whether or not your phone has registered successfully to Asterisk by checking the
output of the sip show peers command at the Asterisk CLI. If the Host column says
(Unspecified), the phone has not yet registered. On the other hand, if the Host column contains
an IP address and the Dyn column contains the letter D, you know that the phone has
successfully registered.

server*CLlI > sip show peers

Nane/ user nane Host Dyn NAT ACL Port
St at us

deno-al i ce (Unspeci fi ed) D A 5060
Unnoni t or ed

deno- bob 192. 168. 5. 105 D A 5060

Unnoni t or ed
2 sip peers [Monitored: O online, O offline Unnmonitored: 2 online, O
of fli ne]

In the example above, you can see that Alice's phone has not registered, but Bob's phone has
registered.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

@ Debugging SIP Registrations

If you're having troubles getting a phone to register to Asterisk, make sure you watch
the Asterisk CLI with the verbosity level set to at least three while you reboot the
phone. You'll likely see error messages indicating what the problem is, like in this
example:

NOTI CE[22214] : chan_si p. c: 20824 handl e_request _regi ster: Registration from
""Alice"
<si p: denpo-al i ce@92. 168.5.50>" failed for '192.168.5.103' - Wong password

As you can see, Asterisk has detected that the password entered into the phone
doesn't match the secret setting in the [demo-alice] section of sip.conf.

Creating Dialplan Extensions

The last things we need to do to enable Alice and Bob to call each other is to configure a couple
of extensions in the dialplan.

@ What is an Extension?

When dealing with Asterisk, the term extension does not represent a physical device
such as a phone. An extension is simply a set of actions in the dialplan which may or
may not write a physical device. In addition to writing a phone, an extensions might
be used for such things auto-attendant menus and conference bridges. In this guide
we will be careful to use the words phone or device when referring to the physical
phone, and extension when referencing the set of instructions in the Asterisk
dialplan.

Let's take a quick look at the dialplan, and then add two extensions.

Open extensions.conf, and take a quick look at the file. Near the top of the file, you'll see some
general-purpose sections named [general] and [globals]. Any sections in the dialplan beneath
those two sections is known as a context. The sample extensions.conf file has a number of
other contexts, with names like [demo] and [default].

We'll cover contexts more in Dialplan Fundamentals, but for now you should know that each
phone or outside connection in Asterisk points at a single context. If the dialed extension does
not exist in the specified context, Asterisk will reject the call.

Go to the bottom of your extensions.conf file, and add a new context named [users].

Naming Your Dialplan Contexts

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

There's nothing special about the name users for this context. It could have been named
strawberry_milkshake, and it would have behaved exactly the same way. It is considered best
practice, however, to name your contexts for the types of extensions that are contained in that
context. Since this context contains extensions for the users of our PBX system, we'll call our
context users.

Underneath that context name, we'll create an extesion numbered 6001 which attempts to ring
Alice's phone for twenty seconds, and an extension 6002 which attempts to rings Bob's phone for
twenty seconds.

[users]
ext en=>6001, 1, Di al (SI P/ deno- al i ce, 20)
ext en=>6002, 1, Di al (SI P/ deno- bob, 20)

After adding that section to extensions.conf, go to the Asterisk command-line interface and tell
Asterisk to reload the dialplan by typing the command dialplan reload. You can verify that
Asterisk successfully read the configuration file by typing dialplan show users at the CLI.

server*CLI > di al pl an show users
[Context 'users' created by 'pbx _config']

'6001" => 1. Dial (SIP/denp-alice, 20)
[pbx_confi g]
'6002' => 1. Dial (Sl P/ denp-bob, 20)

[pbx_confi g]

-= 2 extensions (2 priorities) in 1 context. =-

Now we're ready to make a test call!

Making a Phone Call

At this point, you should be able to pick up Alice's phone and dial extension 6002 to call Bob, and
dial 6001 from Bob's phone to call Alice. As you make a few test calls, be sure to watch the
Asterisk command-line interface (and ensure that your verbosity is set to a value three or higher)
so that you can see the messages coming from Asterisk, which should be similar to the ones
below:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLI > -- Executing [6002@isers: 1]
Di al ("SI P/ denp- al i ce-00000000", "SI P/ deno-bob, 20") in new stack
-- Call ed deno-bob
-- Sl P/ deno- bob- 00000001 is ringing
-- S| P/ denp- bob- 00000001 answer ed SI P/ denp-al i ce- 00000000
-- Native bridging SIP/ deno-alice-00000000 and
S| P/ denpb- bob- 00000001
== Spawn extension (users, 6002, 1) exited non-zero on
" SI P/ deno- al i ce- 00000000

As you can see, Alice called extension 6002 in the [users] context, which in turn used the Dial
application to call Bob's phone. Bob's phone rang, and then answered the call. Asterisk then
bridged the two calls (one call from Alice to Asterisk, and the other from Asterisk to Bob), until
Alice hung up the phone.

At this point, you have a very basic PBX. It has two extensions which can dial each other, but
that's all. Before we move on, however, let's review a few basic troubleshooting steps that will
help you be more successful as you learn about Asterisk.

@ Basic PBX Troubleshooting

The most important troubleshooting step is to set your verbosity level to three (or
higher), and watch the command-line interface for errors or warnings as calls are
placed.

To ensure that your SIP phones are registered, type sip show peers at the Asterisk
CLI.

To see which context your SIP phones will send calls to, type sip show users.

To ensure that you've created the extensions correctly in the [users] context in the
dialplan, type dialplan show users.

To see which extension will be executed when you dial extension 6002, type
dialplan show 6002@users.

Sound Prompt Searching based on Channel Language

Dialplan Fundamentals

The dialplan is essential to the operation of any successful Asterisk system. In this module, we'll
help you learn the fundamental components of the Asterisk dialplan, and how to combine them to
begin scripting your own dialplan. We'll also add voice mail and a dial-by-name directory features
to your dialplan.

Contexts, Extensions, and Priorities

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The dialplan is organized into various sections, called contexts. Contexts are the basic
organizational unit within the dialplan, and as such, they keep different sections of the dialplan
independent from each other. We'll use contexts to enforce security boundaries between the
various parts of our dialplan, as well as to provide different classes of service to groups of users.

The syntax for a context is exactly the same as any other section heading in the configuration
files, as explained in Section 206.2.1. Sections and Settings. Simply place the context name in
square brackets. For example, here is the context we defined in the previous module:

[users]

Within each context, we can define one or more extensions. As explained in the previous
module, an extension is simply a named set of actions. Asterisk will perform each action, in
sequence, when that extension number is dialed. The syntax for an extension is:

exten => nunber, priority,application([paranmeter[, paranmeter2...]])

As an example, let's review extension 6001 from the previous module. It looks like:

exten => 6001, 1, Di al (SI P/ denp-al i ce, 20)

In this case, the extension number is 6001, the priority number is 1, the application is Dial(), and
the two parameters to the application are SIP/demo-alice and 20.

Within each extension, there must be one or more priorities. A priority is simply a sequence
number. The first priority on an extension is executed first. When it finishes, the second priority is
executed, and so forth.

Priority numbers
Priority numbers must begin with 1, and must increment sequentially. If Asterisk can't find the next priority number, it will
terminate the call. We call this auto-fallthrough. Consider the example below:

exten => 6123, 1, do sonet hi ng
exten => 6123, 2, do sonething el se
exten => 6123, 4, do sonething different

In this case, Asterisk would execute priorites one and two, but would then terminate
the call, because it couldn't find priority number three.

Priority number can also be simplied by using the letter n in place of the priority numbers greater
than one. The letter n stands for next, and when Asterisk sees priority n it replaces it in memory
with the previous priority number plus one. Note that you must still explicitly declare priority
number one.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 6123, 1, do sonet hi ng
exten => 6123, n,do sonething el se
exten => 6123, n,do sonething different

You can also assign a label (or alias) to a particular priority number by placing the label in
parentheses directly after the priority number, as shown below. Labels make it easier to jump
back to a particular location within the extension at a later time.

exten => 6123, 1, do sonet hi ng
exten => 6123, n(repeat), do sonething el se
exten => 6123, n,do sonething different

Here, we've assigned a label named repeat to the second priority.

Included in the Asterisk 1.6.2 branch (and later) there is a way to avoid having to repeat the
extension name/number or pattern using the same => prefix.

exten => 1TNXXNXXXXXX, 1, do sonet hi ng
same => n(repeat), do sonething el se
same => n, do sonething different

Applications

Each priority in the dialplan calls an application. An application does some work on the channel,
such as answering a call or playing back a sound prompt. There are a wide variety of dialplan
applications available for your use. For a complete list of the dialplan applications available to
your installation of Asterisk, type core show applications at the Asterisk CLI.

Most applications take one or more parameters, which provide additional information to the
application or change its behavior. Parameters should be separated by commas.

@ Syntax for Parameters
You'll often find examples of Asterisk dialplan code online and in print which use the pipe character or vertical bar character (])
between parameters, as shown in this example:

exten => 6123, 1, appl i cation(one|two|three)

This is a deprecated syntax, and will no longer work in newer versions of Asterisk.
Simply replace the pipe character with a comma, like this:

exten => 6123, 1, appl i cati on(one, two, t hree)

Answer, Playback, and Hangup Applications

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

As its name suggests, the Answer() application answers an incoming call. The Answer()
application takes a delay (in milliseconds) as its first parameter. Adding a short delay is often
useful for ensuring that the remote endpoing has time to begin processing audio before you play
a sound prompt. Otherwise, you may not hear the very beginning of the prompt.

Knowing When to Answer a Call

When you're first learning your way around the Asterisk dialplan, it may be a bit confusing
knowing when to use the Answer() application, and when not to.

If Asterisk is simply going to pass the call off to another device using the Dial() application, you
probably don't want to call the answer the call first. If, on the other hand, you want Asterisk to
play sound prompts or gather input from the caller, it's probably a good idea to call the Answer()
application before doing anything else.

The Playback() application loads a sound prompt from disk and plays it to the caller, ignoring
any touch tone input from the caller. The first parameter to the dialplan application is the filename
of the sound prompt you wish to play, without a file extension. If the channel has not already
been answered, Playback() will answer the call before playing back the sound prompt, unless
you pass noanswer as the second parameter.

To avoid the first few milliseconds of a prompt from being cut off you can play a second of
silence. For example, if the prompt you wanted to play was hello-world which would look like this
in the dialplan:

exten => 1234, 1, Pl ayback(hel | o-wor| d)

You could avoid the first few seconds of the prompt from being cut off by playing the silence/1
file:

exten => 1234, 1, Pl ayback(sil ence/ 1)
exten => 1234, n, Pl ayback(hel | o-wor| d)

Alternatively this could all be done on the same line by separating the filenames with an
ampersand (&):

exten => 1234, 1, Pl ayback(si | ence/ 1&hel | o-wor | d)

Exploring Sound Prompts

Asterisk comes with a wide variety of pre-recorded sound prompts. When you install Asterisk,
you can choose to install both core and extra sound packages in several different file formats.
Prompts are also available in several languages. To explore the sound files on your system,
simply find the sounds directory (this will be /var/lib/asterisk/sounds on most systems) and look
at the filenames. You'll find useful prompts ("Please enter the extension of the person you are
looking for..."), as well as as a number of off-the-wall prompts (such as "Weasels have eaten our

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

phone system"”, "The office has been overrun with iguanas”, and "Try to spend your time on hold
not thinking about a blue-eyed polar bear") as well.

% Sound Prompt Formats
Sound prompts come in a variety of file formats, such as .wav and .ulaw files. When asked to play a sound prompt from disk,
Asterisk plays the sound prompt with the file format that can most easily be converted to the CODEC of the current call. For
example, if the inbound call is using the alaw CODEC and the sound prompt is available in .gsm and .ulaw format, Asterisk will
play the .ulaw file because it requires fewer CPU cycles to transcode to the alaw CODEC.
You can type the command core show translation at the Asterisk CLI to see the transcoding times for various CODECs. The
times reported (in Asterisk 1.6.0 and later releases) are the number of microseconds it takes Asterisk to transcode one second
worth of audio. These times are calculated when Asterisk loads the codec modules, and often vary slightly from machine to
machine. To perform a current calculation of translation times, you can type the command core show translation recalc 60.

How Asterisk Searches for Sound Prompts Based on Channel Language

Each channel in Asterisk can be assigned a language by the channel driver. The channel's
language code is split, piece by piece (separated by underscores), and used to build paths to
look for sound prompts. Asterisk then uses the first file that is found.

This means that if we set the language to en_GB_female_ BT, for example, Asterisk would
search for files in:

...Isounds/en/GB/female/BT
...Isounds/en/GB/female
...Isounds/en/GB
...Isounds/en

...Isounds

This scheme makes it easy to add new sound prompts for various language variants, while falling
back to a more general prompt if there is no prompt recorded in the more specific variant.

The Hangup() application hangs up the current call. While not strictly necessary due to
auto-fallthrough (see the note on Priority numbers above), in general we recommend you add the
Hangup() application as the last priority in any extension.

Now let's put Answer(), Playback(), and Hangup() together to play a sample sound file. Place
this extension in your [docs:users] context:

exten => 6000, 1, Answer (500)
exten => 6000, n, Pl ayback(hel | o-wor| d)
exten => 6000, n, Hangup()

Dial Application

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Now that you've learned the basics of using dialplan applications, let's take a closer look at the
Dial() application that we used earlier in extensions 6001 and 6002. Dial() attempts to ring an
external device, and if the call is answered it bridges the two channels together and does any
necessary protocol or CODEC conversion. It also handles call progress responses (busy,
no-answer, ringing).

% Dial() and the Dialplan
Please note that if the Dial() application successfully bridges two channels together, that the call does not progress in the
dialplan. The call will only continue on to the next priority if the Dial() application is unable to bridge the calling channel to the
dialed device.

The Dial() application takes four parameters:

1. Devices

® Alist of the device(s) you want to call. Devices are specified as technology or channel driver, a forward slash, and the device or
account name. For example, SIP/demo-alice would use the SIP channel driver to call the device specified in the demo-alice
section of sip.conf. Devices using the IAX2 channel driver take the form of IAX2/demo-george, and DAHDI channels take the
form of DAHDI/1.

® When calling through a device (such as a gateway) or service provider to reach another number, the syntax is
technology/device/number such as SIP/my_provider/5551212 or DAHDI/4/5551212.

® To dial multiple devices at once, simply concatenate the devices together whith the ampersand character (&). The first device to
answer will get bridged with the caller, and the other endpoints will stop ringing.

® exten => 6003, 1, Di al (SI P/ denp- al i ce&Sl P/ deno- bob, 30)

2. Timeout
® The number of seconds to allow the device(s) to ring before giving up and moving on to the next priority in the extension.

3. Options
®* There are dozens of options that you can set on the outbound call, including call screening, distinctive ringing and more. Type
core show application dial at the Asterisk CLI for a complete list of all available options. If you want to specify multiple options,
simply concatenate them together. For example, if you want to use both the *m*and H options, you would set mH as the options
parameter.
4. URL
® The fourth parameter is a URL that will be sent to the endpoint. Few endpoints do anything with the URL, but there are a few

(softphones mostly) that do act on the URL.

Adding Voice Mail to Dialplan Extensions

Adding voicemail to the extensions is quite simple. The Asterisk voicemail module provides two
key applications for dealing with voice mail. The first, named VoiceMail(), allows a caller to leave
a voice mail message in the specified mailbox. The second, called VoiceMailMain(), allows the
mailbox owner to retrieve their messages and change their greetings.

VoiceMail Application

The VoiceMail() applications takes two parameters:

1. Mailbox
® This parameter specifies the mailbox in which the voice mail message should be left. It should be a mailbox number and a voice
mail context concatenated with an at-sign (@), like 6001@default. (Voice mail boxes are divided out into various voice mail
context, similar to the way that extensions are broken up into dialplan contexts.) If the voice mail context is omitted, it will default
to the default voice mail context.
2. Options
® One or more options for controlling the mailbox greetings. The most popular options include the u option to play the unavailable
message, the b option to play the busy message, and the s option to skip the system-generated instructions.

VoiceMailMain Application

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The VoiceMailMain() application allows the owner of a voice mail box to retrieve their messages,
as well as set mailbox options such as greetings and their PIN number. The VoiceMailMain()
application takes two parameters:

1. Mailbox - This parameter specifies the mailbox to log into. It should be a mailbox number and a voice mail context, concatenated with an
at-sign (@), like 6001 @default. If the voice mail context is omitted, it will default to the default voice mail context. If the mailbox number is
omitted, the system will prompt the caller for the mailbox number.

2. Options - One or more options for controlling the voicemail system. The most popular option is the s option, which skips asking for the
PIN number

Direct Access to Voice mail
Please exercise extreme caution when using the s option! With this option set, anyone which has access to this extension can
retrieve voicemail messages without entering the mailbox passcode.

Configuring Voice Mail Boxes

Now that we've covered the two main voice mail applications, let's look at the voicemail
configuration. Voice mail options and mailboxes are configured in the voicemail.conf
configuration file. This file has three major sections:

The [general] section

Near the top of voicemail.conf, you'll find the [general] section. This section of the configuration
file controls the general aspects of the voicemail system, such as the maximum number of
messages per mailbox, the maximum length of a voicemail message, and so forth. Feel free to
look at the sample voicemail.conf file for more details about the various settings.

The [zonemessages] section

The [zonemessages] section is used to define various timezones around the world. Each
mailbox can be assigned to a particular time zone, so that times and dates are announced
relative to their local time. The time zones specified in this section also control the way in which
times and dates are announced, such as reading the time of day in 24-hour format.

Voice Mail Contexts

After the [general] and [zonemessages] sections, any other bracketed section is a voice mail
context. Within each context, you can define one or more mailbox. To define a mailbox, we set a
mailbox number, a PIN, the mailbox owner's name, the primary email address, a secondary
email address, and a list of mailbox options (separated by the pipe character), as shown below:

mai | box=>pin, full nanme, emai|l address, short enmail address, nail box
opti ons

By way of explanation, the short email address is an email address that will receive shorter email
notifications suitable for mobile devices such as cell phones and pagers. It will never receive
attachments.

To add voice mail capabilities to extensions 6001 and 6002, add these three lines to the bottom
of voicemail.conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[vm denp]

6001 => 8762, Alice

Jones, al i ce@xanpl e. com al i ce2@xanpl e. com attach=no|tz=central | maxnsc
=> 9271, Bob

Sm t h, bob@xanpl e. com bob2@xanpl e. com attach=yes|tz=eastern

Now that we've defined the mailboxes, we can go into the Asterisk CLI and type voicemail
reload to get Asterisk to reload the voicemail.conf file. We can also verify that the new
mailboxes have been created by typing voicemail show users.

server*CLI > voi cemnil rel oad
Rel oadi ng voi cemai |l configuration...
server*CLI > voi cemai| show users

Cont ext Moox User Zone NewVs g
def aul t general New User 0
def aul t 1234 Exanpl e Mai |l box 0
ot her 1234 Conpany2 User 0
vm deno 6001 Alice Jones central 0
vm deno 6002 Bob Smith eastern 0

5 voicermai | users configured.

Now that we have mailboxes defined, let's add a priority to extensions 6001 and 6002 which will
allow callers to leave voice mail in their respective mailboxes. We'll also add an extension 6500

to allow Alice and Bob to check their voicemail messages. Please modify your [users] context in
extensions.conf to look like the following:

[users]

exten => 6000, 1, Answer (500)

exten => 6000, n, Pl ayback(hel | o-wor| d)
exten => 6000, n, Hangup()

exten => 6001, 1, Di al (SI P/ denp-al i ce, 20)
exten => 6001, n, Voi ceMai | (6001@m deno, u)

exten => 6002, 1, Di al (SI P/ denp- bob, 20)
exten => 6002, n, Voi ceMai | (6002@ m deno, u)

exten => 6500, 1, Answer (500)
exten => 6500, n, Voi ceMai | Mai n(@m deno)

Reload the dialplan by typing dialplan reload at the Asterisk CLI. You can then test the voice
mail system by dialing from one phone to the other and waiting twenty seconds. You should then

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

be connected to the voicemail system, where you can leave a message. You should also be able
to dial extension 6500 to retrieve the voicemail message. When prompted, enter the mailbox
number and PIN number of the mailbox.

While in the VoiceMainMain() application, you can also record the mailbox owner's name,
unavailable greeting, and busy greeting by pressing 0 at the voicemail menu. Please record at
least the name greeting for both Alice and Bob before continuing on to the next section.

Go into lots of detail about the voicemail interface? How to move between messages, move
between folders, forward messages, etc?

Directory Application

The next application we'll cover is named Directory(), because it presents the callers with a
dial-by-name directory. It asks the caller to enter the first few digits of the person's name, and
then attempts to find matching names in the specified voice mail context in voicemail.conf. If the

matching mailboxes have a recorded name greeting, Asterisk will play that greeting. Otherwise,
Asterisk will spell out the person's name letter by letter.

Directory([voi cemail _context,[dial plan_context,[options]]])

The Directory() application takes three parameters:
voicemail_context

This is the context within voicemail.conf in which to search for a matching directory entry. If not
specified , the [docs:default] context will be searched.

dialplan_context

When the caller finds the directory entry they are looking for, Asterisk will dial the extension
matching their mailbox in this context.

options
A set of options for controlling the dial-by-name directory. Common options include f for

searching based on first name instead of last name and e to read the extension number as well
as the name.

% Directory() Options
To see the complete list of options for the Directory() application, type core show application Directory at the Asterisk CLI.

Let's add a dial-by-name directory to our dialplan. Simply add this line to your [docs:users]
context in extensions.conf:

exten => 6501, 1, Directory(vm deno, users, ef)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Now you should be able to dial extension 6501 to test your dial-by-name directory.
Auto-attendant and IVR Menus

In this section, we'll cover the how to build voice menus, often referred to as auto-attedants and
IVR menus. IVR stands for Interactive Voice Response, and is used to describe a system where
a caller navigates through a system by using the touch-tone keys on their phone keypad.

When the caller presses a key on their phone keypad, the phone emits two tones, known as
DTMF tones. DTMF stands for Dual Tone Multi-Frequency. Asterisk recognizes the DTMF tones
and responds accordingly. For more information on DTMF tones, see [Section 440.3. DTMF
Dialing].

Let's dive in and learn how to build IVR menus in the Asterisk dialplan!

Background and WaitExten Applications

The Background() application plays a sound prompt, but listens for DTMF input. Asterisk then
tries to find an extension in the current dialplan context that matches the DTMF input. If it finds a
matching extension, Asterisk will send the call to that extension.

The Background() application takes the name of the sound prompt as the first parameter just like
the Playback() application, so remember not to include the file extension.

Multiple Prompts
If you have multiple prompts you'd like to play during the Background() application, simply concatenate them together with the
ampersand (&) character, like this:

exten => 6123, 1, Backgr ound(pr onpt 1&pr onpt 2&pr onpt 3)

One problems you may encounter with the Background() application is that you may want
Asterisk to wait a few more seconds after playing the sound prompt. In order to do this, you can
call the WaitExten() application. You'll usually see the WaitExten() application called
immediately after the Background() application. The first parameter to the WaitExten()
application is the number of seconds to wait for the caller to enter an extension. If you don't
supply the first parameter, Asterisk will use the built-in response timeout (which can be modified
with the TIMEOUT() dialplan function).

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[aut o_att endant]
exten => start, 1, Verbose(2, I ncoming call from ${CALLERI D(all)})
same => n, Pl ayback(silence/1)
same => n, Backgr ound(pronpt 1&pr onpt 2&pr onpt 3)
same => n, WAi t Ext en(10)
same => n, Goto(timeout-handl er, 1)

exten => timeout-handl er, 1)

sane => n, D al (${ GLOBAL(OPERATOR) }, 30)

same => n, Voi cenmi | (oper at or @ef aul t, ${1 F($[${ DI ALSTATUS} =
BUSY] ?b: u) })

same => n, Hangup()

Goto Application and Priority Labels

Before we create a simple auto-attendant menu, let's cover a couple of other useful dialplan
applications. The Goto() application allows us to jump from one position in the dialplan to
another. The parameters to the Goto() application are slightly more complicated than with the
other applications we've looked at so far, but don't let that scare you off.

The Goto() application can be called with either one, two, or three parameters. If you call the
Goto() application with a single parameter, Asterisk will jump to the specified priority (or its label)
within the current extension. If you specify two parameters, Asterisk will read the first as an
extension within the current context to jump to, and the second parameter as the priority (or
label) within that extension. If you pass three parameters to the application, Asterisk will assume
they are the context, extension, and priority (respectively) to jump to.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[StartingCont ext]

exten => 100, 1, Got o(nonkeys)
same => n, NoOp(We skip this)
same => n(nonkeys), Pl ayback(tt-nonkeys)
same => n, Hangup()

exten => 200, 1, Goto(start,1) ; play tt-weasels then tt-nonkeys
exten => 300, 1, Goto(start, nonkeys) ; only play tt-nonkeys
exten => 400, 1, Got o(Junpi ngCont ext,start, 1) ; play hello-world

exten => start, 1, NoOp()
same => n, Pl ayback(tt-weasel s)
same => n(nonkeys), Pl ayback(tt-nonkeys)

[Junpi ngCont ext]

exten => start, 1, NoOp()
same => n, Pl ayback(hel | o-wor| d)
sanme => n, Hangup()

SayDigits, SayNumber, SayAlpha, and SayPhonetic Applications

While not exactly related to auto-attendant menus, we'll introduce some applications to read back
various pieces of information back to the caller. The SayDigits() and SayNumber() applications
read the specified number back to caller. To use the SayDigits() and SayNumber() application
simply pass it the number you'd like it to say as the first parameter.

The SayDigits() application reads the specified number one digit at a time. For example, if you
called SayDigits(123), Asterisk would read back "one two three". On the other hand, the
SayNumber() application reads back the number as if it were a whole number. For example, if
you called SayNumber(123) Asterisk would read back "one hundred twenty three".

The SayAlpha() and SayPhonetic() applications are used to spell an alphanumeric string back
to the caller. The SayAlpha() reads the specified string one letter at a time. For example,
SayAlpha(hello) would read spell the word "hello” one letter at a time. The SayPhonetic() spells
back a string one letter at a time, using the international phonetic alphabet. For example,
SayPhonetic(hello) would read back "Hotel Echo Lima Lima Oscar".

We'll use these four applications to read back various data to the caller througout this guide. In

the meantime, please feel free to add some sample extensions to your dialplan to try out these
applications. Here are some examples:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 6592, 1, SayDi gi t s(123)
exten => 6593, 1, SayNunber (123)
exten => 6594, 1, SayAl pha(hel | 0)
exten => 6595, 1, SayPhoneti c(hel | 0)

Creating a Simple IVR Menu

Let's go ahead and apply what we've learned about the various dialplan applications by building
a very simple auto-attendant menu. It is common practice to create an auto-attendant or IVR
menu in a new context, so that it remains independant of the other extensions in the dialplan.
Please add the following to your dialplan (the extensions.conf file) to create a new demo-menu
context. In this new context, we'll create a simple menu that prompts you to enter one or two, and
then it will read back what you're entered.

Sample Sound Prompts
Please note that the example below (and many of the other examples in this guide) use sound prompts that are part of the extra
sounds packages. If you didn't install the extra sounds earlier, now might be a good time to do that.

[deno- menu]

exten => s, 1, Answer (500)
same => n(| oop), Background(press- 1&or &pr ess- 2)
same => n, Wi t Exten()

exten => 1,1, Pl ayback(you- ent er ed)
same => n, SayNunber (1)
same => n, Goto(s, | oop)

exten => 2,1, Pl ayback(you- ent ered)

sanme => n, SayNunber (2)
same => n, Goto(s, | oop)

Before we can use the demo menu above, we need to add an extension to the [docs:users]
context to redirect the caller to our menu. Add this line to the [docs:users] context in your
dialplan:

exten => 6598, 1, Got o(deno- nenu, s, 1)

Reload your dialplan, and then try dialing extension 6598 to test your auto-attendant menu.
Handling Special Extensions
We have the basics of an auto-attendant created, but now let's make it a bit more robust. We

need to be able to handle special situations, such as when the caller enters an invalid extension,
or doesn't enter an extension at all. Asterisk has a set of special extensions for dealing with

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

situations like there. They all are named with a single letter, so we recommend you don't create
any other extensions named with a single letter. The most common special extensions include:

i: the invalid entry extension

If Asterisk can't find an extension in the current context that matches the digits dialed during the
Background() or WaitExten() applications, it will send the call to the i extension. You can then
handle the call however you see fit.

t: the reponse timeout extension

When the caller waits too long before entering a response to the Background() or WaitExten()
applications, and there are no more priorities in the current extension, the call is sent to the t
extension.

s: the start extension

When an analog call comes into Asterisk, the call is sent to the s extension. The s extension is
also used in macros.

Please note that the s extension is not a catch-all extension. It's simply the location that analog
calls and macros begin. In our example above, it simply makes a convenient extension to use
that can't be easily dialed from the Background() and WaitExten() applications.

h: the hangup extension

When a call is hung up, Asterisk executes the h extension in the current context. This is typically
used for some sort of clean-up after a call has been completed.

0: the operator extension

If a caller presses the zero key on their phone keypad while recording a voice mail message, and
the o extension exists, the caller will be redirected to the o extension. This is typically used so
that the caller can press zero to reach an operator.

a: the assistant extension

This extension is similar to the o extension, only it gets triggered when the caller presses the

asterisk (*) key while recording a voice mail message. This is typically used to reach an
assistant.

Let's add a few more lines to our [docs:demo-menu] context, to handle invalid entries and
timeouts. Modify your [docs:demo-menu] context so that it matches the one below:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[deno- nenu]

exten => s, 1, Answer (500)
same => n(| oop), Background(press-1&or &pr ess- 2)
same => n, Wi t Ext en()

exten => 1,1, Pl ayback(you-ent er ed)
same => n, SayNunber (1)
same => n, Got o(s, | oop)

exten => 2,1, Pl ayback(you-entered)
same => n, SayNunber (2)
same => n, Goto(s, | oop)

exten => i,1, Pl ayback(option-is-invalid)
same => n, Got o(s, | oop)

exten => t, 1, Pl ayback(are-you-still-there)
same => n, Goto(s, | oop)

Now dial your auto-attendant menu again (by dialing extension 6598), and try entering an invalid
option (such as 3) at the auto-attendant menu. If you watch the Asterisk command-line interface
while you dial and your verbosity level is three or higher, you should see something similar to the
following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

-- Executing [6598@sers: 1] Goto("SI P/ deno-alice-00000008",
"deno- nenu, s, 1") in new stack

-- Goto (deno-nenu,s, 1)

-- Executing [s@leno-nenu: 1] Answer ("SI P/ denp- al i ce- 00000008",
"500") in new stack

-- Executing [s@leno-nenu: 2] BackG ound(" Sl P/ deno- al i ce- 00000008",
"press-1&or &ress-2") in new stack

-- <S8l P/ deno-al i ce-00000008> Pl ayi ng 'press-1.gsm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl aying 'or.gsm (language 'en')
-- <SI P/ denp-al i ce-00000008> Pl ayi ng ' press-2.gsm (| anguage
-- Invalid extension '3" in context 'denp-nmenu' on

SI P/ denp- al i ce- 00000008

-- Executing [i @eno-nenu: 1] Pl ayback(" Sl P/ deno- al i ce- 00000008",
"option-is-invalid') in new stack

-- <S8l P/ deno- al i ce-00000008> Pl ayi ng 'option-is-invalid.gsm

(I anguage 'en')

-- Executing [i @eno-nenu: 2] Goto("SI P/ denp-al i ce-00000008",
"s,loop") in new stack

-- CGoto (deno-nenu,s, 2)

-- Executing [s@leno-nenu: 2] BackG ound(" Sl P/ deno- al i ce- 00000008",
"press-1&or &press-2") in new stack

-- <S8l P/ deno-al i ce-00000008> Pl ayi ng 'press-1.gsnm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl aying 'or.gsm (language 'en')
-- <SI P/ denp- al i ce-00000008> Pl ayi ng ' press-2.gsm (| anguage

en')

en')

If you don't enter anything at the auto-attendant menu and instead wait approximately ten
seconds, you should hear (and see) Asterisk go to the t extension as well.

Record Application

For creating your own auto-attendant or IVR menus, you're probably going to want to record your
own custom prompts. An easy way to do this is with the Record() application. The Record()
application plays a beep, and then begins recording audio until you press the hash key (#) on
your keypad. It then saves the audio to the filename specified as the first parameter to the
application and continues on to the next priority in the extension. If you hang up the call before
pressing the hash key, the audio will not be recorded. For example, the following extension
records a sound prompt called custom-menu in the gsm format in the en/ sub-directory, and
then plays it back to you.

exten => 6597, 1, Answer (500)
same => n, Record(en/custom nenu. gsn
same => n, Wait(1)
same => n, Pl ayback(cust om nenu)
same => n, Hangup()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

i Recording Formats
When specifiying a file extension when using the Record() application, you must choose a file extension which represents one
of the supported file formats in Asterisk. For the complete list of file formats supported in your Asterisk installation, type core
show file formats at the Asterisk command-line interface.

You've now learned the basics of how to create a simple auto-attendant menu. Now let's build a
more practical menu for callers to be able to reach Alice or Bob or the dial-by-name directory.

Procedure 216.1. Building a Practical Auto-Attendant Menu

1. Add an extension 6599 to the [docs:users] context which sends the calls to a new context we'll build called [docs:day-menu]. Your
extension should look something like:

® exten=>6599, 1, Got o(day-nenu, s, 1)
2. Add a new context called [docs:day-menu], with the following contents:

® [day- nmenu]
exten => s, 1, Answer (500)
same => n(|oop), Background(cust om nenu)
same => n, Wai t Exten()

exten => 1,1, Goto(users, 6001, 1)
exten => 2,1, Goto(users, 6002, 1)

exten => 9,1, Directory(vm denp, users, fe)
exten => * 1, Voi ceMai | Mai n(@m deno)

exten => i, 1, Pl ayback(option-is-invalid)
sane => n, Goto(s, | oop)

exten => t, 1, Pl ayback(are-you-still-there)
same => n, Goto(s, | oop)

1. Dial extension 6597 to record your auto-attendant sound prompt. Your sound prompt should say something like "Thank you for calling!
Press one for Alice, press two for Bob, or press 9 for a company directory". Press the hash key (#) on your keypad when you're finished
recording, and Asterisk will play it back to you. If you don't like it, simply dial extension 6597 again to re-record it.

2. Dial extension 6599 to test your auto-attendant menu.

In just a few lines of code, you've created your own auto-attendant menu. Feel free to experiment
with your auto-attendant menu before moving on to the next section.

Dialplan Architecture

In this section, we'll begin adding structure to our dialplan. We'll begin by talking about variables
and how to use them, as well as how to manipulate them. Then we'll cover more advanced
topics, such as pattern matching and using include statements to build classes of functionality.

Variables

Variables are used in most programming and scripting languages. In Asterisk, we can use
variables to simplify our dialplan and begin to add logic to the system. A variable is simply a
container that has both a name and a value. For example, we can have a variable named
COUNT which has a value of three. Later on, we'll show you how to route calls based on the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

value of a variable. Before we do that, however, let's learn a bit more about variables. The
names of variables are case-sensitive, so COUNT is different than Count and count. Any
channel variables created by Asterisk will have names that are completely upper-case, but for
your own channels you can hame them however you would like.

In Asterisk, we have two different types of variables: channel variables and global variables.
Channel Variables Basics

Channel variables are variables that are set for the current channel (one leg of a bridged phone
call). They exist for the lifetime of the channel, and then go away when that channel is hung up.
Channel variables on one particular channel are completely independent of channel variables on
any other channels; in other words, two channels could each have variables called COUNT with
different values.

To assign a value to a channel variable, we use the Set() application. Here's an example of
setting a variable called COUNT to a value of 3.

exten=>6123, 1, Set (COUNT=3)

To retrieve the value of a variable, we use a special syntax. We put a dollar sign and curly braces
around the variable name, like ${COUNT}

When Asterisk sees the dollar sign and curly braces around a variable name, it substitutes in the
value of the variable. Let's look at an example with the SayNumber() application.

exten=>6123, 1, Set (COUNT=3)
ext en=>6123, n, SayNunber (${ COUNT})

In the second line of this example, Asterisk replaces the ${COUNT} text with the value of the
COUNT variable, so that it ends up calling SayNumber(3).

Global Variables Basics

Global variables are variables that don't live on one particular channel — they pertain to all calls
on the system. They have global scope. There are two ways to set a global variable. The first is
to declare the variable in the [globals] section of extensions.conf, like this:

[gl obal s]
MYGLOBALVAR=soneval ue

You can also set global variables from dialplan logic using the GLOBAL () dialplan function along
with the Set() application. Simply use the syntax:

ext en=>6124, 1, Set (GLOBAL(MYGLOBALVAR) =soneval ue)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

To retrieve the value of a global channel variable, use the same syntax as you would if you were
retrieving the value of a channel variable.

Manipulating Variables Basics

It's often useful to do string manipulation on a variable. Let's say, for example, that we have a
variable named NUMBER which represents a number we'd like to call, and we want to strip off
the first digit before dialing the number. Asterisk provides a special syntax for doing just that,
which looks like ${variable[:skip[docs::length]}.

The optional skip field tells Asterisk how many digits to strip off the front of the value. For
example, if NUMBER were set to a value of 98765, then ${NUMBER:2} would tell Asterisk to
remove the first two digits and return 765.

If the skip field is negative, Asterisk will instead return the specified number of digits from the end
of the number. As an example, if NUMBER were set to a value of 98765, then ${NUMBER:-2}
would tell Asterisk to return the last two digits of the variable, or 65.

If the optional length field is set, Asterisk will return at most the specified number of digits. As an
example, if NUMBER were set to a value of 98765, then ${NUMBER:0:3} would tell Asterisk not
to skip any characters in the beginning, but to then return only the three characters from that
point, or 987. By that same token, ${NUMBER:1:3} would return 876.

Variable Inheritance Basics

When building your Asterisk dialplan, it may be useful to have one channel inherit variables from
another channel. For example, imagine that Alice's call has a channel variable containing an
account code, and you'd like to pass that variable on to Bob's channel when Alice's call gets
bridged to Bob. We call this variable inheritance. There are two levels of variable inheritance in
Asterisk: single inheritance and multiple inheritance.

Multiple Inheritance

Multiple inheritance means that a channel variable will be inherited by created (spawned)
channels, and it will continue to be inherited by any other channels created by the spawned
channels. To set multiple inheritance on a channel, preface the variable name with two
underscores when giving it a value with the Set() application, as shown below.

ext en=>6123, 1, Set (__ACCOUNT=5551212)

Single Inheritance

Single inheritance means that a channel variable will be inherited by created (spawned)
channels, but not propogate from there to any other swawned channels. To follow our example
above, if Alice sets a channel variable with single inheritance and calls Bob, Bob's channel will
inherit that channel variable, but the channel variable won't get inherited by any channels that

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

might get spawned by Bob's channel (if the call gets transferred, for example). To set single
inheritance on a channel, preface the variable name with an underscore when giving it a value
with the Set() application, as shown below.

exten=>6123, 1, Set (_ACCOUNT=5551212)

Using the CONTEXT, EXTEN, PRIORITY, UNIQUEID, and CHANNEL Variables

Now that you've learned a bit about variables, let's look at a few of the variables that Asterisk
automatically creates.

Asterisk creates channel variables named CONTEXT, EXTEN, and PRIORITY which contain the
current context, extension, and priority. We'll use them in pattern matching (below), as well as
when we talk about macros in [Section 308.10. Macros]. Until then, let's show a trivial example of
using ${EXTEN} to read back the current extension number.

ext en=>6123, 1, SayNunber (${ EXTEN})

If you were to add this extension to the [docs:users] context of your dialplan and reload the
dialplan, you could call extension 6123 and hear Asterisk read back the extension number to
you.

Another channel variable that Asterisk automatically creates is the UNIQUEID variable. Each
channel within Asterisk receives a unique identifier, and that identifier is stored in the UNIQUEID
variable. The UNIQUEID is in the form of 1267568856.11, where 1267568856 is the Unix epoch,
and 11 shows that this is the eleventh call on the Asterisk system since it was last restarted.

Last but not least, we should mention the CHANNEL variable. In addition to a unique identifier,
each channel is also given a channel name and that channel name is set in the CHANNEL
variable. A SIP call, for example, might have a channel name that looks like
SIP/george-0000003b, for example.

The Verbose and NoOp Applications

Asterisk has a convenient dialplan applications for printing information to the command-line
interface, called Verbose(). The Verbose() application takes two parameters: the first parameter
is the minimum verbosity level at which to print the message, and the second parameter is the
message to print. This extension would print the current channel identifier and unique identifier
for the current call, if the verbosity level is two or higher.

ext en=>6123, 1, Ver bose(2, The channel nane is ${CHANNEL})
ext en=>6123, n, Ver bose(2, The unique id is ${UN QUEI D})

The NoOp() application stands for "No Operation”. In other words, it does nothing. Because of
the way Asterisk prints everything to the console if your verbosity level is three or higher,
however, the NoOp() application is often used to print debugging information to the console like

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

the Verbose() does. While you'll probably come across examples of the NoOp() application in
other examples, we recommend you use the Verbose() application instead.

The Read Application

The Read() application allows you to play a sound prompt to the caller and retrieve DTMF input
from the caller, and save that input in a variable. The first parameter to the Read() application is
the name of the variable to create, and the second is the sound prompt or prompts to play. (If you
want multiple prompts, simply concatenate them together with ampersands, just like you would
with the Background() application.) There are some additional parameters that you can pass to
the Read() application to control the number of digits, timeouts, and so forth. You can get a
complete list by running the core show application read command at the Asterisk CLI. If no
timeout is specified, Read() will finish when the caller presses the hash key (#) on their keypad.

ext en=>6123, 1, Read(Di gi ts, ent er - ext - of - per son)
exten=>6123, n, Pl ayback(you- ent er ed)
ext en=>6123, n, SayNunber (${Di gi t s})

In this example, the Read() application plays a sound prompt which says "Please enter the
extension of the person you are looking for", and saves the captured digits in a variable called
Digits. It then plays a sound prompt which says "You entered" and then reads back the value of
the Digits variable.

Pattern Matching

The next concept we'll cover is called pattern matching. Pattern matching allows us to create
extension patterns in our dialplan that match more than one possible dialed number. Pattern
matching saves us from having to create an extension in the dialplan for every possible number
that might be dialed.

When Alice dials a number on her phone, Asterisk first looks for an extension (in the context
specified by the channel driver configuration) that matches exactly what Alice dialed. If there's no
exact match, Asterisk then looks for a pattern match that matches. After we show the syntax and
some basic examples of pattern matching, we'll explain how Asterisk finds the best match if there
are two or more patterns which match the dialed number.

Pattern matches always begin with an underscore. This is how Asterisk recognizes that the
extension is a pattern and not just an extension with a funny name. Within the pattern, we use
various letter and characters to represent sets or ranges of numbers. Here are the most common
letters:

X

The letter X represents a single digit from 0 to 9.

Z

The letter Z represents any digit from 1 to 9.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

N
The letter N represents a single digit from 2 to 9.

Now let's look at a sample pattern. If you wanted to match all four-digit numbers that had the first
two digits as six and four, you would create an extension that looks like:

exten => 64XX, 1, SayDi gi t s(${ EXTEN})

In this example, each X represents a single digit, with any value from zero to nine. We're
essentially saying "The first digit must be a six, the second digit must be a four, the third digit can
be anything from zero to nine, and the fourth digit can be anything from zero to nine".

If we want to be more specific about a range of numbers, we can put those numbers or number
ranges in square brackets. For example, what if we wanted the second digit to be either a three
or a four? One way would be to create two patterns (_64XX and _63XX), but a more compact
method would be to do _6[docs:34]XX. This specifies that the first digit must be a six, the
second digit can be either a three or a four, and that the last two digits can be anything from zero
to nine.

You can also use ranges within square brackets. For example, [docs:1-468] would match a
single digit from one through four or six or eight. It does not match any number from one to four
hundred sixty-eight!

Within Asterisk patterns, we can also use a couple of other characters to represent ranges of
numbers. The period character (.) within a pattern matches on one or more remaining digits in
the pattern. It typically appears at the end of a pattern match, especially when you want to match
extensions of an indeterminate length. As an example, the pattern _9876. would match any
number that began with 9876 and had at least one more character or digit.

The exclamation mark (!) character is similar to the period and also matches one more more
remaining characters, but is used in overlap dialing. For example, 9876! would match any
number that began with 9876, and would respond that the number was complete as soon as
there was an unambiguous match.

@ Be Careful With Wildcards in Pattern Matches
Please be extremely cautious when using the period and exclamation mark characters in your pattern matches. They match
more than just digits, they also match on characters as well, and if you're not careful to filter the input from your callers, a
malicious caller might try to use these wildcards to bypass security boundaries on your system.

For a more complete explanation of this topic and how you can protect yourself,
please refer to the README-SERIOUSLY .bestpractices.txt file in the Asterisk
source code.

Now let's show what happens when there is more than one pattern that matches the dialed
number. How does Asterisk know which pattern to choose as the best match?

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Asterisk uses a simple set of rules to determine the best match. They are:

1. Examine the first digit eliminate any patterns which don't match the first digit of the dialed number

2. Sort the remaining patterns based on the most constrained match for the current digit. By most constrained, we mean the pattern that has
the fewest possible matches for this digit. As an example, the N character has 8 possible matches (two through nine), while an X has ten
possible matches.

3. In the case of a match, sort the patterns in ASCII sort order. For example, _[docs:234]X and _[docs:345]X have three possible matches
in the first digit, but 234 comes before 345 in ASCII sort order.

4. Move on to the next digit (moving digit by digit from left to right), and eliminate any patterns which don't match the current digit of the
dialed number. Then continue back at step number two.

5. After you've examined all the digits, return the match that has been sorted to the top of the list.

Let's look at an example to better understand how this works. Let's assume Alice dials extension
6401, and she has the following patterns in her dialplan:

exten => _64XX, 1, SayAl pha(A)
exten => 640X, 1, SayAl pha(B)
exten => _64NX, 1, SayAl pha(C)
exten => 6XX1, 1, SayAl pha(D)

Can you tell (without reading ahead) which one would match?

Let's walk step by step through the rules explained above, and see what happens when Alice
dials 6401.

Rule 1
We look at the first digit, and all the patterns match.
Rule 2

Each of the patterns have the same number of possible matches on this digit (one match — the
number six).

Rule 3
We sort the patterns in ASCII sort order.
Rule 4

We move on to the second digit. There are no patterns that can be eliminated based on the
second digit, so we go back to rule two for this digit.

Rule 2

The three patterns with a 4 in the second digit are more constrained than the X, so they get
sorted to the top.

Rule 3

The top three patterns get sorted in ASCII sort order, since they are tied in the number of
possible matches.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Rule 4

We move on to the third digit. The third pattern (the one that would call SayAlpha(C)) is
eliminated, because the third digit of this pattern (the N) doesn't match the third dialed digit (the O
). The other patterns match, so we now go back to rule two.

Rule 2

The second pattern (the one that would call SayAlpha(B)) is the most constrained, as it only has
a single possibility, so it gets sorted to the top.

Rule 3
There are no ties at the top of the sorting table, so we can move on to rule four.
Rule 4

We move on to the fourth digit. Since all the remaining patterns match, the second pattern
remains at the top of the sorting table. You might be asking yourself... "What about the fourth
pattern? Isn't it more constrained?" Remember that it was less constrained in an earlier digit, so it
would only match if none of the other patterns above it in the sorting table matched on this digit.

Step 5

Since we have run out of digits, we know that Asterisk will match on the second pattern, as it is
the one at the top of the sorting table.

To verify that Asterisk actually does sort the extensions in the manner that we've described, add
the following extensions to the [docs:users] context of your own dialplan.

exten => _64XX, 1, SayAl pha(A)
exten => 640X, 1, SayAl pha(B)
exten => _64NX, 1, SayAl pha(C)
exten => _6XX1, 1, SayAl pha(D)

Reload the dialplan, and then type dialplan show 6104@users at the Asterisk CLI. Asterisk will
show you what would match if you were to dial extension 6104 in the [docs:users] context.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLI > di al pl an show 6401@users
[Context 'users' created by 'pbx_config']

' 640X => 1. SayAl pha(B)
[pbx_confi g]

' B64AXX => 1. SayAl pha(A)
[pbx_confi g]

toeXX1 => 1. SayAl pha(D)

[pbx_confi g]

-= 3 extensions (3 priorities) in 1 context. =-

You can then dial extension 6104 to try it out on your own.

ig) Be Careful with Pattern Matching
Please be aware that because of the way auto-fallthrough works, if Asterisk can't find the next priority number for the current
extension or pattern match, it will also look for that same priority in a less specific pattern match. Consider the following
example:

exten => 6410, 1, SayDi gi t s(987)
exten => 641X, 1, SayDi gi t s(12345)
exten => _641X, n, SayDi gi t s(54321)

If you were to dial extension 6410, you'd hear "nine eight seven five four three two
one".

We strongly recommend you make the Hangup() application be the last priority of
any extension to avoid this problem, unless you purposely want to fall through to a
less specific match.

Include Statements

Include statements allow us to split up the functionality in our dialplan into smaller chunks, and
then have Asterisk search multiple contexts for a dialed extension. Most commonly, this
functionality is used to provide security boundaries between different classes of callers.

It is important to remember that when calls come into the Asterisk dialplan, they get directed to a
particular context by the channel driver. Asterisk then begins looking for the dialed extension in
the context specified by the channel driver. By using include statements, we can include other
contexts in the search for the dialed extension.

Asterisk supports two different types of include statements: regular includes and time-based
includes.

Include Statements Basics

To set the stage for our explanation of include statements, let's say that we want to organize our
dialplan and create a new context called [docs:features]. We'll leave our extensions 6001 and

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

6002 for Alice and Bob in the [docs:users] context, and place extensions such as 6500 in the
new [docs:features] context. When calls come into the users context and doesn't find a
matching extension, the include statement tells Asterisk to also look in the new [docs:features]
context.

The syntax for an include statement is very simple. You simply write include => and then the
name of the context you'd like to include from the existing context. If we reorganize our dialplan
to add a [docs:features] context, it might look something like this:

[users]
i ncl ude => features

exten => 6001, 1, Di al (SI P/ denp-al i ce, 20)
same => n, Voi ceMai | (6001@m deno, u)

exten => 6002, 1, Di al (SI P/ denp- bob, 20)
same => n, Voi ceMai | (6002@m deno, u)

[features]

exten => 6000, 1, Answer (500)
same => n, Pl ayback(hel | o-wor| d)
same => n, Hangup()

exten => 6500, 1, Answer (500)
same => n, Voi ceMai | Mai n(@ m deno)

@ Location of Include Statements
Please note that in the example above, we placed the include statement before extensions 6001 and 6002. It could have just as
well come after. Asterisk will always try to find a matching extension in the current context first, and only follow the include
statement to a new context if there isn't anything that matches in the current context.

Using Include Statements to Create Classes of Service

Now that we've shown the basic syntax of include statements, let's put some include statements
to good use. Include statements are often used to build chains of functionality or classes of
service. In this example, we're going to build several different contexts, each with its own type of
outbound calling. We'll then use include statements to chain these contexts together.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

i Numbering Plans
The examples in this section use patterns designed for the North American Number Plan, and may not fit your individual
circumstances. Feel free to use this example as a guide as you build your own dialplan.

In these examples, we're going to assuming that a seven-digit number that does not
begin with a zero or a one is a local (non-toll) call. Ten-digit numbers (where neither
the first or fourth digits begin with zero or one) are also treated as local calls. A one,
followed by ten digits (where neither the first or fourth digits begin with zero or one) is
considered a long-distance (toll) call. Again, feel free to modify these examples to fit
your own particular circumstances.

iy Outbound dialing
These examples assume that you have a SIP provider named provider configured in sip.conf. The examples dial out through
this SIP provider using the SIP/provider/number syntax.
Obviously, these examples won't work unless you setup a SIP provider for outbound calls, or replace this syntax with some
other type of outbound connection. For more information on configuring a SIP provider, see [Section 420. The SIP Protocol]. For
analog connectivity information, see [Section 441. Analog Telephony with DAHDI]. For more information on connectivity via
digital circuits, see [Section 450. Basics of Digital Telephony]

First, let's create a new context for local calls.

[l ocal]
; seven-digit |local numnbers
exten => _NXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; ten-digit [ocal nunbers
exten => _NXXNXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; energency services (911), and other three-digit services
exten => NXX, 1, Di al (S| P/ provi der/ ${ EXTEN})

; if you don't find a match in this context, ook in [users]
i nclude => users

Remember that the variable ${EXTEN} will get replaced with the dialed extension. For example,
if Bob dials 5551212 in the local context, Asterisk will execute the Dial application with
SIP/provider/5551212 as the first parameter. (This syntax means "Dial out to the account named
provider using the SIP channel driver, and dial the number 5551212.)

Next, we'll build a long-distance context, and link it back to the local context with an include
statement. This way, if you dial a local number and your phone's channel driver sends the call to
the longdistance context, Asterisk will search the local context if it doesn't find a matching
pattern in the longdistance context.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[1 ongdi st ance]
; 1+ ten digit |ong-distance nunbers
exten => _1NXXNXXXXXX, 1, Di al (SI P/ provi der/ ${ EXTEN})

; if you don't find a match in this context, ook in [|ocal]
i nclude => 1| ocal

Last but not least, let's add an [docs:international] context. In North America, you dial 011 to
signify that you're going to dial an international number.

[international]
; 1+ ten digit |ong-distance nunbers
exten => 011.,1, Di al (SI P/ provider/ ${ EXTEN})

; if you don't find a match in this context, ook in [|ongdistance]
i ncl ude => | ongdi stance

And there we have it -- a simple chain of contexts going from most privileged (international calls)
down to lease privileged (local calling).

At this point, you may be asking yourself, "What's the big deal? Why did we need to break them
up into contexts, if they're all going out the same outbound connection?” That's a great question!
The primary reason for breaking the different classes of calls into separate contexts is so that we
can enforce some security boundaries.

Do you remember what we said earlier, that the channel drivers point inbound calls at a particular
context? In this case, if we point a phone at the [docs:local] context, it could only make local
and internal calls. On the other hand, if we were to point it at the [docs:international] context, it
could make international and long-distance and local and internal calls. Essentially, we've
created different classes of service by chaining contexts together with include statements, and
using the channel driver configuration files to point different phones at different contexts along
the chain.

Many people find it instructive to look at a visual diagram at this point, so let's draw ourselves a
map of the contexts we've created so far.

Insert graphic showing chain of includes from international through long-distance to local
and to users and features

In this graphic, we've illustrated the various contexts and how they work together. We've also
shown that Alice's phone is pointed at the [docs:international] context, while Bob's phone is
only pointed at the [docs:local] context.

Please take the next few minutes and implement a series of chained contexts into your own

dialplan, similar to what we've explained above. You can then change the configuration for Alice
and Bob (in sip.conf, since they're SIP phones) to point to different contexts, and see what

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

happens when you attempt to make various types of calls from each phone.
Installing Asterisk From Source

One popular option for installing Asterisk is to download the source code and compile it yourself.
While this isn't as easy as using package management or using an Asterisk-based Linux
distribution, it does let you decide how Asterisk gets built, and which Asterisk modules are built.

In this section, you'll learn how to download and compile the Asterisk source code, and get
Asterisk installed.

What to Download?

On a typical system, you'll want to download three components:

® Asterisk
* DAHDI
® libpri

The libpri library allows Asterisk to communicate with ISDN connections. (We'll cover more
about ISDN connections in Section 450.8, "Intro to ISDN PRI and BRI Connections".) While not
always necessary, we recommend you install it on new systems.

The DAHDI library allows Asterisk to communicate with analog and digital telephones and
telephone lines, including connections to the Public Switched Telephone Network, or PSTN. It
should also be installed on new systems, even if you don't immediately plan on using analog or
digital connections to your Asterisk system.

DAHDI

DAHDI stands for Digium Asterisk Hardware Device Interface, and is a set of drivers and utilities
for a number of analog and digital telephony cards, such as those manufactured by Digium. The
DAHDI drivers are independent of Asterisk, and can be used by other applications. DAHDI was
previously called Zaptel, as it evolved from the Zapata Telephony Project.

The DAHDI code can be downloaded as individual pieces (dahdi-linux for the DAHDI drivers,
and dahdi-tools for the DAHDI utilities. They can also be downloaded as a complete package
called dahdi-linux-complete, which contains both the Linux drivers and the utilities.

@ Why is DAHDI split into different pieces?
DAHDI has been split into two pieces (the Linux drivers and the tools) as third parties

have begun porting the DAHDI drivers to other operating systems, such as FreeBSD.
Eventually, we may have dahdi-linux, dahdi-freebsd, and so on.

The current version of libpri, DAHDI, and Asterisk can be downloaded from
http://downloads.digium.com/pub/telephony/.

System Requirements

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://downloads.digium.com/pub/telephony/

In order to compile and install Asterisk, you'll need to install a C compiler and a number of
system libraries on your system.

® Compiler
® System Libraries

Compiler

The compiler is a program that takes source code (the code written in the C programming

language in the case of Asterisk) and turns it into a program that can be executed. While any C
compiler should be able to compile the Asterisk code, we strongly recommend that you use the
GCC compiler. Not only is it the most popular free C compiler on Linux and Unix systems, but it's
also the compiler that the Asterisk developers are using.

If the GCC compiler isn't already installed on your machine, simply use appropriate package
management system on your machine to install it. You'll also want to install the C++ portion of
GCC as well, as certain Asterisk modules will use it.

System Libraries

In addition to the C compiler, you'll also need a set of system libraries. These libraries are used
by Asterisk and must be installed before you can compile Asterisk. On most operating systems,
you'll need to install both the library and it's corresponding development package.

@ Development libraries

For most operating systems, the development packages will have -dev or -devel on
the end of the name. For example, on a Red Hat Linux system, you'd want to install
both the "openssl|" and "openssl-devel" packages.

A list of libraries you'll need to install include:

OpenSSL

ncurses

newt

libxml2

Kernel headers (for building DAHDI drivers)

We recommend you use the package management system of your operating system to install
these libraries before compiling and installing libpri, DAHDI, and Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

@ Help Finding the Right Libraries

If you're installing Asterisk 1.6.1.0 or later, it comes with a shell script called
install_prereq.sh in the contrib/scripts sub-directory. If you run install_prereq test, it
will give you the exact commands to install the necessary system libraries on your
operating system. If you run install_prereq install, it will attempt to download and
install the prerequisites automatically.

Untarring the Source

When you download the source for libpri, DAHDI, and Asterisk you'll typically end up with files
with a .tar.gz or .tgz file extension. These files are affectionately known as tarballs. The nhame
comes from the tar Unix utility, which stands for tape archive. A tarball is a collection of other files
combined into a single file for easy copying, and then often compressed with a utility such as
GZip.

To extract the source code from the tarballs, we'll use the tar command. The commands below
assume that you've downloaded the tarballs for libpri, DAHDI, and Asterisk to the /usr/local/src
directory on a Linux machine. (You'll probably need to be logged in as the root user to be able to
write to that directory.) We're also going to assume that you'll replace the letters X, Y, and Z with
the actual version numbers from the tarballs you downloaded. Also please note that the
command prompt may be slightly different on your system than what we show here. Don't worry,
the commands should work just the same.

First, we'll change to the directory where we downloaded the source code:

[root @erver ~]# cd /usr/local/src

Next, let's extract the source code from each tarball using the tar command. The -zxvf
parameters to the tar command tell it what we want to do with the file. The z option tells the
system to unzip the file before continuing, the x option tells it to extract the files from the tarball,
the v option tells it to be verbose (write out the name of every file as it's being extracted, and the f
option tells the tar command that we're extracting the file from a tarball file, and not from a tape.

[root @erver src]# tar -zxvf libpri-1.X Y.tar.gz
[root @erver src]# tar -zxvf dahdi-I|inux-conplete-2. X Y+2. X.Y.tar.gz

[root @erver src]# tar -zxvf asterisk-1.6.X Y.tar.gz

You should now notice that a new sub-directory was created for each of the tarballs, each
containing the extracted files from the corresponding tarball. We can now compile and install
each of the components.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Building and Installing LibPRI

First, let's compile and install libpri. Again, we'll assume that you'll replace the letters X, Y, and Z
with the actual version numbers from the tarballs you downloaded.

[root @erver src]# cd libpri-1.XY

This command changes directories to the libpri source directory.

[root @erver libpri-1.X Y]# make

This command compiles the libpri source code into a system library.

[root @erver |ibpri-1.X Y]# make install

This command installs the libpri library into the proper system library directory

Building and Installing DAHDI

Now that we have libpri installed, let's install DAHDI. On Linux, we will use the
DAHDI-linux-complete tarball, which contains both the DAHDI Linux drivers as well as the DAHDI

tools. Again, we're assuming that you've untarred the tarball in the /usr/local/src directory, and
that you'll replace X and Y with the appropriate version numbers.

[root @erver src]# cd dahdi-Iinux-conplete-2. X Y+2. X. Y

[root @erver dahdi-Ilinux-conmplete-2. X Y+2. X Y] # nmake

[root @erver dahdi-Iinux-conplete-2. X Y+2. X. Y]# nake install
[root @erver dahdi-Iinux-conplete-2. X Y+2. X. Y] # nmake config

Checking Asterisk Requirements

Now it's time to compile and install Asterisk. Let's change to the directory which contains the
Asterisk source code.

[root @erver dahdi-Iinux-conplete-2. X Y+2. X Y]# cd
fusr/local/src/asterisk-1.6. XY

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Next, we'll run a command called ./configure, which will perform a number of checks on the
operating system, and get the Asterisk code ready to compile on this particular server.

[root @erver asterisk-1.6.X Y]# ./configure

This will run for a couple of minutes, and warn you of any missing system libraries or other
dependencies. Upon completion, you should see a message that looks similar to the one shown
below. (Obviously, your host CPU type may be different than the below.)

. $EPPPHEESS$$$=.
.$7%7. . L T$$7: .
.$7%7. . LT$$7: .
.88 , $7.7
. $7. 7$$$$. 8877
.. $$. $$$$$. 887
A 2. $$$$$ 2. 7$3$$.
$. 8. P87, $BEET7 . 7$$3. . $$3.
LT77. . PEESES77SSS77$$$$S7. $$8,
$$$~ . T3SSSTTSS$5$$$7. . $$3.
. $$7 L TS33$$$$7: ?7$$$.
$$$ 2733333333331 . 3887
$$$ IVARERRRRRRRRRRRR 1 $$3.
$$$ SERERRFARRBRRRRREY . $$89.
$$$ $$$ TEEE7 . $$% . $$3.
$$$% $$$$7 . $$9.
7$$%$7 7$$%$ 7$$$
$$$$% $$$
$$$%$7. $$ (T™
$3$$$$$. 7335888 $%
$EEFIPPPSSS7$3$$3555S. $3$$5$
PP TSS$$$$$S.
configure: Package configured for:
configure: OS type : |inux-gnu
configure: Host CPU : x86_64
configure: build-cpu:vendor:os: x86_64 : unknown : |inux-gnu
configure: host-cpu:vendor:os: x86_64 : unknown : |inux-gnu

Cached Data
The ./configure command caches certain data to speed things up if it's invoked multiple times. To clear all the cached data, you
can use the following command to completely clear out any cached data from the Asterisk build system.

[root @erver asterisk-1.6.X Y]# nake distclean

Using Menuselect to Select Asterisk Options

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The next step in the build process is to tell Asterisk which modules[docs:1] to compile and install,
as well as set various compiler options. These settings are all controlled via a menu-driven
system called menuselect. To access the menuselect system, type:

[root @erver asterisk-1.6.X Y]# make nenusel ect

' Terminal Window
Your terminal window size must be at least eighty characters wide and twenty-one lines high, or menuselect will not work.
Instead, you'll get an error message stating

Terminal nust be at |east 80 x 21.

! Asterisk 1.8+

Ternminal nust be at |east 80 x 27.

The menuselect menu should look like the screen-shot below. On the left-hand side, you have a
list of categories, such as Applications, Channel Drivers, and PBX Modules. On the right-hand
side, you'll see a list of modules that correspond with the select category. At the bottom of the
screen you'll see two buttons. You can use the Tab key to cycle between the various sections,
and press the Enter key to select or unselect a particular module. If you see [docs:] next to a
module name, it signifies that the module has been selected. If you see *XXX next to a
module name, it signifies that the select module cannot be built, as one of its dependencies is
missing. In that case, you can look at the bottom of the screen for the line labeled Depends
upon: for a description of the missing dependency.

When you're first learning your way around Asterisk on a test system, you'll probably want to
stick with the default settings in menuselect. If you're building a production system, however, you
may not wish to build all of the various modules, and instead only build the modules that your
system is using.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Applications

Call Detail Recording
Channel Drivers

Codec Translators
Format Interpreters
Dialplan Functions
PBX Modules

Resource Modules

Test Modules

Can use: N/A
Conflicts with: N/A

Depends on: res_adsi(M)

Asterisk Module and Build Option Selection |

[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]

Asterisk ADSI Programming Application

app_adsiprog
app_alarmreceliver
app_amd
app_authenticate
app_cdr
app_chanisavail
app_channelredirect

app_chanspy
app_controlplayback

— EEEEsEsEIEsE e o

<ENTER> toggles selection | <Fl2> saves & exits | <ESC> exits without save

@ Easier Debugging of Asterisk Crashes

If you're finding that Asterisk is crashing on you, there's a setting in menuselect that
will help provide additional information to the Asterisk developers. Go into
menuselect, select the the Compiler Flags section (you'll need to scroll down in the
left-hand list), and select the DONT_OPTIMIZE setting. Then rebuild Asterisk as
shown below. While the Asterisk application will be slightly larger, it will provide

additional debugging symbols in the event of a crash.

We should also inform people that the sound prompts are selected in menuselect as well

When you are finished selecting the modules and options you'd like in menuselect, press F12 to
save and exit, or highlight the Save and Exit button and press enter.

Building and Installing Asterisk

Now we can compile and install Asterisk. To compile Asterisk, simply type make at the Linux

command line.

[root @erver asterisk-1.6.X Y]# make

The compiling step will take several minutes, and you'll see the various file names scroll by as
they are being compiled. Once Asterisk has finished compiling, you'll see a message that looks

like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Fo-o- - Asterisk Build Complete --------- +

+ Asterisk has successfully been built, and +
+ can be installed by running: +
+ +
+ make i nstall +
Fom e oo e e e e e e e e e e memeaoa oo +
R LR Asterisk Build Complete --------- +

As the message above suggests, our next step is to install the compiled Asterisk program and
modules. To do this, use the make install command.

[root @erver asterisk-1.6.X Y]# make install

When finished, Asterisk will display the following warning:

+---- Asterisk Installation Conplete ------- +
+ +
+ YOU MUST READ THE SECURI TY DOCUMENT +
+ +
+ Asterisk has successfully been installed. +
+ If you would Iike to install the sanple +
+ configuration files (overwiting any +
+ existing config files), run: +
+ +
+ make sanpl es +
+ +
S +
+---- Asterisk Installation Conplete ------- +

@ Security Precautions
As the message above suggests, we very strongly recommend that you read the security documentation before continuing with
your Asterisk installation. Failure to read and follow the security documentation can leave your system vulnerable to a number of
security issues, including toll fraud.

If you installed Asterisk from a tarball (as shown above), the security information is
located in a PDF file named asterisk.pdfin the tex/ sub-directory of the source code. If
that file doesn't exist, please install the rubber application on your system, and then

type:

[root @erver asterisk-1.6.X Y]# make pdf

Installing Sample Files

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

To install a set of sample configuration files for Asterisk, type:

[root @erver asterisk-1.6.X Y]# make sanpl es

Any existing sample files which have been modified will be given a .old file extension. For
example, if you had an existing file named extensions.conf, it would be renamed to
extensions.conf.old and the sample dialplan would be installed as extensions.conf.

Installing Initialization Scripts

Now that you have Asterisk compiled and installed, the last step is to install the initialization
script, or initscript. This script starts Asterisk when your server starts, and can be used to stop or
restart Asterisk as well. To install the initscript, use the make config command.

[root @erver asterisk-1.6.X Y]# make config

As your Asterisk system runs, it will generate logfiles. It is recommended to install the logrotation
script in order to compress and rotate those files, to save disk space and to make searching
them or cataloguing them easier. To do this, use the make install-logrotate command.

[root @erver asterisk-1.6.X Y]# make install-1logrotate

Validating Your Installation

Before continuing on, let's check a few things to make sure your system is in good working order.
First, let's make sure the DAHDI drivers are loaded. You can use the Ismod under Linux to list all
of the loaded kernel modules, and the grep command to filter the input and only show the
modules that have dahdi in their name.

[root @erver asterisk-1.6.X Y]# |Isnod | grep dahdi

If the command returns nothing, then DAHDI has not been started. Start DAHDI by running:

[root @erver asterisk-1.6. X Y]# /etc/init.d/ dadhi start

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

@ Different Methods for Starting Initscripts

Many Linux distributions have different methods for starting initscripts. On most Red
Hat based distributions (such as Red Hat Enterprise Linux, Fedora, and CentOS) you
can run:

[root @erver asterisk-1.6.X Y]# service dahdi start

Distributions based on Debian (such as Ubuntu) have a similar command, though it's
not commonly used:

[root @erver asterisk-1.6.X Y]# invoke-rc.d dahdi start

If you have DAHDI running, the output of Ismod | grep dahdi should look something like the
output below. (The exact details may be different, depending on which DAHDI modules have
been built, and so forth.)

[root @erver asterisk-1.6. X Y]# |Isnod | grep dahdi
dahdi _dunmy 4288 0

dahdi _transcode 7928 1 wctc4xxp

dahdi _voi cebus 40464 2 wct dnR4xxp, wet el2xp

dahdi 196544 12
dahdi _dunmmy, wet dnR4xxp, wet ellxp, wet 1xxp, wet el2xp, wet 4xxp
crc_ccitt 2096 1 dahdi

Now that DAHDI is running, you can run dahdi_hardware to list any DAHDI-compatible devices
in your system. You can also run the dahdi_tool utility to show the various DAHDI-compatible
devices, and their current state.

To check if Asterisk is running, you can use the Asterisk initscript.

[root @erver asterisk-1.6.X Y]# /etc/init.d/ asterisk status
asterisk is stopped

To start Asterisk, we'll use the initscript again, this time giving it the start action:

[root @erver asterisk-1.6. X Y]# /etc/init.d/ asterisk start
Starting asterisk:

When Asterisk starts, it runs as a background service (or daemon), so you typically won't see any
response on the command line. We can check the status of Asterisk and see that it's running
using the command below. (The process identifier, or pid, will obviously be different on your

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

system.)

[root @erver asterisk-1.6.X Y]# /etc/init.d/ asterisk status
asterisk (pid 32117) is running...

And there you have it! You've compiled and installed Asterisk, DAHDI, and libpri from source
code.

Getting Started with Asterisk

In this section, we'll show you how to get started with Asterisk, and how to get around on the
Asterisk command-line interface (commonly abbreviated as CLI). We'll also show you how to
troubleshoot common problems that you might encounter when first learning Asterisk

Connecting to the CLI

First, let's show you how to connect to the Asterisk command-line interface. As you should recall
from the installation, Asterisk typically runs in the background as a service or daemon. If the
Asterisk service is already running, type the command below to connect to its command-line
interface.

[root @erver ~]# asterisk -r

The -r parameter tells the system that you want to re-connect to the Asterisk service. If the
reconnection is successful, you'll see something like this:

[root @erver ~]# asterisk -r

Asterisk version, Copyright (C) 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @i gi um conp

Asterisk comes with ABSOLUTELY NO WARRANTY; type 'core show
warranty' for details.

This is free software, with conponents |icensed under the G\U
General Public

Li cense version 2 and other |icenses; you are welcone to
redistribute it under

certain conditions. Type 'core show |icense' for details.

to Asterisk version currently running on server (pid 11187)
server*CLI >

Notice the *CLI> text? That's your Asterisk command-line prompt. All of the Asterisk CLI
commands take the form of module action parameters.... For example, type core show
uptime to see how long Asterisk has been running.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

server*CLlI > core show uptine
Systemuptinme: 1 hour, 34 mnutes, 17 seconds
Last reload: 1 hour, 34 mnutes, 17 seconds

You can use the built-in help to get more information about the various commands. Simply type
core show help at the Asterisk prompt for a full list of commands, or core show help command
for help on a particular command.

If you'd like to exit the Asterisk console and return to your shell, just use the quit command from
the CLI. Such as:

server*CLI > quit
@ Executing Command Outside Of CLI
You can execute an Asterisk command from outside the CLI:

$ asterisk -rx "rel oad"

$ asterisk -rx "help" | grep -i "sip"

Stopping and Restarting Asterisk

There are four common commands related to stopping the Asterisk service. They are:

1. core stop now - This command stops the Asterisk service immediately, ending any calls in progress.

2. core stop gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk stops.

3. core stop when convenient - This command waits until Asterisk has no calls in progress, and then it stops the service. It does not
prevent new calls from entering the system.

There are three related commands for restarting Asterisk as well.

1. corerestart now - This command restarts the Asterisk service immediately, ending any calls in progress.

2. core restart gracefully - This command prevents new calls from starting up in Asterisk, but allows calls in progress to continue. When all
the calls have finished, Asterisk restarts.

3. core restart when convenient - This command waits until Asterisk has no calls in progress, and then it restarts the service. It does not
prevent new calls from entering the system.

There is also a command if you change your mind.

® core abort shutdown - This command aborts a shutdown or restart which was previously initiated with the gracefully or when convenient
options.

Changing the Verbose and Debug Levels

Asterisk has two different classes of messages that appear in the command-line interface. The
first class is called verbose messages. Verbose messages give information about the calls on
the system, as well as notices, warnings, and errors. Verbose messages are intended for
Asterisk administrators to be able to better manage their systems.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Asterisk allows you to control the verbosity level of the command-line interface. At a verbosity
level of zero, you'll receive minimal information about calls on your system. As you increase the
verbosity level, you'll see more and more information about the calls. For example, if you set the
verbosity level to three or higher, you'll see each step a call takes as it makes its way through the
dialplan. There are very few messages that only appear at verbosity levels higher than three.

To change the verbosity level, use the CLI command core set verbose, as shown below:

server*CL|I > core set verbose 3
Verbosity was 0 and is now 3

You can also increase (but not decrease) the verbosity level when you connect to the Asterisk
CLI from the Linux prompt, by using one or more -v parameters to the asterisk application. For
example, this would connect to the Asterisk CLI and set the verbosity to three (if it wasn't already
three or higher), because we added three -v parameters:

[root @erver ~]# asterisk -vvvr

The second class of system messages is known as debug messages. These messages are
intended for Asterisk developers, to give information about what's happening in the Asterisk
program itself. They're often used by developers when trying to track down problems in the code,
or to understand why Asterisk is behaving in a certain manner.

To change the debugging level, use the CLI command core set debug, as shown below:

server*CLlI > core set debug 4
Core debug was 0 and is now 4

You can also increase (but not decrease) the debugging level when you connect to the Asterisk
CLI from the Linux prompt. Simply add one or more -d parameters to the asterisk application.

[root @erver ~]# asterisk \-ddddr

Verbose and Debug Levels
Please note that the verbose and debug levels are global settings, and apply to all of Asterisk, not just your command-line
interface.

We recommend that you set your verbosity level to three while learning Asterisk, so
that you can get a feel for what is happening as calls are processed. On a busy
production system, however, you'll want to set the verbosity level lower. We also
recommend that you use debug messages sparingly, as they tend to be quite
verbose and can affect call volume on busy systems.

Simple CLI Tricks

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

There are a couple of tricks that will help you on the Asterisk command-line interface. The most
popular is tab completion. If you type the beginning of a command and press the Tab key,
Asterisk will attempt to complete the name of the command for you, or show you the possible
commands that start with the letters you have typed. For example, type co and then press the
Tab key on your keyboard.

server*CLI > co[Tab]
config core
server*CLI > co

Now press the r key, and press tab again. This time Asterisk completes the word for you, as core
is the only command that begins with cor. This trick also works with sub-commands. For
example, type core show and press tab. (You may have to press tab twice, if you didn't put a
space after the word show.) Asterisk will show you all the sub-commands that start with core
show.

server*CLI > core show [Tab]

application applications calls channel
channel s channel type channel t ypes codec
codecs config file function
functions hel p hi nt hints

i mage i cense profile settings
swi t ches sysinfo t askprocessors threads
transl ation uptinme version warranty

server*CL|I > core show

Another trick you can use on the CLI is to cycle through your previous commands. Asterisk
stores a history of the commands you type and you can press the up arrow key to cycle through
the history.

If you type an exclamation mark at the Asterisk CLI, you will get a Linux shell. When you exit the
Linux shell (by typing exit or pressing Ctrl+D), you return to the Asterisk CLI. You can also type
an exclamation mark and a Linux command, and the output of that command will be shown to
you, and then you'll be returned to the Asterisk CLI.

server*CLI > ! whoam
r oot
server*CLI >

As you can see, there's a wealth of information available from the Asterisk command-line
interface, and we've only scratched the surface. In later sections, we'll go into more details about
how to use the command-line interface for other purposes.

Troubleshooting

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

If you're able to get the command-line examples above working, feel free to skip this section.
Otherwise, let's look at troubleshooting connections to the Asterisk CLI.

The most common problem that people encounter when learning the Asterisk command-line
interface is that sometimes they're not able to connect to the Asterisk service running in the
background. For example, let's say that Fred starts the Asterisk service, but then isn't able to
connect to it with the CLI:

[root @erver ~]# service asterisk start

Starting asterisk: [OK]
[root @erver ~]# asterisk -r

Asterisk version, Copyright (C 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @i gi um conp

to connect to renote asterisk (does /var/run/asterisk/asterisk.ctl
exi st ?)

What does this mean? It most likely means that Asterisk did not remain running between the time
that the service was started and the time Fred tried to connect to the CLI (even if it was only a
matter of a few seconds.) This could be caused by a variety of things, but the most common is a
broken configuration file.

To diagnose Asterisk start-up problems, we'll start Asterisk in a special mode, known as console
mode. In this mode, Asterisk does not run as a background service or daemon, but instead runs
directly in the console. To start Asterisk in console mode, pass the -c parameter to the asterisk
application. In this case, we also want to turn up the verbosity, so we can see any error
messages that might indicate why Asterisk is unable to start.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[root @erver ~]# asterisk -vvvc

Asteri sk version, Copyright (C 1999 - 2010 Digium Inc. and others.
Created by Mark Spencer <markster @i gi um conp

Asterisk cones with ABSOLUTELY NO WARRANTY; type 'core show
warranty' for details.

This is free software, with conponents |icensed under the G\NU
Ceneral Public

Li cense version 2 and other licenses; you are welcone to
redistribute it under

certain conditions. Type 'core show |icense' for details.

== Parsing '/etc/asterisk/asterisk.conf": == Found
== Parsing '/etc/asterisk/extconfig.conf': == Found
== Parsing '/etc/asterisk/logger.conf': == Found
== Parsing '/etc/asterisk/asterisk.conf": == Found
Asteri sk Dynam c Loader Starting:
== Parsing '/etc/asterisk/nodul es.conf’: == Found

Carefully look for any errors or warnings that are printed to the CLI, and you should have enough
information to solve whatever problem is keeping Asterisk from starting up.

& Running Asterisk in Console Mode
We don't recommend you use Asterisk in console mode on a production system, but simply use it for debugging, especially
when debugging start-up problems. On production systems, run Asterisk as a background service.

Asterisk Architecture

From an architectural standpoint, Asterisk is made up of many different modules. This modularity
gives you an almost unlimited amount of flexibility in the design of an Asterisk-based system. As
an Asterisk administrator, you have the choice on which modules to load. Each module that you
loads provides different capabilities to the system. For example, one module might allow your
Asterisk system to communicate with analog phone lines, while another might add call reporting
capabilities. In this section, we'll discuss the various types of modules and the capabilities they
provide.

Asterisk Architecture, The Big Picture

Before we dive too far into the various types of modules, let's first take a step back and look at
the overall architecture of Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

caEaracs

Command P BX Manager
Line Interface Interface

Applications esources
w
DAL

Audio &

File System
Video Format Config.
Codecs Drivers Drivers

(o0] 34
Drivers

Asterisk Architecture
We need to add CEL and Bridge modules to this picture, and take CLI and Manager out for now

The heart of any Asterisk system is the core. The PBX core is the essential component that
takes care of bridging calls. The core also takes care of other items like reading the configuration
files and loading the other modules. We'll talk more about the core below, but for now just
remember that all the other modules connect to it.

From a logistical standpoint, these modules are typically files with a .so file extension, which live
in the Asterisk modules directory (which is typically /usr/lib/asterisk/modules). When Asterisk
starts up, it loads these files and adds their functionality to the system.

i A Plethoraof Modules
Take just a minute and go look at the Asterisk modules directory on your system. You should find a wide variety of modules. A
typical Asterisk system has over one hundred fifty different modules!

The core also contains the dialplan, which is the logic of any Asterisk system. The dialplan
contains a list of instructions that Asterisk should follow to know how to handle incoming and
outgoing calls on the system.

Asterisk modules which are part of the core have a file name that look like pbx_XxxxxXx.so.
Types of Asterisk Modules

There are many different types of modules, many of which are shown in the diagram above.

® Channel Drivers

At the top of the diagram, we show channel drivers. Channel drivers communicate with devices
outside of Asterisk, and translate that particular signaling or protocol to the core.

® Dialplan Applications

Applications provide call functionality to the system. An application might answer a call, play a
sound prompt, hang up a call, and so forth.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Dialplan Functions

Functions are used to retrieve or set various settings on a call. A function might be used to set
the Caller ID on an outbound call, for example.

® Resources

As the name suggests, resources provide resources to Asterisk. Common examples of resources
include music on hold and call parking.

®* CODECs

A CODEC (which is an acronym for COder/DECoder) is a module for encoding or decoding
audio or video. Typically codecs are used to encode media so that it takes less bandwidth.

®* File Format Drivers

File format drivers are used to save media to disk in a particular file format, and to convert those
files back to media streams on the network.

® Call Detail Record (CDR) Drivers

CDR drivers write call logs to a disk or to a database.

® Call Event Log (CEL) Drivers

Call event logs are similar to call detail records, but record more detail about what happened
inside of Asterisk during a particular call.

® Bridge Drivers

Bridge drivers are used by the bridging architecture in Asterisk, and provide various methods of
bridging call media between participants in a call.

Now let's go into more detail on each of the module types.
Channel Driver Modules

All calls from the outside come through a channel driver before reaching the core, and all
outbound calls go through a channel driver on their way to the external device.

The SIP channel driver, for example, communicates with external devices using the SIP protocol.
It translates the SIP signaling into the core. This means that the core of Asterisk is signaling
agnostic. Therefore, Asterisk isn't just a SIP PBX, it's a multi-protocol PBX.

For more information on the various channel drivers, see [Section 400. Channel Drivers and
External Connectivity].

All channel drivers have a file name that look like chan_xxxxx.so, such as chan_sip.so or
chan_dahdi.so.

Dialplan Application Modules

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The application modules provide call functionality to the system. These applications are then
scripted sequentially in the dialplan. For example, a call might come into Asterisk dialplan, which
might use one application to answer the call, another to play back a sound prompt from disk, and
a third application to allow the caller to leave voice mail in a particular mailbox.

For more information on dialplan applications, see Dialplan Fundamentals.

All application modules have file names that looks like app_xxxxx.so, such as
app_voicemail.so.

Dialplan Function Modules

Dialplan functions are somewhat similar to dialplan applications, but instead of doing work on a
particular channel or call, they simply retrieve or set a particular setting on a channel, or perform
text manipulation. For example, a dialplan function might retrieve the Caller ID information from
an incoming call, filter some text, or set a timeout for caller input.

For more information on dialplan functions, see [PBX Features].

All dialplan application modules have file names that looks like func_xxxxx.so, such as
func_callerid.so.

Resource Modules

Resources provide functionality to Asterisk that may be called upon at any time during a call,
even while another application is running on the channel. Resources are typically used of
asynchronous events such as playing hold music when a call gets placed on hold, or performing
call parking.

Resource modules have file names that looks like res_xxxxx.so, such as res_musiconhold.so.

Codec Modules

CODEC modules have file names that look like codec_xxxxx.so0, such as codec_alaw.so and
codec_ulaw.so.

CODECs represent mathematical algorithms for encoding (compressing) and decoding
(decompression) media streams. Asterisk uses CODEC modules to both send and recieve media
(audio and video). Asterisk also uses CODEC modules to convert (or transcode) media streams
between different formats.

CODEC modules have file names that look like codec_xxxxx.so, such as codec_alaw.so and
codec_ulaw.so.

Asterisk is provided with CODEC modules for the following media types:

®* ADPCM, 32kbit/s

® G.711 alaw, 64kbit/s
® G.711 ulaw, 64kbit/s
® (G.722, 64kbit/s

® (5.726, 32kbit/s

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

* GSM, 13kbit/s
® LPC-10, 2.4kbit/s

If the Speex (www.speex.org) development libraries are detected on your system when Asterisk
is built, a CODEC module for Speex will also be installed.

If the iLBC (www.ilbcfreeware.org) development libraries are detected on your system when
Asterisk is built, a CODEC module for iLBC will also be installed.

Support for the patent-encumbered G.729A or G.723.1 CODECs is provided by Digium on a
commercial basis through both software and hardware products. For more information about
purchasing licenses or hardware to use the G.729A or G.723.1 CODECs with Asterisk, please
see Digium's website.

Support for Polycom's patent-encumbered but free G.722.1 Siren7 and G.722.1C Sirenl14
CODECs can be enabled in Asterisk by downloading the binary CODEC modules from Digium's
website.

For more detailed information on CODECs, see [CODECs].

File Format Drivers

Add a list of the file formats that Asterisk supports, then point them at the module in section 400
that goes into more detail?

Asterisk uses file format modules to take media (such as audio and video) from the network and
save them on disk, or retrieve said files from disk and convert them back to a media stream.
While often related to CODECS, there may be more than one available on-disk format for a
particular CODEC.

File format modules have file names that look like format_xxxxx.so, such as format_wav.so
and format_jpeg.so.

Add a list of the file formats that Asterisk supports, then point them at the module in section 400
that goes into more detail?

Call Detail Record (CDR) Drivers

CDR modules are used to store call detail records in a variety of formats. Popular storage
mechanisms include comma-separated value (CSV) files, as well as relational databases such
as PostgreSQL. Call detail records typically contain one record per call, and give details such as
who made the call, who answered the call, the amount of time spent on the call, and so forth.
For more information on call detail records, see [Section 370. Call Detail Records].

Call detail record modules have file names that look like cdr_xxxxx.so, such as cdr_csv.so and
cdr_pgsql.so.

Call Event Log (CEL) Driver Modules

Call Event Logs record the various actions that happen on a call. As such, they are typically more
detailed that call detail records. For example, a call event log might show that Alice called Bob,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.speex.org
http://www.ilbcfreeware.org/

that Bob's phone rang for twenty seconds, then Bob's mobile phone rang for fifteen seconds, the
call then went to Bob's voice mail, where Alice left a twenty-five second voicemail and hung up
the call. The system also allows for custom events to be logged as well.

For more information about Call Event Logging, see [Call Event Logging].

Call event logging modules have file names that look like cel_xxxxx.so, such as cel_custom.so
and cel_adaptive_odbc.so.

Bridging Modules

Beginning in Asterisk 1.6.2, Asterisk introduced a new method for bridging calls together. It relies
on various bridging modules to control how the media streams should be mixed for the
participants on a call. The new bridging methods are designed to be more flexible and more
efficient than earlier methods.

Bridging modules have file names that look like bridge_xxxxx.so, such as bridge_simple.so
and bridge_multiplexed.so.

Call Flow and Bridging Model

Now that you know about the various modules that Asterisk uses, let's talk about the ways that
calls flow through an Asterisk system. To explain this clearly, let's say that Alice wants to talk to
Bob, and they both have SIP phones connected to their Asterisk system. Let's see what
happens!

Should we add a graphic to help explain the call flow model?

. Alice dials extension 6002, which is Bob's extension on the Asterisk system.

A SIP message goes from Alice's phone to the SIP channel driver in Asterisk

. The SIP channel driver authenticates the call. If Alice's phone does not provide the proper credentials, Asterisk rejects the call.

. At this point, we have Alice's phone communicating with Asterisk.

. Now the call goes from the SIP channel driver into the core of Asterisk. Asterisk looks for a set of instructions to follow for extension 6002
in the dialplan.

. Extension 6002 in the dialplan tells Asterisk to call Bob's phone

. Asterisk makes a call out through the SIP channel driver to Bob's phone.

. Bob answers his phone.

. Now we have two independent calls on the Asterisk system: one from Alice, and to Bob. Asterisk now bridges the audio between these
two calls (known as channels in Asterisk parlance).

10. When one channel hangs up, Asterisk signals the other channel to hang up.

GRWN PR

© 00 ~NO®

And there we have it! We've shown how calls flow from external devices, through the channel
drivers to the core of Asterisk, and back out through the channel drivers to external devices.

Asterisk on (Open)Solaris

Asterisk on Solaris 10 and OpenSolaris

On this page

® Asterisk on Solaris 10 and OpenSolaris
® Digium's Support Status
® Build Notes
® Prerequisites
® LDAP dependencies
® Makefile layouts
® FAX support with SpanDSP
® Gotchas

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Runtime issues
® Build issues

Digium's Support Status

According to the README file from 1.6.2: "Asterisk has also been 'ported' and reportedly runs
properly on other operating systems as well, including Sun Solaris, Apple's Mac OS X, Cygwin,
and the BSD variants." Digium's developers have also been doing a good job of addressing build
and run-time issues encountered with Asterisk on Solaris.

Build Notes

Prerequisites

The following packages are recommend for building Asterisk 1.6 and later on OpenSolaris:

SUNWIibm (math library)

gcc-dev (compiler and several dependencies)

SUNWflexlex (GNU flex)

SUNWGggrp (GNU grep)

SUNW(gsed (GNU sed)

SUNWdoxygen (optional; needed for "make progdocs")
SUNWopenldap (optional; needed for res_config_ldap; see below)
SUNWGgnu-coreutils (optional; provides GNU install; see below)

Caution: installing SUNW gnu packages will change the default application run when the user
types 'sed’ and 'grep' from /usr/bin/sed to /usr/gnu/bin/sed. Just be aware of this change, as there
are differences between the Sun and GNU versions of these utilities.

LDAP dependencies

Because OpenSolaris ships by default with Sun's LDAP libraries, you must install the
SUNWopenldap package to provide OpenLDAP libraries. Because of namespace conflicts, the
standard LDAP detection will not work.

There are two possible solutions:

1. Port res_config_ldap to use only the RFC-specified API. This should allow it to link against Sun's LDAP libraries.
® The problem is centered around the use of the OpenLDAP-specific Idap_initialize() call.

2. Change the detection routines in configure to use OpenSolaris' layout of OpenLDAP.
® This seems doubtful simply because the filesystem layout of SUNWopenldap is so non-standard.

Despite the above two possibilities, there is a workaround to make Asterisk compile with
res_config_ldap.

® Modify the "configure" script, changing all instances of "-lldap" to "-lldap-2.4".
® At the time of this writing there are only 4 instances. This alone will make configure properly detect LDAP availability. But it will
not compile.
® When running make, specify the use of the OpenLDAP headers like this:

"make LDAP_I NCLUDE=-1/usr/i ncl ude/ openl dap"

Makefile layouts
This has been fixed in Asterisk 1.8 and is no longer an issue.

In Asterisk 1.6 the Makefile overrides any usage of --prefix. | suspect the assumptions are from

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

back before configure provided the ability to set the installation prefix. Regardless, if you are
building on OpenSolaris, be aware of this behavior of the Makefile!

If you want to alter the install locations you will need to hand-edit the Makefile. Search for the
string "SunOS" to find the following section:

Define standard directories for various platforns
These apply if they are not redefined in asterisk.conf
i feq ($(OSARCH), SunCs)

ASTETCDI R=/ et c/ asteri sk

ASTLI BDI R=/ opt/ asterisk/lib

ASTVARLI BDI R=/ var/ opt/ asteri sk

ASTDBDI R=$(ASTVARLI BDI R)

ASTKEYDI R=$(ASTVARLI BDI R)

ASTSPOCLDI R=/ var/ spool / ast eri sk

ASTLOGDI R=/ var /| og/ asteri sk

ASTHEADERDI R=/ opt / ast eri sk/ i ncl ude/ asteri sk

ASTBI NDI R=/ opt / ast eri sk/ bi n

ASTSBI NDI R=/ opt / ast eri sk/ sbin

ASTVARRUNDI R=/ var/run/ asteri sk

ASTMANDI R=/ opt / ast eri sk/ man
el se

Note that, despite the comment, these definitions have build-time and run-time implications.
Make sure you make these changes BEFORE you build!

FAX support with SpanDSP

| have been able to get this to work reliably, including T.38 FAX over SIP. If you are running
Asterisk 1.6 note Ticket 16342 if you do not install SpanDSP to the default locations (/usr/include
and /ustr/lib).

There is one build issue with SpanDSP that | need to document (FIXME)

Gotchas
Runtime issues

®* WAV and WAVA49 files are not written correctly (see Ticket 16610)
® 32-bit binaries on Solaris are limited to 255 file descriptors by default. (see http://developers.sun.com/solaris/articles/stdio_256.html)

Build issues

bootstrap.sh does not correctly detect OpenSolaris build tools (see Ticket 16341)

Console documentation is not properly loaded at startup (see Ticket 16688)

Solaris sed does not properly create AEL parser files (see Ticket 16696; workaround is to install GNU sed with SUNWgsed)
Asterisk's provided install script, install-sh, is not properly referenced in the makeopts file that is generated during the build. One
workaround is to install GNU install from the SUNW(gnu-coreutils package. (See Ticket 16781)

Finally, Solaris memory allocation seems far more sensitive than Linux. This has resulted in the
discovery of several previously unknown bugs related to uninitialized variables that Linux

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://issues.asterisk.org/view.php?id=16342
https://issues.asterisk.org/view.php?id=16610
http://developers.sun.com/solaris/articles/stdio_256.html
https://issues.asterisk.org/view.php?id=16341
https://issues.asterisk.org/view.php?id=16688
https://issues.asterisk.org/view.php?id=16696
https://issues.asterisk.org/view.php?id=16781

handled silently. Note that this means, until these bugs are found and fixed, you may get
segfaults.

At the time of this writing | have had a server up and running reasonably stable. However, there
are large sections of Asterisk's codebase | do not use and likely contain more of these
uninitialized variable problems and associated potential segfaults.

Asterisk Command Reference

This page is the top level page for all of the Asterisk applications, functions, manager actions,
and AGI commands that are kept in the XML based documentation that is included with Asterisk.

AGI Commands

AGICommand_ANSWER

ANSWER

Synopsis

Answer channel

Description

Answers channel if not already in answer state. Returns - 1 on channel failure, or O if successful.

Syntax
ANSVEER

Arguments

See Also

AGICommand_HANGUP

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_ASYNCAGI BREAK

ASYNCAGI BREAK

Synopsis

Interrupts Async AGI

Description

Interrupts expected flow of Async AGI commands and returns control to previous source

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

(typically, the PBX dialplan).

Syntax

ASYNCAG BREAK

Arguments

See Also

AGICommand_HANGUP

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_CHANNEL STATUS

CHANNEL STATUS

Synopsis
Returns status of the connected channel.

Description

Returns the status of the specified channelname. If no channel name is given then returns the
status of the current channel.

Return values:

Channel is down and available.
Channel is down, but reserved.
Channel is off hook.

Digits (or equivalent) have been dialed.
Line is ringing.

Remote end is ringing.

Line is up.

Line is busy.

Syntax

CHANNEL STATUS [CHANNELNAME]

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments
® CHANNELNANVE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_CONTROL STREAM FILE

CONTROL STREAM FILE

Synopsis

Sends audio file on channel and allows the listener to control the stream.

Description

Send the given file, allowing playback to be controlled by the given digits, if any. Use double
guotes for the digits if you wish none to be permitted. Returns 0 if playback completes without a
digit being pressed, or the ASCII numerical value of the digit if one was pressed, or - 1 on error
or if the channel was disconnected.

Syntax

CONTROL STREAM FI LE FI LENAVE ESCAPE DI Gl TS [SKI PMB] [FFCHAR]
[REWCHR] [PAUSECHR]

Arguments

FI LENAME - The file extension must not be included in the filename.
ESCAPE_DI A TS

SKI PMB

FFCHAR - Defaults to *

REWCHR - Defaults to #

PAUSECHR

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_DATABASE DEL
DATABASE DEL

Synopsis

Removes database key/value

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Deletes an entry in the Asterisk database for a given family and key.

Returns 1 if successful, 0 otherwise.

Syntax

DATABASE DEL FAM LY KEY

Arguments

® FAM LY
® KEY

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_DATABASE DELTREE
DATABASE DELTREE

Synopsis

Removes database keytree/value
Description

Deletes a family or specific keytree within a family in the Asterisk database.

Returns 1 if successful, O otherwise.

Syntax

DATABASE DELTREE FAM LY [KEYTREE]

Arguments

® FAM LY
® KEYTREE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_ DATABASE GET
DATABASE GET

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Gets database value

Description

Retrieves an entry in the Asterisk database for a given family and key.

Returns 0 if key is not set. Returns 1 if key is set and returns the variable in parenthesis.

Example return code: 200 result=1 (testvariable)

Syntax

DATABASE GET FAM LY KEY

Arguments

® FAM LY
® KEY

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_DATABASE PUT
DATABASE PUT

Synopsis

Adds/updates database value
Description

Adds or updates an entry in the Asterisk database for a given family, key, and value.

Returns 1 if successful, 0 otherwise.

Syntax

DATABASE PUT FAM LY KEY VALUE

Arguments

® FAM LY
® KEY
® VALUE

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_EXEC

EXEC

Synopsis

Executes a given Application

Description
Executes application with given options.

Returns whatever the application returns, or - 2 on failure to find application.

Syntax

EXEC APPLI CATI ON OPTI ONS

Arguments

® APPL| CATI ON
® OPTIONS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_GET DATA

GET DATA

Synopsis
Prompts for DTMF on a channel

Description

Stream the given file, and receive DTMF data.

Returns the digits received from the channel at the other end.

Syntax

GET DATA FILE [TI MEQUT] [MAXDI A TS]
Arguments

® FILE
® TI MEQUT

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® MAXDIG TS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_GET FULL VARIABLE
GET FULL VARIABLE

Synopsis

Evaluates a channel expression

Description

Returns O if variablename is not set or channel does not exist. Returns 1 if variablename is set
and returns the variable in parenthesis. Understands complex variable names and builtin
variables, unlike GET VARIABLE.

Example return code: 200 result=1 (testvariable)

Syntax

GET FULL VARI ABLE VARI ABLENAME [CHANNEL _NAME]

Arguments

® VARl ABLENAVE
® CHANNEL_NAVE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_GET OPTION

GET OPTION

Synopsis
Stream file, prompt for DTMF, with timeout.
Description

Behaves similar to STREAM FILE but used with a timeout option.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

GET OPTI ON FI LENAME ESCAPE_DI G TS [TI MEQUT]

Arguments

® FI LENAVE
® ESCAPE_DIG TS
® TI MEQUT

See Also

AGICommand_STREAM FILE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_GET VARIABLE
GET VARIABLE

Synopsis

Gets a channel variable.

Description

Returns O if variablename is not set. Returns 1 if variablename is set and returns the variable in
parentheses.

Example return code: 200 result=1 (testvariable)

Syntax

GET VAR ABLE VARI ABLENANME

Arguments
® VAR ABLENAVE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_GOSUB
GOSUB

Synopsis

Cause the channel to execute the specified dialplan subroutine.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Cause the channel to execute the specified dialplan subroutine, returning to the dialplan with
execution of a Return().

Syntax

GOSUB CONTEXT EXTENSI ON PRI ORI TY [OPTI ONAL- ARGUMENT]

Arguments

® CONTEXT

® EXTENSI ON

®* PRORITY

® OPTI ONAL- ARGUMENT

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_HANGUP

HANGUP

Synopsis

Hangup a channel.

Description

Hangs up the specified channel. If no channel name is given, hangs up the current channel

Syntax

HANGUP [CHANNEL NANE]

Arguments
® CHANNELNANVE
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r323234.

AGICommand_NOOP
NOOP

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Does nothing.
Description
Does nothing.

Syntax

NOOP

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_RECEIVE CHAR

RECEIVE CHAR

Synopsis

Receives one character from channels supporting it.

Description

Receives a character of text on a channel. Most channels do not support the reception of text.
Returns the decimal value of the character if one is received, or O if the channel does not support
text reception. Returns - 1 only on error/hangup.

Syntax

RECEI VE CHAR TI MEQUT

Arguments
® TI MEQUT - The maximum time to wait for input in milliseconds, or 0 for infinite. Most channels

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_RECEIVE TEXT

RECEIVE TEXT

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Receives text from channels supporting it.

Description

Receives a string of text on a channel. Most channels do not support the reception of text.
Returns - 1 for failure or 1 for success, and the string in parenthesis.

Syntax

RECEI VE TEXT TI MEQUT

Arguments
® Tl MEQUT - The timeout to be the maximum time to wait for input in milliseconds, or O for infinite.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_ RECORD FILE

RECORD FILE

Synopsis
Records to a given file.

Description

Record to a file until a given dtmf digit in the sequence is received. Returns - 1 on hangup or
error. The format will specify what kind of file will be recorded. The timeout is the maximum
record time in milliseconds, or - 1 for no timeout. offset samples is optional, and, if provided, will
seek to the offset without exceeding the end of the file. silence is the number of seconds of
silence allowed before the function returns despite the lack of dtmf digits or reaching timeout.
silence value must be preceded by s= and is also optional.

Syntax

RECORD FI LE FI LENAVE FORMAT ESCAPE DI G TS TI MEOUT [OFFSET_SAMPLES]
[BEEP] [S=SI LENCE]

Arguments

® FI LENAVE
®* FORMAT
® ESCAPE_DI G TS
¢ TI MEQUT
® OFFSET_SAMPLES
® BEEP

® S=SI LENCE

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY ALPHA
SAY ALPHA

Synopsis

Says a given character string.

Description

Say a given character string, returning early if any of the given DTMF digits are received on the
channel. Returns 0 if playback completes without a digit being pressed, or the ASCII numerical
value of the digit if one was pressed or - 1 on error/hangup.

Syntax

SAY ALPHA NUMBER ESCAPE_DI G TS

Arguments

* NUMBER
* ESCAPE DIG TS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY DATE

SAY DATE
Synopsis

Says a given date.

Description

Say a given date, returning early if any of the given DTMF digits are received on the channel.

Returns 0 if playback completes without a digit being pressed, or the ASCII nhumerical value of
the digit if one was pressed or - 1 on error/hangup.

Syntax

SAY DATE DATE ESCAPE_DI G TS

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® DATE - Is number of seconds elapsed since 00:00:00 on January 1, 1970. Coordinated Universal Time (UTC).
® ESCAPE_DI A TS

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY DATETIME

SAY DATETIME

Synopsis

Says a given time as specified by the format given.
Description

Say a given time, returning early if any of the given DTMF digits are received on the channel.
Returns 0 if playback completes without a digit being pressed, or the ASCII numerical value of
the digit if one was pressed or - 1 on error/hangup.

Syntax

SAY DATETI ME TI ME ESCAPE DI Gl TS [FORMAT] [Tl MEZONE]

Arguments

TI ME - Is number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC)

ESCAPE_DI A TS
FORMAT - Is the format the time should be said in. See voi cemai | . conf (defaultsto ABdY 'digits/at' | M).

°
L]
L]
® TI MEZONE - Acceptable values can be found in / usr / shar e/ zonei nf o Defaults to machine default.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY DIGITS
SAY DIGITS

Synopsis

Says a given digit string.
Description

Say a given digit string, returning early if any of the given DTMF digits are received on the
channel. Returns 0 if playback completes without a digit being pressed, or the ASCII numerical
value of the digit if one was pressed or - 1 on error/hangup.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

SAY DI G TS NUMBER ESCAPE_DI G TS

Arguments

* NUMBER
* ESCAPE DIG TS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY NUMBER
SAY NUMBER

Synopsis

Says a given number.

Description

Say a given number, returning early if any of the given DTMF digits are received on the channel.
Returns 0 if playback completes without a digit being pressed, or the ASCII nhumerical value of
the digit if one was pressed or - 1 on error/hangup.

Syntax

SAY NUMBER NUMBER ESCAPE_DI G TS [GENDER]

Arguments

® NUMBER
® ESCAPE_DIG TS
® GENDER

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY PHONETIC

SAY PHONETIC

Synopsis

Says a given character string with phonetics.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Say a given character string with phonetics, returning early if any of the given DTMF digits are
received on the channel. Returns 0 if playback completes without a digit pressed, the ASCII
numerical value of the digit if one was pressed, or - 1 on error/hangup.

Syntax

SAY PHONETI C STRI NG ESCAPE_DI G TS

Arguments

® STRING
® ESCAPE_DI G TS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SAY TIME
SAY TIME

Synopsis

Says a given time.
Description

Say a given time, returning early if any of the given DTMF digits are received on the channel.
Returns 0 if playback completes without a digit being pressed, or the ASCII numerical value of
the digit if one was pressed or - 1 on error/hangup.

Syntax

SAY TI ME TI ME ESCAPE_DI G TS

Arguments

® TI ME - Is number of seconds elapsed since 00:00:00 on January 1, 1970. Coordinated Universal Time (UTC).
® ESCAPE_DIG TS

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SEND IMAGE

SEND IMAGE

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Sends images to channels supporting it.

Description

Sends the given image on a channel. Most channels do not support the transmission of images.
Returns 0 if image is sent, or if the channel does not support image transmission. Returns - 1
only on error/hangup. Image names should not include extensions.

Syntax

SEND | MAGE | MAGE

Arguments
® | MAGE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SEND TEXT

SEND TEXT

Synopsis

Sends text to channels supporting it.

Description

Sends the given text on a channel. Most channels do not support the transmission of text.
Returns 0 if text is sent, or if the channel does not support text transmission. Returns - 1 only on
error/hangup.

Syntax

SEND TEXT TEXT_TO_SEND

Arguments

® TEXT_TO_SEND - Text consisting of greater than one word should be placed in quotes since the command only accepts a single
argument.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AGICommand_SET AUTOHANGUP
SET AUTOHANGUP

Synopsis

Autohangup channel in some time.

Description

Cause the channel to automatically hangup at time seconds in the future. Of course it can be
hungup before then as well. Setting to 0 will cause the autohangup feature to be disabled on this
channel.

Syntax

SET AUTCHANGUP TI ME

Arguments
® TIME

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SET CALLERID

SET CALLERID

Synopsis

Sets callerid for the current channel.
Description

Changes the callerid of the current channel.

Syntax

SET CALLERI D NUMBER

Arguments
® NUMBER
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AGICommand_SET CONTEXT

SET CONTEXT

Synopsis

Sets channel context.

Description

Sets the context for continuation upon exiting the application.

Syntax

SET CONTEXT DESI RED_CONTEXT

Arguments
® DESI RED_CONTEXT

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SET EXTENSION

SET EXTENSION

Synopsis

Changes channel extension.

Description

Changes the extension for continuation upon exiting the application.

Syntax

SET EXTENSI ON NEW EXTENSI ON

Arguments
® NEW EXTENSI ON
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AGICommand_SET MUSIC

SET MUSIC

Synopsis

Enable/Disable Music on hold generator
Description

Enables/Disables the music on hold generator. If class is not specified, then the def aul t music
on hold class will be used.

Always returns 0.

Syntax

SET MUSI C UNNAMED_PARAMETER CLASS

Arguments

® UNNAMED PARAMETER
® Unnaned Option
® Unnaned Option
® CLASS

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SET PRIORITY
SET PRIORITY

Synopsis

Set channel dialplan priority.
Description

Changes the priority for continuation upon exiting the application. The priority must be a valid
priority or label.

Syntax

SET PRIORITY PRIORITY

Arguments
®* PRRORITY

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SET VARIABLE

SET VARIABLE

Synopsis

Sets a channel variable.

Description

Sets a variable to the current channel.

Syntax

SET VARI ABLE VARI ABLENAME VALUE

Arguments

® VARl ABLENAVE
® VALUE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH ACTIVATE GRAMMAR

SPEECH ACTIVATE GRAMMAR

Synopsis
Activates a grammar.

Description

Activates the specified grammar on the speech object.

Syntax

SPEECH ACTI VATE GRAMVAR GRAMVAR_NANME

Arguments
®* GRAMMAR _NAMVE

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH CREATE

SPEECH CREATE

Synopsis

Creates a speech object.

Description

Create a speech object to be used by the other Speech AGI commands.

Syntax

SPEECH CREATE ENG NE

Arguments
®* ENG NE

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH DEACTIVATE GRAMMAR

SPEECH DEACTIVATE GRAMMAR

Synopsis

Deactivates a grammar.

Description

Deactivates the specified grammar on the speech object.

Syntax
SPEECH DEACTI VATE GRAMVAR GRAMVAR NANE

Arguments
® GRAMVAR _NAMVE
See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH DESTROY
SPEECH DESTROY

Synopsis

Destroys a speech object.

Description

Destroy the speech object created by SPEECH CREATE.

Syntax
SPEECH DESTROY

Arguments

See Also

AGICommand_SPEECH CREATE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH LOAD GRAMMAR

SPEECH LOAD GRAMMAR

Synopsis

Loads a grammar.

Description

Loads the specified grammar as the specified name.

Syntax
SPEECH LOAD GRAMVAR GRAMVAR_NAME PATH TO_GRAMVAR

Arguments

® GRAMVAR_NAVE
® PATH TO GRAMMVAR

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH RECOGNIZE

SPEECH RECOGNIZE

Synopsis

Recognizes speech.

Description

Plays back given prompt while listening for speech and dtmf.

Syntax
SPEECH RECOGNI ZE PROVPT Tl MEQUT [OFFSET]

Arguments

* PROWPT
* TI NEOUT
* OFFSET

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH SET
SPEECH SET

Synopsis

Sets a speech engine setting.
Description

Set an engine-specific setting.

Syntax

SPEECH SET NAME VALUE

Arguments

® SPEECH SET
® VALUE

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_SPEECH UNLOAD GRAMMAR
SPEECH UNLOAD GRAMMAR

Synopsis

Unloads a grammar.

Description

Unloads the specified grammar.

Syntax

SPEECH UNLOAD GRAMVAR GRAMVAR_NANME

Arguments
®* GRAMVAR NAMVE
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_STREAM FILE
STREAM FILE

Synopsis

Sends audio file on channel.

Description

Send the given file, allowing playback to be interrupted by the given digits, if any. Returns 0O if
playback completes without a digit being pressed, or the ASCII numerical value of the digit if one
was pressed, or - 1 on error or if the channel was disconnected.

Syntax
STREAM FI LE FI LENAME ESCAPE DI G TS [SAMPLE OFFSET]

Arguments

® FI LENAME - File name to play. The file extension must not be included in the filename.
® ESCAPE DI A TS - Use double quotes for the digits if you wish none to be permitted.
® SAMPLE_OFFSET - If sample offset is provided then the audio will seek to sample offset before play starts.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

AGICommand_CONTROL STREAM FILE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_TDD MODE

TDD MODE

Synopsis

Toggles TDD mode (for the deaf).

Description

Enable/Disable TDD transmission/reception on a channel. Returns 1 if successful, or O if channel
is not TDD-capable.

Syntax

TDD MODE BOCLEAN

Arguments

* BOOLEAN
® on
® off

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_VERBOSE

VERBOSE

Synopsis
Logs a message to the asterisk verbose log.

Description

Sends message to the console via verbose message system. level is the verbose level (1-4).
Always returns 1

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

VERBOSE MESSAGE LEVEL

Arguments

® MESSAGE
® LEVEL

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGICommand_WAIT FOR DIGIT
WAIT FOR DIGIT

Synopsis

Waits for a digit to be pressed.

Description

Waits up to timeout milliseconds for channel to receive a DTMF digit. Returns - 1 on channel
failure, O if no digit is received in the timeout, or the numerical value of the ascii of the digit if one
is received. Use - 1 for the timeout value if you desire the call to block indefinitely.

Syntax

VAIT FOR DA T TI MEQUT

Arguments
® TI MEQUT
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

AGI Command Template Page

AGI COMMAND

Synopsys

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

®* AG COWAND <arg>

Arguments

¢ arg
® something
® options
* a
® option 'a’ is asdfadf
*b
® option 'b' is asdfasdfadf
*c
® option 'c' is for cookie

Runs Dead
Yes / No

See Also

Dialplan Function Template Page
Dialplan Application Template Page
AMI Action Template Page

Import Version

This documentation was imported from Asterisk version VERSI ON STRI NG HERE.

AMI Actions

AMI Action Template Page

ManagerAction

Synopsys

Description

Syntax

Acti on: Manager Action
Requi r edHeader : Val ue
[Opti onal Header:] Val ue

Arguments

®* RequiredHeader
® This header is something that is required.
® OptionalHeader

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® This is some optional header

See Also

Dialplan Application Template Page
Dialplan Function Template Page
AGI Command Template Page

Import Version
This documentation was imported from Asterisk version VERSI ON STRI NG HERE.

ManagerAction_AbsoluteTimeout
AbsoluteTimeout

Synopsis

Set absolute timeout.

Description

Hangup a channel after a certain time. Acknowledges set time with Ti meout Set message.

Syntax

Action: Absol uteTi meout
[Actionl D] <val ue>
Channel : <val ue>

Ti meout : <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
® Channel - Channel nhame to hangup.
® Ti neout - Maximum duration of the call (sec).

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_AgentLogoff
AgentLogoff

Synopsis
Sets an agent as no longer logged in.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Sets an agent as no longer logged in.

Syntax

Action: Agent Logof f
[Actionl D:] <val ue>
Agent : <val ue>

[Soft:] <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
® Agent - Agent ID of the agent to log off.
® Soft - Settotrue to not hangup existing calls.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Agents

Agents

Synopsis

Lists agents and their status.

Description

Will list info about all possible agents.

Syntax

Action: Agents
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_AGI
AGI

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Add an AGI command to execute by Async AGI.

Description

Add an AGI command to the execute queue of the channel in Async AGI.

Syntax

Action: AQ

[Actionl D:] <val ue>
Channel : <val ue>
Command: <val ue>

[Commandl D:] <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.

® Channel - Channel thatis currently in Async AGI.

®* Command - Application to execute.

® Commandl D- This will be sent back in CommandID header of AsyncAGI exec event notification.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_AOCMessage
AOCMessage

Synopsis

Generate an Advice of Charge message on a channel.

Description

Generates an AOC-D or AOC-E message on a channel.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: ACCMessage

[Actionl D:] <val ue>

Channel : <val ue>

[Channel Prefix:] <val ue>

MsgType: <val ue>

Char geType: <val ue>

[Uni t Amount (0):] <val ue>

[Unit Type(0):] <val ue>

[CurrencyNane:] <val ue>

[CurrencyAmount:] <val ue>
[CurrencyMul tiplier:] <val ue>

[Total Type:] <val ue>
[ACCBi | lingld:] <val ue>

[Char gi ngAssoci ationld:] <val ue>

[Char gi ngAssoci ati onNunber:] <val ue>
[Char gi ngAssoci ati onPl an:] <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Channel - Channel name to generate the AOC message on.
® Channel Prefi x - Partial channel prefix. By using this option one can match the beginning part of a channel name without having to put
the entire name in. For example if a channel name is SIP/snom-00000001 and this value is set to SIP/snom, then that channel matches
and the message will be sent. Note however that only the first matched channel has the message sent on it.
®* MsgType - Defines what type of AOC message to create, AOC-D or AOC-E
°
¥
® Char geType - Defines what kind of charge this message represents.
° NA
® FREE
® Currency
® Unit
® Uni t Amount (0) - This represents the amount of units charged. The ETSI AOC standard specifies that this value along with the optional
UnitType value are entries in a list. To accommodate this these values take an index value starting at O which can be used to generate
this list of unit entries. For Example, If two unit entires were required this could be achieved by setting the paramter UnitAmount(0)=1234
and UnitAmount(1)=5678. Note that UnitAmount at index 0 is required when ChargeType=Unit, all other entries in the list are optional.
® Unit Type(0) - Defines the type of unit. ETSI AOC standard specifies this as an integer value between 1 and 16, but this value is left
open to accept any positive integer. Like the UnitAmount parameter, this value represents a list entry and has an index parameter that
starts at 0.
® CurrencyNane - Specifies the currency's name. Note that this value is truncated after 10 characters.
® CurrencyAnount - Specifies the charge unit amount as a positive integer. This value is required when ChargeType==Currency.
® CurrencyMil tiplier - Specifies the currency multiplier. This value is required when ChargeType==Currency.
® OneThousandth
OneHundr edt h
OneTent h
One
Ten
Hundr ed
Thousand
® Tot al Type - Defines what kind of AOC-D total is represented.
® Total
® SubTot al
® ACCBI | l'i ngl d - Represents a billing ID associated with an AOC-D or AOC-E message. Note that only the first 3 items of the enum are
valid AOC-D billing IDs
® Nor mal
Rever seChar ge
CreditCard
Cal | FwdUncondi ti onal
Cal | FwdBusy
Cal | FwdNoRepl y
Cal | Defl ection

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Cal | Transfer
® Chargi ngAssoci ati onl d - Charging association identifier. This is optional for AOC-E and can be set to any value between -32768
and 32767
® Chargi ngAssoci at i onNunmber - Represents the charging association party number. This value is optional for AOC-E.
® Char gi ngAssoci ati onPl an - Integer representing the charging plan associated with the ChargingAssociationNumber. The value is
bits 7 through 1 of the Q.931 octet containing the type-of-number and numbering-plan-identification fields.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Atxfer
Atxfer

Synopsis
Attended transfer.

Description

Attended transfer.

Syntax

Action: Atxfer
[Actionl D:] <val ue>
Channel : <val ue>
Exten: <val ue>

Cont ext: <val ue>
Priority: <val ue>

Arguments

Act i onl D- ActionID for this transaction. Will be returned.
Channel - Transferer's channel.

Ext en - Extension to transfer to.

Cont ext - Context to transfer to.

Priority - Priority to transfer to.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Bridge
Bridge

Synopsis

Bridge two channels already in the PBX.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Bridge together two channels already in the PBX.

Syntax

Action: Bridge
[Actionl D:] <val ue>
Channel 1: <val ue>
Channel 2: <val ue>

[Tone:] <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Channel 1 - Channel to Bridge to Channel2.
® Channel 2 - Channel to Bridge to Channell.
®* Tone - Play courtesy tone to Channel 2.
® yes
® no

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Challenge

Challenge

Synopsis

Generate Challenge for MD5 Auth.

Description
Generate a challenge for MD5 authentication.

Syntax

Action: Chall enge
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ManagerAction_ChangeMonitor
ChangeMonitor

Synopsis

Change monitoring filename of a channel.

Description

This action may be used to change the file started by a previous 'Monitor' action.

Syntax

Acti on: ChangeMonit or
[Actionl D:] <val ue>
Channel : <val ue>
File: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Channel - Used to specify the channel to record.
® Fil e - Is the new name of the file created in the monitor spool directory.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Command

Command

Synopsis

Execute Asterisk CLI Command.
Description

Run a CLI command.

Syntax

Action: Command
[Actionl D:] <val ue>
Command: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Comand - Asterisk CLI command to run.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_CoreSettings
CoreSettings

Synopsis

Show PBX core settings (version etc).
Description

Query for Core PBX settings.

Syntax

Action: CoreSettings
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_CoreShowChannels

CoreShowChannels

Synopsis
List currently active channels.

Description

List currently defined channels and some information about them.

Syntax

Acti on: Cor eShowChannel s
[Actionl D:] <val ue>

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Actionl D- ActionlD for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_CoreStatus
CoreStatus

Synopsis

Show PBX core status variables.

Description

Query for Core PBX status.

Syntax

Action: CoreStatus
[Actionl D] <val ue>

Arguments
® Actionl D- ActionlD for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_CreateConfig

CreateConfig

Synopsis
Creates an empty file in the configuration directory.
Description

This action will create an empty file in the configuration directory. This action is intended to be
used before an UpdateConfig action.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: CreateConfig
[Actionl D:] <val ue>
Fi | enanme: <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
® Fi | enane - The configuration filename to create (e.g. f 0o. conf).

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIDialOffhook
DAHDIDialOffhook

Synopsis

Dial over DAHDI channel while offhook.

Description

Syntax

Action: DAHDI D al O f hook
[Actionl D:] <val ue>
DAHDI Channel : <val ue>
Number: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® DAHDI Channel
® Nunber

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIDNDoff

DAHDIDNDoff

Synopsis

Toggle DAHDI channel Do Not Disturb status OFF.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Syntax

Acti on: DAHDI DNDof f
[Actionl D:] <val ue>
DAHDI Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® DAHDI Channel

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIDNDon

DAHDIDNDon

Synopsis

Toggle DAHDI channel Do Not Disturb status ON.

Description

Syntax

Acti on: DAHDI DNDon
[Actionl D:] <val ue>
DAHDI Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® DAHDI Channel

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIHangup

DAHDIHangup

Synopsis

Hangup DAHDI Channel.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Hangup a DAHDI channel.

Syntax

Acti on: DAHDI Hangup
[Actionl D:] <val ue>
DAHDI Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
¢ DAHDI Channel - DAHDI channel name to hangup.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIRestart

DAHDIRestart

Synopsis

Fully Restart DAHDI channels (terminates calls).
Description

Syntax

Action: DAHDI Restart
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DAHDIShowChannels

DAHDIShowChannels

Synopsis

Show status DAHDI channels.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Syntax

Act i on: DAHDI ShowChannel s
[Actionl D:] <val ue>
[DAHDI Channel :] <val ue>

Arguments

® Acti onl D- ActionlID for this transaction. Will be returned.
® DAHDI Channel - Specify the specific channel to show. Show all channels if zero or not present.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r314732.

ManagerAction_DAHDITransfer
DAHDITransfer
Synopsis

Transfer DAHDI Channel.

Description

Transfer a DAHDI channel.

Syntax

Action: DAHDI Transfer
[Actionl D:] <val ue>
DAHDI Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® DAHDI Channel - DAHDI channel name to transfer.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DataGet

DataGet

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Retrieve the data api tree.

Description

Retrieve the data api tree.

Syntax

Action: DataGet
[Actionl D:] <val ue>
Pat h: <val ue>

[Search:] <val ue>
[Filter:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Path

® Search

® Filter

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
ManagerAction_DBDel

DBDel

Synopsis

Delete DB entry.

Description

Syntax

Action: DBDel
[Actionl D:] <val ue>
Fam |l y: <val ue>
Key: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Fanmily
® Key

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DBDelTree
DBDelTree

Synopsis

Delete DB Tree.

Description

Syntax

Acti on: DBDel Tree
[Actionl D] <val ue>
Fam |l y: <val ue>

[Key:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Fanmily
® Key

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DBGet
DBGet

Synopsis

Get DB Entry.

Description

Syntax

Action: DBGet
[Actionl D:] <val ue>
Fam |l y: <val ue>
Key: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Fanmily
® Key

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_DBPut
DBPut

Synopsis

Put DB entry.

Description

Syntax

Acti on: DBPut
[Actionl D:] <val ue>
Fam | y: <val ue>
Key: <val ue>

[Val :] <val ue>

Arguments

Act i onl D- ActionID for this transaction. Will be returned.
Fam |y

Key

Val

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Events
Events

Synopsis
Control Event Flow.

Description

Enable/Disable sending of events to this manager client.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Events
[Actionl D:] <val ue>
Event Mask: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Event Mask
® on - If all events should be sent.
® of f - If no events should be sent.
® systemcall,log, ... - Toselect which flags events should have to be sent.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ExtensionState
ExtensionState

Synopsis

Check Extension Status.

Description

Report the extension state for given extension. If the extension has a hint, will use devicestate to
check the status of the device connected to the extension.

Will return an Ext ensi on St at us message. The response will include the hint for the
extension and the status.

Syntax

Action: ExtensionState

[Actionl D:] <val ue>

Ext en: <val ue>

Cont ext: <val ue>
Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Ext en - Extension to check state on.
® Cont ext - Context for extension.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ManagerAction_GetConfig
GetConfig

Synopsis

Retrieve configuration.
Description

This action will dump the contents of a configuration file by category and contents or optionally by
specified category only.

Syntax

Action: CGetConfig
[Actionl D:] <val ue>
Fi | enanme: <val ue>
[Cat egory:] <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Fi | enane - Configuration filename (e.g. f 0o. conf).
® Cat egory - Category in configuration file.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_GetConfigJSON
GetConfigJSON

Synopsis

Retrieve configuration (JSON format).
Description

This action will dump the contents of a configuration file by category and contents in JSON
format. This only makes sense to be used using rawman over the HTTP interface.

Syntax

Action: CetConfigJSON
[Actionl D:] <val ue>
Fi | enane: <val ue>

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Acti onl D- ActionlD for this transaction. Will be returned.
® Fi | enane - Configuration filename (e.g. f 0o. conf).

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Getvar
Getvar

Synopsis

Gets a channel variable.

Description

Get the value of a global or local channel variable.

Syntax

Action: GCetvar
[Actionl D:] <val ue>
[Channel :] <val ue>
Vari abl e: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Channel - Channel to read variable from.
® Vari abl e - Variable name.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Hangup
Hangup

Synopsis

Hangup channel.
Description

Hangup a channel.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Acti on: Hangup
[Actionl D:] <val ue>
Channel : <val ue>

[Cause:] <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
® Channel - The channel name to be hangup.
® Cause - Numeric hangup cause.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_IAXnetstats

IAXnetstats

Synopsis

Show IAX Netstats.

Description

Show IAX channels network statistics.

Syntax

Action: | AXnetstats

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_IAXpeerlist

IAXpeerlist

Synopsis
List IAX Peers.

Description

List all the IAX peers.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Action: | AXpeerli st
[Actionl D:] <val ue>

Arguments
® Acti onl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_IAXpeers
IAXpeers

Synopsis

List IAX peers.

Description

Syntax

Action: | AXpeers
[Actionl D:] <val ue>

Arguments
® Acti onl D- ActionlD for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_IAXregistry

IAXregistry

Synopsis

Show IAX registrations.

Description

Show IAX registrations.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Action: | AXregistry
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_JabberSend
JabberSend

Synopsis

Sends a message to a Jabber Client.

Description

Sends a message to a Jabber Client.

Syntax

Action: Jabber Send

[Actionl D:] <val ue>

Jabber: <val ue>

JI D. <val ue>

Message: <val ue>
Arguments

Act i onl D- ActionlD for this transaction. Will be returned.
Jabber - Client or transport Asterisk uses to connect to JABBER.
JI D- XMPP/Jabber JID (Name) of recipient.

Message - Message to be sent to the buddy.

See Also
Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ListCategories

ListCategories

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

List categories in configuration file.
Description

This action will dump the categories in a given file.

Syntax

Action: ListCategories
[Actionl D:] <val ue>
Fi | enanme: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Fi | enane - Configuration filename (e.g. f 0o. conf).

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ListCommands

ListCommands

Synopsis

List available manager commands.

Description

Returns the action name and synopsis for every action that is available to the user.

Syntax

Action: ListCommands
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_LocalOptimizeAway

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

LocalOptimizeAway

Synopsis
Optimize away a local channel when possible.

Description

A local channel created with "/n" will not automatically optimize away. Calling this command on
the local channel will clear that flag and allow it to optimize away if it's bridged or when it
becomes bridged.

Syntax

Action: Local Opti m zeAwnay
[Actionl D:] <val ue>
Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Channel - The channel name to optimize away.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Login
Login

Synopsis

Login Manager.

Description

Login Manager.

Syntax

Action: Login
[Actionl D:] <val ue>
User nanme: <val ue>

[Secret:] <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® User nane - Username to login with as specified in manager.conf.
® Secret - Secret to login with as specified in manager.conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r324178.

ManagerAction_Logoff

Logoff

Synopsis
Logoff Manager.

Description

Logoff the current manager session.

Syntax

Action: Logoff
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_MailboxCount
MailboxCount

Synopsis
Check Mailbox Message Count.

Description

Checks a voicemail account for new messages.
Returns number of urgent, new and old messages.
Message: Mailbox Message Count

Mailbox: mailboxid

UrgentMessages: count

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

NewMessages: count

OldMessages: count

Syntax

Action: WMail boxCount
[Actionl D:] <val ue>
Mai | box: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Mai | box - Full mailbox ID mailbox @ vm-context.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_MailboxStatus

MailboxStatus

Synopsis
Check mailbox.

Description

Checks a voicemail account for status.
Returns number of messages.
Message: Mailbox Status.

Mailbox: mailboxid.

Waiting: count.

Syntax

Action: Mil boxSt at us
[Actionl D:] <val ue>
Mai | box: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Mi | box - Full mailbox ID mailbox @ vm-context.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_MeetmelList
MeetmelList

Synopsis

List participants in a conference.

Description

Lists all users in a particular MeetMe conference. MeetmelList will follow as separate events,
followed by a final event called MeetmeListComplete.

Syntax

Action: MeetnelLi st
[Actionl D:] <val ue>
[Conference:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Conf er ence - Conference number.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
ManagerAction_MeetmeMute

MeetmeMute

Synopsis
Mute a Meetme user.

Description

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: MeetnmeMite
[Actionl D:] <val ue>
Meet ne: <val ue>
User num <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Meet ne
® Usernum

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_MeetmeUnmute
MeetmeUnmute

Synopsis

Unmute a Meetme user.

Description

Syntax

Action: MeetnmeUnnute
[Actionl D:] <val ue>
Meet ne: <val ue>

User num <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Meet ne
® Usernum

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_MixMonitorMute
MixMonitorMute

Synopsis

Mute / unMute a Mixmonitor recording.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

This action may be used to mute a MixMonitor recording.

Syntax

Action: M xNbnitorMite
[Actionl D:] <val ue>
Channel : <val ue>
[Direction:] <val ue>
[State:] <val ue>

Arguments

Act i onl D- ActionlD for this transaction. Will be returned.
Channel - Used to specify the channel to mute.
Di r ecti on - Which part of the recording to mute: read, write or both (from channel, to channel or both channels).

[]
[]
[]
® St at e - Turn mute on or off : 1 to turn on, 0 to turn off.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ModuleCheck
ModuleCheck

Synopsis

Check if module is loaded.

Description

Checks if Asterisk module is loaded. Will return Success/Failure. For success returns, the
module revision number is included.

Syntax

Acti on: Modul eCheck
Modul e: <val ue>

Arguments
® Mbdul e - Asterisk module name (not including extension).

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ManagerAction_ModuleLoad

ModuleLoad

Synopsis
Module management.

Description

Loads, unloads or reloads an Asterisk module in a running system.

Syntax

Acti on: Modul eLoad
[Actionl D] <val ue>
[Modul e:] <val ue>
LoadType: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Mbdul e - Asterisk module name (including.so extension) or subsystem identifier:
cdr
enum
dnsngr
extconfig
nmanager
rtp
® http
® LoadType - The operation to be done on module. If no module is specified for a r el oad loadtype, all modules are reloaded.
® |l oad
® unl oad
® rel oad

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Monitor

Monitor

Synopsis
Monitor a channel.

Description

This action may be used to record the audio on a specified channel.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Monitor

[Actionl D:] <val ue>

Channel : <val ue>

[File:] <val ue>

[Format:] <val ue>

[Mx:] <val ue>
Arguments

® Acti onl D- ActionID for this transaction. Will be returned.

® Channel - Used to specify the channel to record.

® Fil e - Is the name of the file created in the monitor spool directory. Defaults to the same name as the channel (with slashes replaced
with dashes).

® For mat - Is the audio recording format. Defaults to wav.

® M x - Boolean parameter as to whether to mix the input and output channels together after the recording is finished.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Originate
Originate

Synopsis
Originate a call.

Description

Generates an outgoing call to a Extension / Context / Priority or Application / Data

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Oiginate
[Actionl D:] <val ue>
Channel : <val ue>

[Exten:] <val ue>

[Context:] <val ue>
[Priority:] <val ue>
[Application:] <val ue>
[Data:] <val ue>

[Ti meout:] <val ue>
[CallerI D] <val ue>
[Vari abl e:] <val ue>
[Account:] <val ue>
[Async:] <val ue>

[Codecs:] <val ue>

Arguments

Act i onl D- ActionlD for this transaction. Will be returned.
Channel - Channel name to call.

Ext en - Extension to use (requires Cont ext and Priority)
Cont ext - Context to use (requires Extenand Priority)
Priority - Priority to use (requires Ext en and Cont ext)
Appl i cati on - Application to execute.

Dat a - Data to use (requires Appl i cati on).

Ti meout - How long to wait for call to be answered (in ms.).
Cal | er | D- Caller ID to be set on the outgoing channel.

Var i abl e - Channel variable to set, multiple Variable: headers are allowed.
Account - Account code.

Async - Setto t r ue for fast origination.

Codecs - Comma-separated list of codecs to use for this call.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Park
Park

Synopsis
Park a channel.
Description

Park a channel.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Park
[Actionl D:] <val ue>
Channel : <val ue>
Channel 2: <val ue>

[Ti meout:] <val ue>

[Parki ngl ot:] <val ue>

Arguments

Act i onl D- ActionID for this transaction. Will be returned.

Channel - Channel name to park.

Channel 2 - Channel to announce park info to (and return to if timeout).
Ti meout - Number of milliseconds to wait before callback.

Par ki ngl ot - Parking lot to park channel in.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ParkedCalls
ParkedCalls

Synopsis

List parked calls.

Description

List parked calls.

Syntax

Action: ParkedCalls
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_PauseMonitor

PauseMonitor

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Pause monitoring of a channel.
Description

This action may be used to temporarily stop the recording of a channel.

Syntax

Acti on: PauseMonitor
[Actionl D:] <val ue>
Channel : <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Channel - Used to specify the channel to record.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
ManagerAction_Ping

Ping

Synopsis

Keepalive command.

Description

A 'Ping' action will ellicit a 'Pong' response. Used to keep the manager connection open.

Syntax

Action: Ping
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_PlayDTMF

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

PlayDTMF
Synopsis
Play DTMF signal on a specific channel.

Description

Plays a dtmf digit on the specified channel.

Syntax

Action: Pl ayDTMF

[Actionl D:] <val ue>

Channel : <val ue>

Digit: <val ue>
Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Channel - Channel name to send digit to.
® Digit - The DTMF digit to play.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueAdd

QueueAdd

Synopsis

Add interface to queue.

Description

Syntax

Action: QueueAdd
[Actionl D:] <val ue>
Queue: <val ue>

Interface: <val ue>
[Penalty:] <val ue>

[Paused:] <val ue>

[Meber Nane:] <val ue>
[Statelnterface:] <val ue>

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Act i onl D- ActionID for this transaction. Will be returned.
Queue

Interface

Penal ty

Paused

Menber Nane

Statelnterface

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueuelLog

Queuelog

Synopsis

Adds custom entry in queue_log.

Description

Syntax

Action: Queuelog
[Actionl D:] <val ue>
Queue: <val ue>
Event: <val ue>

[Uni queid:] <val ue>
[Interface:] <val ue>
[Message:] <val ue>

Arguments

Act i onl D- ActionID for this transaction. Will be returned.
Queue

Event

Uni quei d

Interface

Message

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueuePause
QueuePause

Synopsis

Makes a queue member temporarily unavailable.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Syntax

Action: QueuePause
[Actionl D:] <val ue>
I nterface: <val ue>
Paused: <val ue>

[Queue:] <val ue>

[Reason:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
Interface

Paused

® Queue

Reason

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueuePenalty

QueuePenalty

Synopsis

Set the penalty for a queue member.

Description

Syntax
Action: QueuePenalty
[Actionl D:] <val ue>
Interface: <val ue>

Penal ty: <val ue>
[Queue:] <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Interface

® Penalty

[]

Queue
See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueReload

QueueReload

Synopsis

Reload a queue, queues, or any sub-section of a queue or queues.

Description

Syntax

Action: QueueRel oad
[Actionl D:] <val ue>

[Queue:] <val ue>

[Menbers:] <val ue>
[Rul es:] <val ue>

[Parameters:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Queue
®* Menbers

® yes

® no

® Rul es
® yes
® no
® Parameters
® yes
® no

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueRemove
QueueRemove

Synopsis

Remove interface from queue.

Description

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: QueueRenove
[Actionl D:] <val ue>
Queue: <val ue>

I nterface: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.

® Queue

® Interface
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueReset
QueueReset

Synopsis

Reset queue statistics.
Description

Syntax

Action: QueueReset
[Actionl D:] <val ue>
[Queue:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Queue

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueRule

QueueRule

Synopsis

Queue Rules.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Action: QueueRul e
[Actionl D:] <val ue>
[Rul e:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Rule

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Queues
Queues

Synopsis

Queues.

Description

Syntax

Action: Queues
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueStatus

QueueStatus

Synopsis

Show queue status.

Description

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: QueueStatus
[Actionl D:] <val ue>
[Queue:] <val ue>

[Menmber:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.

® Queue
® Menber

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_QueueSummary
QueueSummary

Synopsis

Show queue summary.

Description

Syntax

Action: QueueSumary
[Actionl D:] <val ue>
[Queue:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Queue

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Redirect

Redirect

Synopsis

Redirect (transfer) a call.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Redirect (transfer) a call.

Syntax

Action: Redirect
[Actionl D:] <val ue>
Channel : <val ue>

[ExtraChannel :] <val ue>
Ext en: <val ue>

[ExtraExten:] <val ue>
Cont ext: <val ue>

[ExtraContext:] <val ue>
Priority: <val ue>
[ExtraPriority:] <val ue>

Arguments

Act i onl D- ActionID for this transaction. Will be returned.
Channel - Channel to redirect.

Ext raChannel - Second call leg to transfer (optional).

Ext en - Extension to transfer to.

Ext r aExt en - Extension to transfer extrachannel to (optional).
Cont ext - Context to transfer to.

Ext r aCont ext - Context to transfer extrachannel to (optional).
Priority - Priority to transfer to.

ExtraPriority - Priority to transfer extrachannel to (optional).

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Reload

Reload

Synopsis
Send a reload event.

Description

Send a reload event.

Syntax

Action: Rel oad
[Actionl D:] <val ue>
[Modul e:] <val ue>

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Actionl D- ActionID for this transaction. Will be returned.
® Mbdul e - Name of the module to reload.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SendText
SendText

Synopsis

Send text message to channel.

Description

Sends A Text Message to a channel while in a call.

Syntax

Action: SendText
[Actionl D:] <val ue>
Channel : <val ue>
Message: <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Channel - Channel to send message to.
® Message - Message to send.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Setvar
Setvar

Synopsis
Set a channel variable.

Description

Set a global or local channel variable.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Setvar
[Actionl D:] <val ue>
[Channel :] <val ue>
Vari abl e: <val ue>
Val ue: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Channel - Channel to set variable for.

® Vari abl e - Variable name.

® Val ue - Variable value.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_ShowDialPlan
ShowDialPlan

Synopsis

Show dialplan contexts and extensions

Description

Show dialplan contexts and extensions. Be aware that showing the full dialplan may take a lot of
capacity.

Syntax

Action: ShowDi al Pl an
[Actionl D:] <val ue>
[Extensi on:] <val ue>
[Context:] <val ue>

Arguments

® Acti onl D- ActionlID for this transaction. Will be returned.
® Extensi on - Show a specific extension.
® Cont ext - Show a specific context.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SIPnotify

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SIPnotify

Synopsis

Send a SIP notify.

Description

Sends a SIP Notify event.

All parameters for this event must be specified in the body of this request via multiple Variable:
name=value sequences.

Syntax

Action: SlPnotify
[Actionl D:] <val ue>
Channel : <val ue>
Vari abl e: <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
® Channel - Peer to receive the notify.
® Vari abl e - At least one variable pair must be specified. name = value

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SIPpeers

SlPpeers

Synopsis
List SIP peers (text format).

Description

Lists SIP peers in text format with details on current status. Peerlist will follow as separate
events, followed by a final event called PeerlistComplete.

Syntax

Action: Sl Ppeers
[Actionl D:] <val ue>

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SIPqualifypeer
SIPqualifypeer

Synopsis

Qualify SIP peers.

Description

Qualify a SIP peer.

Syntax

Action: Sl Pqualifypeer
[Actionl D:] <val ue>
Peer: <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
® Peer - The peer name you want to qualify.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SIPshowpeer

SIPshowpeer

Synopsis

show SIP peer (text format).

Description

Show one SIP peer with details on current status.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Acti on: Sl Pshowpeer
[Actionl D:] <val ue>
Peer: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Peer - The peer name you want to check.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SIPshowregistry
SIPshowregistry

Synopsis

Show SIP registrations (text format).

Description

Lists all registration requests and status. Registrations will follow as separate events. followed by
a final event called RegistrationsComplete.

Syntax

Action: SIPshow egistry
[Actionl D:] <val ue>

Arguments
® Actionl D- ActionID for this transaction. Will be returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SKINNYdevices

SKINNYdevices

Synopsis
List SKINNY devices (text format).

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Lists Skinny devices in text format with details on current status. Devicelist will follow as separate
events, followed by a final event called DevicelistComplete.

Syntax

Acti on: SKI NNYdevi ces
[Actionl D:] <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SKINNYlines
SKINNYlines

Synopsis

List SKINNY lines (text format).

Description

Lists Skinny lines in text format with details on current status. Linelist will follow as separate
events, followed by a final event called LinelistComplete.

Syntax

Acti on: SKI NNYl i nes
[Actionl D:] <val ue>

Arguments

® Acti onl D- ActionID for this transaction. Will be returned.
See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SKINNYshowdevice

SKINNYshowdevice

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Show SKINNY device (text format).

Description

Show one SKINNY device with details on current status.

Syntax

Action: SKI NNYshowdevi ce
[Actionl D:] <val ue>
Devi ce: <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Devi ce - The device name you want to check.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_SKINNYshowline
SKINNYshowline
Synopsis

Show SKINNY line (text format).

Description

Show one SKINNY line with details on current status.

Syntax

Action: SKINNYshow i ne
[Actionl D:] <val ue>
Li ne: <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Li ne - The line name you want to check.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_Status

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Status
Synopsis
List channel status.

Description

Will return the status information of each channel along with the value for the specified channel
variables.

Syntax

Action: Status
[Actionl D:] <val ue>
Channel : <val ue>

[Vari abl es:] <val ue>

Arguments

® Actionl D- ActionlD for this transaction. Will be returned.
® Channel - The name of the channel to query for status.
® Vari abl es - Comma, separated list of variable to include.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_StopMonitor
StopMonitor

Synopsis

Stop monitoring a channel.

Description

This action may be used to end a previously started 'Monitor' action.

Syntax

Action: StopMonitor
[Actionl D] <val ue>
Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Channel - The name of the channel monitored.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_UnpauseMonitor
UnpauseMonitor

Synopsis

Unpause monitoring of a channel.

Description

This action may be used to re-enable recording of a channel after calling PauseMonitor.

Syntax

Action: UnpauseMonitor
[Actionl D:] <val ue>
Channel : <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® Channel - Used to specify the channel to record.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_UpdateConfig

UpdateConfig

Synopsis
Update basic configuration.
Description

This action will modify, create, or delete configuration elements in Asterisk configuration files.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Acti on: Updat eConfig
[Actionl D:] <val ue>
SrcFi |l enanme: <val ue>
Dst Fi | enane: <val ue>

[Rel oad:] <val ue>

[Acti on- XXXXXX:] <val ue>
[Cat - XXXXXX:] <val ue>

[Var - XXXXXX:] <val ue>

[Val ue- XXXXXX:] <val ue>
[Mat ch- XXXXXX:] <val ue>
[Li ne- XXXXXX:] <val ue>

Arguments
® Acti onl D- ActionID for this transaction. Will be returned.
® SrcFi | enane - Configuration filename to read (e.g. f 0o. conf).
® Dst Fi | enane - Configuration filename to write (e.g. f 0o. conf)
® Rel oad - Whether or not a reload should take place (or name of specific module).
® Acti on- XXXXXX - Action to take. X's represent 6 digit number beginning with 000000.
® NewCat
® RenaneCat
® Del Cat
® EnptyCat
® Update
® Delete
® Append
® Insert

Cat - XXXXXX - Category to operate on. X's represent 6 digit number beginning with 000000.

Var - XXXXXX - Variable to work on. X's represent 6 digit number beginning with 000000.

Val ue- XXXXXX - Value to work on. X's represent 6 digit number beginning with 000000.

Mat ch- XXXXXX - Extra match required to match line. X's represent 6 digit number beginning with 000000.

Li ne- XXXXXX - Line in category to operate on (used with delete and insert actions). X's represent 6 digit number beginning with 000000.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_UserEvent

UserEvent

Synopsis
Send an arbitrary event.
Description

Send an event to manager sessions.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: User Event
[Actionl D:] <val ue>
User Event: <val ue>
[Header 1:] <val ue>
[Header N:] <val ue>

Arguments

® Actionl D- ActionID for this transaction. Will be returned.
® User Event - Event string to send.

® Header 1 - Contentl.

® Header N- ContentN.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_VoicemailUsersList
VoicemailUsersList

Synopsis

List All Voicemail User Information.
Description

Syntax

Action: Voi cenmil UsersLi st
[Actionl D] <val ue>

Arguments
® Acti onl D- ActionlD for this transaction. Will be returned.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

ManagerAction_WaitEvent
WaitEvent

Synopsis

Wait for an event to occur.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

This action will ellicit a Success response. Whenever a manager event is queued. Once
WaitEvent has been called on an HTTP manager session, events will be generated and queued.

Syntax

Action: WaitEvent
[Actionl D:] <val ue>
Ti neout: <val ue>

Arguments

® Acti onl D- ActionlD for this transaction. Will be returned.
* Ti neout - Maximum time (in seconds) to wait for events, - 1 means forever.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Dialplan Applications
Application_AddQueueMember
AddQueueMember()

Synopsis

Dynamically adds queue members.

Description

Dynamically adds interface to an existing queue. If the interface is already in the queue it will
return an error.

This application sets the following channel variable upon completion:

® AQWBTATUS - The status of the attempt to add a queue member as a text string.
¢ ADDED
® MEMBERALREADY

* NOSUCHQUEUE

Syntax

AddQueueMenber (queuenane[, i nterface[, penal ty[, options[, menber nane|[, ste

Arguments

® queuenane
® interface
® penalty

® options

® nmenber nanme

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® stateinterface

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function QUEUE_VARIABLES
Function QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ADSIProg

ADSIProg()

Synopsis

Load Asterisk ADSI Scripts into phone

Description

This application programs an ADSI Phone with the given script

Syntax

ADSI Prog([script])

Arguments
® script - adsiscript to use. If not given uses the default script ast eri sk. adsi

See Also

Application_GetCPEID
adsi . conf

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_AELSub

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AELSub()

Synopsis
Launch subroutine built with AEL

Description

Execute the named subroutine, defined in AEL, from another dialplan language, such as
extensions.conf, Realtime extensions, or Lua.

The purpose of this application is to provide a sane entry point into AEL subroutines, the
implementation of which may change from time to time.

Syntax

AELSub(routine[, args])

Arguments

® routine - Named subroutine to execute.
® args

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_AgentLogin

AgentLogin()

Synopsis

Call agent login.

Description

Asks the agent to login to the system. Always returns - 1. While logged in, the agent can receive
calls and will hear a beep when a new call comes in. The agent can dump the call by pressing
the star key.

Syntax
Agent Logi n([Agent No[, options]])

Arguments

® Agent No
® options
® s -silent login - do not announce the login ok segment after agent logged on/off

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Application_Queue
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_AGENT

agent s. conf

gueues. conf

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_AgentMonitorOutgoing
AgentMonitorOutgoing()

Synopsis

Record agent's outgoing call.

Description

Tries to figure out the id of the agent who is placing outgoing call based on comparison of the
callerid of the current interface and the global variable placed by the AgentCallbackLogin
application. That's why it should be used only with the AgentCallbackLogin app. Uses the
monitoring functions in chan_agent instead of Monitor application. That has to be configured in
the agent s. conf file.

Normally the app returns O unless the options are passed.

Syntax
Agent Moni t or Qut goi ng([opti ons])

Arguments

® options
® d - make the app return - 1 if there is an error condition.
® ¢ - change the CDR so that the source of the call is Agent / agent _i d
® n -don't generate the warnings when there is no callerid or the agentid is not known. It's handy if you want to have one context
for agent and non-agent calls.

See Also

agent s. conf

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_AGI
AGI()

Synopsis
Executes an AGI compliant application.

Description

Executes an Asterisk Gateway Interface compliant program on a channel. AGI allows Asterisk to
launch external programs written in any language to control a telephony channel, play audio,
read DTMF digits, etc. by communicating with the AGI protocol on stdin and stdout. As of

1. 6. 0, this channel will not stop dialplan execution on hangup inside of this application. Dialplan
execution will continue normally, even upon hangup until the AGI application signals a desire to
stop (either by exiting or, in the case of a net script, by closing the connection). A locally
executed AGI script will receive SIGHUP on hangup from the channel except when using
DeadAGl. A fast AGI server will correspondingly receive a HANGUP inline with the command
dialog. Both of theses signals may be disabled by setting the Executes an Asterisk Gateway
Interface compliant program on a channel. AGI allows Asterisk to launch external programs
written in any language to control a telephony channel, play audio, read DTMF digits, etc. by
communicating with the AGI protocol on None - AG SI GHUP channel variable to no before
executing the AGI application.

Use the CLI command agi show conmands to list available agi commands.

This application sets the following channel variable upon completion:

® AG STATUS - The status of the attempt to the run the AGI script text string, one of:
® SUCCESS
® FAI LURE
® NOTFOUND
® HANGUP

Syntax
AG (command[, argl[, arg2]])

Arguments

® command

® args
® argl
® arg2

See Also

Application_EAGI
Application_DeadAGlI

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_AlarmReceiver

AlarmReceiver()

Synopsis

Provide support for receiving alarm reports from a burglar or fire alarm panel.

Description

This application should be called whenever there is an alarm panel calling in to dump its events.
The application will handshake with the alarm panel, and receive events, validate them,
handshake them, and store them until the panel hangs up. Once the panel hangs up, the
application will run the system command specified by the eventcmd setting in

al ar nr ecei ver. conf and pipe the events to the standard input of the application. The
configuration file also contains settings for DTMF timing, and for the loudness of the
acknowledgement tones.

Only 1 signalling format is supported at this time: Ademco Contact ID.Only 1 signalling format is
supported at this time: Ademco Contact ID.

Syntax

Al ar mRecei ver ()

Arguments

See Also

al ar nt ecei ver . conf

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_AMD

AMDY()

Synopsis
Attempt to detect answering machines.
Description

This application attempts to detect answering machines at the beginning of outbound calls.
Simply call this application after the call has been answered (outbound only, of course).

When loaded, AMD reads amd.conf and uses the parameters specified as default values. Those
default values get overwritten when the calling AMD with parameters.

This application sets the following channel variables:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® AMDSTATUS - This is the status of the answering machine detection
® MACHI NE
¢ HUMAN

® AMDCAUSE - Indicates the cause that led to the conclusion
® TOOLONG- Total Time.
® | NI TI ALSI LENCE - Silence Duration - Initial Silence.
® HUMAN - Silence Duration - afterGreetingSilence.
® LONGGREETI NG- Voice Duration - Greeting.
®* MAXWORDLENGTH - Word Count - maximum number of words.

Syntax

AVD([initial Silence[,greeting[,afterGeetingSilence[,total Analysis
Ti me[, m ni umMMdrdLengt h[, bet weenWor dSi | ence[, maxi mumNunber Of Wor ds| , si | €

Arguments

® initial Silence -Ismaximum initial silence duration before greeting. If this is exceeded set as MACHINE

gr eeti ng - is the maximum length of a greeting. If this is exceeded set as MACHINE

af t er Greeti ngSi | ence - Is the silence after detecting a greeting. If this is exceeded set as HUMAN

total Anal ysi s Ti e - Is the maximum time allowed for the algorithm to decide HUMAN or MACHINE

m ni umAbr dLengt h - Is the minimum duration of Voice considered to be a word

bet weenWor dSi | ence - Is the minimum duration of silence after a word to consider the audio that follows to be a new word
maxi mumNunber OF Wor ds - Is the maximum number of words in a greeting If this is exceeded set as MACHINE

si |l enceThreshol d - How long do we consider silence

maxi mumAér dLengt h - Is the maximum duration of a word to accept. If exceeded set as MACHINE

See Also

Application_WaitForSilence
Application_WaitForNoise

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Answer

Answer()

Synopsis
Answer a channel if ringing.
Description

If the call has not been answered, this application will answer it. Otherwise, it has no effect on the
call.

Syntax

Answer ([del ay[, nocdr]])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® del ay - Asterisk will wait this number of milliseconds before returning to the dialplan after answering the call.
® nocdr - Asterisk will send an answer signal to the calling phone, but will not set the disposition or answer time in the CDR for this call.

See Also
Application_Hangup
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Authenticate
Authenticate()

Synopsis

Authenticate a user

Description
This application asks the caller to enter a given password in order to continue dialplan execution.

If the password begins with the / character, it is interpreted as a file which contains a list of valid
passwords, listed 1 password per line in the file.

When using a database key, the value associated with the key can be anything.

Users have three attempts to authenticate before the channel is hung up.

Syntax

Aut hent i cat e(password[, options[, maxdi gits[, pronmpt]]])

Arguments

® passwor d - Password the user should know
® options
® a - Set the channels' account code to the password that is entered
® d - Interpret the given path as database key, not a literal file
®* m- Interpret the given path as a file which contains a list of account codes and password hashes delimited with : , listed one per
line in the file. When one of the passwords is matched, the channel will have its account code set to the corresponding account
code in the file.
® r - Remove the database key upon successful entry (valid with d only)
* maxdi gi t s - maximum acceptable number of digits. Stops reading after maxdigits have been entered (without requiring the user to
press the # key). Defaults to 0 - no limit - wait for the user press the # key.
® pronpt - Override the agent-pass prompt file.

See Also

Application_VMAuthenticate
Application_DISA

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_BackGround

BackGround()

Synopsis

Play an audio file while waiting for digits of an extension to go to.

Description

This application will play the given list of files (do not put extension) while waiting for an
extension to be dialed by the calling channel. To continue waiting for digits after this application
has finished playing files, the Wi t Ext en application should be used.

If one of the requested sound files does not exist, call processing will be terminated.

This application sets the following channel variable upon completion:

® BACKGROUNDSTATUS - The status of the background attempt as a text string.
® SUCCESS
® FAI LED

Syntax

BackG ound(fil enanel[& il ename2[& ..]][,options[,|angoverride[, context

Arguments

* filenanmes
® filenanmel
® fil enane2
® options
® s - Causes the playback of the message to be skipped if the channel is not in the up state (i.e. it hasn't been answered yet). If
this happens, the application will return immediately.
® n - Don't answer the channel before playing the files.
®* m- Only break if a digit hit matches a one digit extension in the destination context.
® | angoverri de - Explicitly specifies which language to attempt to use for the requested sound files.
® cont ext - This is the dialplan context that this application will use when exiting to a dialed extension.

See Also

Application_ControlPlayback
Application_WaitExten
Application_BackgroundDetect
Function_TIMEOUT

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_BackgroundDetect

BackgroundDetect()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Background a file with talk detect.

Description

Plays back filename, waiting for interruption from a given digit (the digit must start the beginning
of a valid extension, or it will be ignored). During the playback of the file, audio is monitored in the
receive direction, and if a period of non-silence which is greater than min ms yet less than max
ms is followed by silence for at least sil ms, which occurs during the first analysistime ms, then
the audio playback is aborted and processing jumps to the talk extension, if available.

Syntax

BackgroundDet ect (fil ename[,sil [, m n[, max[, anal ysistine]]]])

Arguments

® filenanme

® si| -If not specified, defaults to 1000.

® i n - If not specified, defaults to 100.

® max - If not specified, defaults to i nfinity.

® anal ysi sti ne - If not specified, defaults to i nfinity.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Bridge
Bridge()

Synopsis

Bridge two channels.

Description
Allows the ability to bridge two channels via the dialplan.

This application sets the following channel variable upon completion:

® BRI DGERESULT - The result of the bridge attempt as a text string.
® SUCCESS
® FAI LURE
® LOoP

® NONEXI STENT

® | NCOWPATI BLE

Syntax

Bri dge(channel [, options])

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments

® channel - The current channel is bridged to the specified channel.
® options
® p - Play a courtesy tone to channel.
® h - Allow the called party to hang up by sending the * DTMF digit.
® H- Allow the calling party to hang up by pressing the * DTMF digit.
® k - Allow the called party to enable parking of the call by sending the DTMF sequence defined for call parking in features.conf.
® K- Allow the calling party to enable parking of the call by sending the DTMF sequence defined for call parking in features.conf.
® L(x[:y][:2z]) - Limitthe call to x ms. Play a warning when y ms are left. Repeat the warning every z ms. The following special
variables can be used with this option: Play sounds to the caller. yes|no (default yes) Play sounds to the callee. yes|no File to
play when time is up. File to play when call begins. File to play as warning if y is defined. The default is to say the time remaining.

Sm - Hang up the call after x seconds after the called party has answered the call.

t - Allow the called party to transfer the calling party by sending the DTMF sequence defined in features.conf.

T - Allow the calling party to transfer the called party by sending the DTMF sequence defined in features.conf.

w - Allow the called party to enable recording of the call by sending the DTMF sequence defined for one-touch recording in

features.conf.

® W- Allow the calling party to enable recording of the call by sending the DTMF sequence defined for one-touch recording in
features.conf.

® x - Cause the called party to be hung up after the bridge, instead of being restarted in the dialplan.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Busy

Busy()

Synopsis

Indicate the Busy condition.

Description

This application will indicate the busy condition to the calling channel.

Syntax

Busy([timeout])

Arguments

® tineout - If specified, the calling channel will be hung up after the specified number of seconds. Otherwise, this application will wait until
the calling channel hangs up.

See Also

Application_Congestion
[Application_Progess]
Application_PlayTones
Application_Hangup

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_CallCompletionCancel
CallCompletionCancel()

Synopsis

Cancel call completion service

Description
Cancel a Call Completion Request.

This application sets the following channel variables:

® CC_CANCEL_RESULT - This is the returned status of the cancel.
® SUCCESS
® FAIL
® CC_CANCEL_REASON - This is the reason the cancel failed.
® NO_CORE_I NSTANCE
®* NOT_GENERI C
® UNSPECI FI ED

Syntax

Cal | Conpl eti onCancel ()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r312509.

Application_CallCompletionRequest

CallCompletionRequest()

Synopsis

Request call completion service for previous call

Description
Request call completion service for a previously failed call attempt.

This application sets the following channel variables:

® CC_REQUEST_RESULT - This is the returned status of the request.
® SUCCESS
® FAIL
® CC_REQUEST_REASON - This is the reason the request failed.
® NO_CORE_I NSTANCE
®* NOT_GENERI C
®* TOO MANY_REQUESTS

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® UNSPECI FI ED

Syntax

Cal | Conpl eti onRequest ()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r3125009.

Application_CELGenUserEvent

CELGenUserEvent()

Synopsis

Generates a CEL User Defined Event.

Description

A CEL event will be immediately generated by this channel, with the supplied name for a type.

Syntax

CELGenUser Event (event - nane[, extra])

Arguments

® event - name
® event - nanme
® extra - Extra text to be included with the event.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ChangeMonitor

ChangeMonitor()

Synopsis

Change monitoring filename of a channel.

Description

Changes monitoring filename of a channel. Has no effect if the channel is not monitored.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

ChangeMni tor (fil enanme_base)

Arguments
® fil enanme_base - The new filename base to use for monitoring this channel.
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ChanlsAvail
ChanlsAvail()

Synopsis

Check channel availability

Description

This application will check to see if any of the specified channels are available.

This application sets the following channel variables:

® AVAI LCHAN - The name of the available channel, if one exists

® AVAI LORI GCHAN - The canonical channel name that was used to create the channel
® AVAI LSTATUS - The device state for the device

® AVAI LCAUSECODE - The cause code returned when requesting the channel

Syntax

Chanl sAvai | ([Technol ogy2/ Resource2[& ..]][, options])

Arguments

® Technol ogy/ Resour ce - Specification of the device(s) to check. These must be in the format of Technol ogy/ Resour ce, where
Technology represents a particular channel driver, and Resource represents a resource available to that particular channel driver.
®* Technol ogy2/ Resour ce2 - Optional extra devices to check If you need more then one enter them as
Technology2/Resource2&Technology3/Resourse3&.....
® options
® a - Check for all available channels, not only the first one
® s - Consider the channel unavailable if the channel is in use at all
® t - Simply checks if specified channels exist in the channel list

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ChannelRedirect

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ChannelRedirect()

Synopsis
Redirects given channel to a dialplan target

Description

Sends the specified channel to the specified extension priority

This application sets the following channel variables upon completion

® CHANNELREDI RECT_STATUS -
¢ NOCHANNEL
® SUCCESS Are set to the result of the redirection

Syntax

Channel Redi rect (channel [, context[, extension,priority]])

Arguments

channel
cont ext
ext ensi on
priority

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ChanSpy

ChanSpy()

Synopsis

Listen to a channel, and optionally whisper into it.
Description

This application is used to listen to the audio from an Asterisk channel. This includes the audio
coming in and out of the channel being spied on. If the chanpr ef i x parameter is specified, only
channels beginning with this string will be spied upon.

While spying, the following actions may be performed:

® Dialing # cycles the volume level.
® Dialing * will stop spying and look for another channel to spy on.

® Dialing a series of digits followed by # builds a channel name to append to ‘chanprefix'. For example, executing ChanSpy(Agent) and
then dialing the digits '1234#' while spying will begin spying on the channel 'Agent/1234'. Note that this feature will be overridden if the 'd’
option is used

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The The X option supersedes the three features above in that if a valid single digit extension
exists in the correct context ChanSpy will exit to it. This also disables choosing a channel based
on chanpr ef i x and a digit sequence.

Syntax

ChanSpy([chanprefi x[, options]])

Arguments

® chanprefix
® options
® b - Only spy on channels involved in a bridged call.
® B- Instead of whispering on a single channel barge in on both channels involved in the call.
*c
® digit - Specify a DTMF digit that can be used to spy on the next available channel.
® d - Override the typical numeric DTMF functionality and instead use DTMF to switch between spy modes.
® 4 - spy mode
® 5 - whisper mode
® 6 - barge mode
® e - Enable enforced mode, so the spying channel can only monitor extensions whose name is in the ext : delimited list.
® ext
® E - Exit when the spied-on channel hangs up.
® g - both both grp and SPYGROUP can contain either a single group or a colon-delimited list of groups, such as
sal es: support:accounti ng.
® grp - Only spy on channels in which one or more of the groups listed in grp matches one or more groups from the
SPYGROUP variable set on the channel to be spied upon.
® n - Say the name of the person being spied on if that person has recorded his/her name. If a context is specified, then that
voicemail context will be searched when retrieving the name, otherwise the def aul t context be used when searching for the
name (i.e. if SIP/1000 is the channel being spied on and no mailbox is specified, then 1000 will be used when searching for the

name).
® mai | box
® context

® 0 - Only listen to audio coming from this channel.
® g - Don't play a beep when beginning to spy on a channel, or speak the selected channel name.
® r - Record the session to the monitor spool directory. An optional base for the flename may be specified. The default is
chanspy.
® basename
® s - Skip the playback of the channel type (i.e. SIP, IAX, etc) when speaking the selected channel name.
® S- Stop when no more channels are left to spy on.
® v - Adjust the initial volume in the range from - 4 to 4. A negative value refers to a quieter setting.
® val ue
®* w- Enable whi sper mode, so the spying channel can talk to the spied-on channel.
® W- Enable pri vat e whi sper mode, so the spying channel can talk to the spied-on channel but cannot listen to that channel.
® X
® digit - Specify a DTMF digit that can be used to exit the application.
® X- Allow the user to exit ChanSpy to a valid single digit numeric extension in the current context or the context specified by the
SPY_EXI T_CONTEXT channel variable. The name of the last channel that was spied on will be stored in the SPY_CHANNEL
variable.
® 4 - spy mode
® 5 - whisper mode
® 6 - barge mode

See Also

Application_ExtenSpy

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ClearHash

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ClearHash()
Synopsis
Clear the keys from a specified hashname.

Description

Clears all keys out of the specified hashname.

Syntax

Cl ear Hash(hashnane)

Arguments
® hashnane

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ConfBridge
ConfBridge()

Synopsis

Conference bridge application.

Description

Enters the user into a specified conference bridge. The user can exit the conference by hangup
only.

The join sound can be set using the CONFBRI DGE_JO N_SOUND variable and the leave sound
can be set using the CONFBRI DGE_LEAVE _SOUND variable. These can be unique to the caller.

This application will not automatically answer the channel.This application will not automatically
answer the channel.

Syntax

Conf Bri dge([confno[, options]])

Arguments

® conf no - The conference number
® options

® a - Setadmin mode.

® A- Set marked mode.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® ¢ - Announce user(s) count on joining a conference.
® m- Set initially muted.
® M- Enable music on hold when the conference has a single caller. Optionally, specify a musiconhold class to use. If one is not
provided, it will use the channel's currently set music class, or def aul t .
® class
1 - Do not play message when first person enters
s - Present menu (user or admin) when * is received (send to menu).
w - Wait until the marked user enters the conference.
g - Quiet mode (don't play enter/leave sounds).

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Congestion

Congestion()

Synopsis

Indicate the Congestion condition.

Description

This application will indicate the congestion condition to the calling channel.

Syntax

Congestion([timeout])

Arguments

® tineout - If specified, the calling channel will be hung up after the specified number of seconds. Otherwise, this application will wait until
the calling channel hangs up.

See Also

Application_Busy
[Application_Progess]
Application_PlayTones
Application_Hangup

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ContinueWhile

ContinueWhile()

Synopsis

Restart a While loop.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Returns to the top of the while loop and re-evaluates the conditional.

Syntax

Cont i nueWi | e()

Arguments

See Also

Application_While
Application_EndWhile
Application_ExitWhile

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ControlPlayback
ControlPlayback()

Synopsis

Play a file with fast forward and rewind.

Description
This application will play back the given filename.

It sets the following channel variables upon completion:

® CPLAYBACKSTATUS - Contains the status of the attempt as a text string

® SUCCESS

® USERSTOPPED

® ERROR
® CPLAYBACKOFFSET - Contains the offset in ms into the file where playback was at when it stopped. - 1 is end of file.
® CPLAYBACKSTOPKEY - If the playback is stopped by the user this variable contains the key that was pressed.

Syntax

Control Pl ayback(fil ename[, skipns[,ff[,rew, stop[, pause[,restart[, optic

Arguments

filenane
ski pns - This is number of milliseconds to skip when rewinding or fast-forwarding.
f f - Fast-forward when this DTMF digit is received. (defaults to #)
r ew- Rewind when this DTMF digit is received. (defaults to *)
st op - Stop playback when this DTMF digit is received.
pause - Pause playback when this DTMF digit is received.
restart - Restart playback when this DTMF digit is received.
options
®o0

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® tine - Start at time ms from the beginning of the file.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDIAcceptR2Call

DAHDIAcceptR2Call()

Synopsis

Accept an R2 call if its not already accepted (you still need to answer it)
Description

This application will Accept the R2 call either with charge or no charge.

Syntax

DAHDI Accept R2Cal | (char ge)

Arguments
® char ge - Yes or No. Whether you want to accept the call with charge or without charge.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDIBarge

DAHDIBarge()

Synopsis
Barge in (monitor) DAHDI channel.
Description

Barges in on a specified DAHDI channel or prompts if one is not specified. Returns - 1 when
caller user hangs up and is independent of the state of the channel being monitored.

Syntax

DAHDI Bar ge([channel])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® channel - Channel to barge.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDIRAS
DAHDIRAS()
Synopsis

Executes DAHDI ISDN RAS application.

Description

Executes a RAS server using pppd on the given channel. The channel must be a clear channel
(i.e. PRI source) and a DAHDI channel to be able to use this function (No modem emulation is
included).

Your pppd must be patched to be DAHDI aware.

Syntax
DAHDI RAS(ar gs)

Arguments
® args - A list of parameters to pass to the pppd daemon, separated by , characters.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDIScan

DAHDIScan()

Synopsis

Scan DAHDI channels to monitor calls.

Description

Allows a call center manager to monitor DAHDI channels in a convenient way. Use # to select
the next channel and use * to exit.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

DAHDI Scan([gr oup])

Arguments

® group - Limit scanning to a channel group by setting this option.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDISendCallreroutingFacility
DAHDISendCallreroutingFacility()

Synopsis

Send an ISDN call rerouting/deflection facility message.

Description

This application will send an ISDN switch specific call rerouting/deflection facility message over
the current channel. Supported switches depend upon the version of libpri in use.

Syntax

DAHDI SendCal | reroutingFacility(destination[,original[,reason]])

Arguments

® destinati on - Destination number.
® original -Original called number.
® reason - Diversion reason, if not specified defaults to unknown

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DAHDISendKeypadFacility
DAHDISendKeypadFacility()

Synopsis

Send digits out of band over a PRI.
Description

This application will send the given string of digits in a Keypad Facility IE over the current

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

channel.

Syntax

DAHDI SendKeypadFaci lity(digits)

Arguments
® digits
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DateTime

DateTime()

Synopsis

Says a specified time in a custom format.

Description

Say the date and time in a specified format.

Syntax

Dat eTi me([uni xtime[,timezone[,format]]])

Arguments

® uni xti me - time, in seconds since Jan 1, 1970. May be negative. Defaults to now.
® tinmezone -timezone, see / usr/ shar e/ zonei nf o for a list. Defaults to machine default.
® format - aformat the time is to be said in. See voi cenri | . conf . Defaults to ABdY "digits/at" | M

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DBdel

DBdel()

Synopsis

Delete a key from the asterisk database.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This application will delete a key from the Asterisk database.

This application has been DEPRECATED in favor of the DB_DELETE function.This application
has been DEPRECATED in favor of the DB_DELETE function.

Syntax

DBdel (fam |y, key)

Arguments

® famly
® key

See Also

Function_DB_DELETE
Application_DBdeltree
Function_DB

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DBdeltree

DBdeltree()

Synopsis

Delete a family or keytree from the asterisk database.

Description

This application will delete a family or keytree from the Asterisk database.

Syntax

DBdel tree(fam | y[, keytree])

Arguments

® famly
® keytree

See Also

Function_DB_DELETE
Application_DBdel
Function_DB

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DeadAGI

DeadAGlI()

Synopsis

Executes AGI on a hungup channel.

Description

Executes an Asterisk Gateway Interface compliant program on a channel. AGI allows Asterisk to
launch external programs written in any language to control a telephony channel, play audio,
read DTMF digits, etc. by communicating with the AGI protocol on stdin and stdout. As of

1. 6. 0, this channel will not stop dialplan execution on hangup inside of this application. Dialplan
execution will continue normally, even upon hangup until the AGI application signals a desire to
stop (either by exiting or, in the case of a net script, by closing the connection). A locally
executed AGI script will receive SIGHUP on hangup from the channel except when using
DeadAGil. A fast AGI server will correspondingly receive a HANGUP inline with the command
dialog. Both of theses signals may be disabled by setting the Executes an Asterisk Gateway
Interface compliant program on a channel. AGI allows Asterisk to launch external programs
written in any language to control a telephony channel, play audio, read DTMF digits, etc. by
communicating with the AGI protocol on None - AG SI GHUP channel variable to no before
executing the AGI application.

Use the CLI command agi show conmands to list available agi commands.

This application sets the following channel variable upon completion:

® AQ STATUS - The status of the attempt to the run the AGI script text string, one of:
® SUCCESS
® FAI LURE
® NOTFOUND
® HANGUP

Syntax
DeadAGQ (command[, argl[, arg2]])

Arguments

¢ command

® args
® argl
® arg2

See Also

Application_AGI
Application_EAGI

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Dial

Dial()

Synopsis

Attempt to connect to another device or endpoint and bridge the call.

Description

This application will place calls to one or more specified channels. As soon as one of the
requested channels answers, the originating channel will be answered, if it has not already been
answered. These two channels will then be active in a bridged call. All other channels that were
requested will then be hung up.

Unless there is a timeout specified, the Dial application will wait indefinitely until one of the called
channels answers, the user hangs up, or if all of the called channels are busy or unavailable.
Dialplan executing will continue if no requested channels can be called, or if the timeout expires.
This application will report normal termination if the originating channel hangs up, or if the call is
bridged and either of the parties in the bridge ends the call.

If the If the None - QUTBOUND_GROUP variable is set, all peer channels created by this
application will be put into that group (as in Set(GROUP()=...). If the If the None -
OUTBOUND_GROUP_ONCE variable is set, all peer channels created by this application will be put
into that group (as in Set(GROUP()=...). Unlike OUTBOUND_GROUP, however, the variable will
be unset after use.

This application sets the following channel variables:

® DI ALEDTI ME - This is the time from dialing a channel until when it is disconnected.
® ANSWEREDTI ME - This is the amount of time for actual call.
® DI ALSTATUS - This is the status of the call
® CHANUNAVAI L
CONGESTI ON
NOANSVER
BUSY
ANSVER
CANCEL
DONTCALL - For the Privacy and Screening Modes. Will be set if the called party chooses to send the calling party to the ‘Go
Away" script.
® TORTURE - For the Privacy and Screening Modes. Will be set if the called party chooses to send the calling party to the 'torture’
script.
® | NVALI DARGS

Syntax
Di al (Technol ogy/ Resour ce[&Technol ogy2/ Resource2[& ..]][,timeout[, opti C

Arguments

® Technol ogy/ Resour ce
® Technol ogy/ Resour ce - Specification of the device(s) to dial. These must be in the format of Technol ogy/ Resour ce,
where Technology represents a particular channel driver, and Resource represents a resource available to that particular
channel driver.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Technol ogy2/ Resour ce2 - Optional extra devices to dial in parallel If you need more then one enter them as
Technology2/Resource2&Technology3/Resourse3&.....

® tineout - Specifies the number of seconds we attempt to dial the specified devices If not specified, this defaults to 136 years.
® options

A - Play an announcement to the called party, where x is the prompt to be played

® x - The file to play to the called party
a - Immediately answer the calling channel when the called channel answers in all cases. Normally, the calling channel is
answered when the called channel answers, but when options such as A() and M() are used, the calling channel is not answered
until all actions on the called channel (such as playing an announcement) are completed. This option can be used to answer the
calling channel before doing anything on the called channel. You will rarely need to use this option, the default behavior is
adequate in most cases.
C - Reset the call detail record (CDR) for this call.
¢ - If the Dial() application cancels this call, always set the flag to tell the channel driver that the call is answered elsewhere.
d - Allow the calling user to dial a 1 digit extension while waiting for a call to be answered. Exit to that extension if it exists in the
current context, or the context defined in the EXI TCONTEXT variable, if it exists.
D - Send the specified DTMF strings after the called party has answered, but before the call gets bridged. The called DTMF
string is sent to the called party, and the calling DTMF string is sent to the calling party. Both arguments can be used alone. If
progress is specified, its DTMF is sent immediately after receiving a PROGRESS message.

® called

® calling

® progress
e - Execute the h extension for peer after the call ends
f - If x is not provided, force the CallerID sent on a call-forward or deflection to the dialplan extension of this Dial() using a
dialplan hi nt . For example, some PSTNs do not allow CallerID to be set to anything other than the numbers assigned to you. If
x is provided, force the CallerID sent to x.

® X
F - When the caller hangs up, transfer the called party to the specified destination and continue execution at that location.

® context

® exten

® priority
F - Proceed with dialplan execution at the next priority in the current extension if the source channel hangs up.
g - Proceed with dialplan execution at the next priority in the current extension if the destination channel hangs up.
G- If the call is answered, transfer the calling party to the specified priority and the called party to the specified priority plus one.
You cannot use any additional action post answer options in conjunction with this option.You cannot use any additional action
post answer options in conjunction with this option.

® context

® exten

® priority
h - Allow the called party to hang up by sending the * DTMF digit.
H - Allow the calling party to hang up by hitting the * DTMF digit.
i - Asterisk will ignore any forwarding requests it may receive on this dial attempt.
| - Asterisk will ignore any connected line update requests or redirecting party update requests it may receiveon this dial attempt.
k - Allow the called party to enable parking of the call by sending the DTMF sequence defined for call parking in
features. conf.
K - Allow the calling party to enable parking of the call by sending the DTMF sequence defined for call parking in
features. conf.
L - Limit the call to x milliseconds. Play a warning when y milliseconds are left. Repeat the warning every z milliseconds until time
expires. This option is affected by the following variables: If set, this variable causes Asterisk to play the prompts to the caller. If
set, this variable causes Asterisk to play the prompts to the callee. If specified, filename specifies the sound prompt to play when
the timeout is reached. If not set, the time remaining will be announced. If specified, filename specifies the sound prompt to play
when the call begins. If not set, the time remaining will be announced. If specified, filename specifies the sound prompt to play as
a warning when time x is reached. If not set, the time remaining will be announced.

® x - Maximum call time, in milliseconds

® y - Warning time, in milliseconds

® 7 - Repeat time, in milliseconds
m- Provide hold music to the calling party until a requested channel answers. A specific music on hold class (as defined in
musi conhol d. conf) can be specified.

® class
M- Execute the specified macro for the called channel before connecting to the calling channel. Arguments can be specified to
the Macro using » as a delimiter. The macro can set the variable MACRO_RESULT to specify the following actions after the macro
is finished executing: If set, this action will be taken after the macro finished executing. You cannot use any additional action post
answer options in conjunction with this option. Also, pbx services are not run on the peer (called) channel, so you will not be able
to set timeouts via the TIMEOUT() function in this macro.You cannot use any additional action post answer options in
conjunction with this option. Also, pbx services are not run on the peer (called) channel, so you will not be able to set timeouts
via the TIMEOUT() function in this macro. Be aware of the limitations that macros have, specifically with regards to use of the
Wi t Ext en application. For more information, see the documentation for Macro()

® macr o - Name of the macro that should be executed.

® ar g - Macro arguments
n - This option is a modifier for the call screening/privacy mode. (See the p and P options.) It specifies that no introductions are
to be saved in the pri v-cal | eri ntros directory.

* del et e - With delete either not specified or set to 0, the recorded introduction will not be deleted if the caller hangs up

while the remote party has not yet answered. With delete set to 1, the introduction will always be deleted.

N - This option is a modifier for the call screening/privacy mode. It specifies that if Caller*ID is present, do not screen the call.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® o - If xis not provided, specify that the CallerID that was present on the calling channel be stored as the CallerID on the called
channel. This was the behavior of Asterisk 1.0 and earlier. If x is provided, specify the CallerID stored on the called channel.
Note that o(${CALLERID(all)}) is similar to option o without the parameter.
® X
® O- Enables operator services mode. This option only works when bridging a DAHDI channel to another DAHDI channel only. if
specified on non-DAHDI interfaces, it will be ignored. When the destination answers (presumably an operator services station),
the originator no longer has control of their line. They may hang up, but the switch will not release their line until the destination
party (the operator) hangs up.
®* node - With mode either not specified or set to 1, the originator hanging up will cause the phone to ring back
immediately. With mode set to 2, when the operator flashes the trunk, it will ring their phone back.
® p - This option enables screening mode. This is basically Privacy mode without memory.
® P - Enable privacy mode. Use x as the family/key in the AstDB database if it is provided. The current extension is used if a
database family/key is not specified.
® X
® r - Default: Indicate ringing to the calling party, even if the called party isn't actually ringing. Pass no audio to the calling party
until the called channel has answered.
® tone - Indicate progress to calling party. Send audio 'tone' from indications.conf
® S- Hang up the call x seconds after the called party has answered the call.
® X
® s - Force the outgoing callerid tag parameter to be set to the string x. Works with the f option.
® X
® t - Allow the called party to transfer the calling party by sending the DTMF sequence defined in f eat ur es. conf . This setting
does not perform policy enforcement on transfers initiated by other methods.
® T - Allow the calling party to transfer the called party by sending the DTMF sequence defined in f eat ur es. conf . This setting
does not perform policy enforcement on transfers initiated by other methods.
® U- Execute via Gosub the routine x for the called channel before connecting to the calling channel. Arguments can be specified
to the Gosub using * as a delimiter. The Gosub routine can set the variable GOSUB_RESULT to specify the following actions after
the Gosub returns. You cannot use any additional action post answer options in conjunction with this option. Also, pbx services
are not run on the peer (called) channel, so you will not be able to set timeouts via the TIMEOUT() function in this routine.You
cannot use any additional action post answer options in conjunction with this option. Also, pbx services are not run on the peer
(called) channel, so you will not be able to set timeouts via the TIMEOUT() function in this routine.
® x - Name of the subroutine to execute via Gosub
® arg - Arguments for the Gosub routine
® u - Works with the f option.
® x - Force the outgoing callerid presentation indicator parameter to be set to one of the values passed in x :
al | owed_not _screened
al | owed_passed_screen
al | owed_f ai | ed_screen
al | oned
prohi b_not _screened
prohi b_passed_screen
prohi b_fail ed_screen
prohi b
unavai | abl e
* w- Allow the called party to enable recording of the call by sending the DTMF sequence defined for one-touch recording in
features. conf.
® W- Allow the calling party to enable recording of the call by sending the DTMF sequence defined for one-touch recording in
features. conf.
® x - Allow the called party to enable recording of the call by sending the DTMF sequence defined for one-touch automixmonitor in
features. conf.
® X- Allow the calling party to enable recording of the call by sending the DTMF sequence defined for one-touch automixmonitor in
features. conf.
® 7z - On a call forward, cancel any dial timeout which has been set for this call.
® URL - The optional URL will be sent to the called party if the channel driver supports it.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Dictate

Dictate()

Synopsis

Virtual Dictation Machine.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Start dictation machine using optional base_dir for files.

Syntax

Dictate([base_dir[,filename]])

Arguments

® base_dir
® filename

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Directory

Directory()

Synopsis
Provide directory of voicemail extensions.

Description

This application will present the calling channel with a directory of extensions from which they
can search by name. The list of names and corresponding extensions is retrieved from the
voicemail configuration file, voi cemnai | . conf .

This application will immediately exit if one of the following DTMF digits are received and the
extension to jump to exists:
0 - Jump to the '0' extension, if it exists. * - Jump to the 'a’ extension, if it exists.

Syntax

Directory([vmcontext[,dial-context[,options]]])

Arguments

® vm cont ext - This is the context within voicemail.conf to use for the Directory. If not specified and sear chcont ext s=no in
voi cenai | . conf, then def aul t will be assumed.
® di al - cont ext - This is the dialplan context to use when looking for an extension that the user has selected, or when jumping to the o
or a extension.
® options - Only one of the Only one of the f, I, or b options may be specified. If more than one is specified, then Directory will act as if
b was specified. The number of characters for the user to type defaults to 3.
® e - In addition to the name, also read the extension number to the caller before presenting dialing options.
* f - Allow the caller to enter the first name of a user in the directory instead of using the last name. If specified, the optional
number argument will be used for the number of characters the user should enter.
®n
® | - Allow the caller to enter the last name of a user in the directory. This is the default. If specified, the optional number argument
will be used for the number of characters the user should enter.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

®n
® b - Allow the caller to enter either the first or the last name of a user in the directory. If specified, the optional number argument
will be used for the number of characters the user should enter.
®n
®* m- Instead of reading each name sequentially and asking for confirmation, create a menu of up to 8 names.
® n - Read digits even if the channel is not answered.
® p - Pause for n milliseconds after the digits are typed. This is helpful for people with cellphones, who are not holding the receiver
to their ear while entering DTMF.
®n

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DISA

DISA()

Synopsis
Direct Inward System Access.

Description

The DISA, Direct Inward System Access, application allows someone from outside the telephone
switch (PBX) to obtain an internal system dialtone and to place calls from it as if they were
placing a call from within the switch. DISA plays a dialtone. The user enters their numeric
passcode, followed by the pound sign #. If the passcode is correct, the user is then given system
dialtone within context on which a call may be placed. If the user enters an invalid extension and
extension i exists in the specified context, it will be used.

Be aware that using this may compromise the security of your PBX.

The arguments to this application (in ext ensi ons. conf) allow either specification of a single
global passcode (that everyone uses), or individual passcodes contained in a file (filename).

The file that contains the passcodes (if used) allows a complete specification of all of the same
arguments available on the command line, with the sole exception of the options. The file may
contain blank lines, or comments starting with # or ; .

Syntax

Dl SA(passcode| fil enane[, context[, cid[, mail box[@ontext][,options]]]])

Arguments

® passcode| fil enane - If you need to present a DISA dialtone without entering a password, simply set passcode to no- passwor d You
may specified a filename instead of a passcode, this filename must contain individual passcodes
® cont ext - Specifies the dialplan context in which the user-entered extension will be matched. If no context is specified, the DISA
application defaults to the di sa context. Presumably a normal system will have a special context set up for DISA use with some or a lot
of restrictions.
® ci d - Specifies a new (different) callerid to be used for this call.
* mai | box - Will cause a stutter-dialtone (indication dialrecall) to be used, if the specified mailbox contains any new messages.
® mai | box
® context

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® options
® n - The DISA application will not answer initially.
® p - The extension entered will be considered complete when a # is entered.

See Also

Application_Authenticate
Application_VMAuthenticate

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_DumpChan

DumpChan()

Synopsis

Dump Info About The Calling Channel.

Description

Displays information on channel and listing of all channel variables. If level is specified, output is
only displayed when the verbose level is currently set to that number or greater.

Syntax

DunpChan([1 evel])

Arguments
® | evel - Minimun verbose level

See Also

Application_NoOp
Application_Verbose

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_EAGI

EAGI()

Synopsis
Executes an EAGI compliant application.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Using 'EAGI' provides enhanced AGI, with incoming audio available out of band on file descriptor
3.

Executes an Asterisk Gateway Interface compliant program on a channel. AGI allows Asterisk to
launch external programs written in any language to control a telephony channel, play audio,
read DTMF digits, etc. by communicating with the AGI protocol on stdin and stdout. As of

1. 6. 0, this channel will not stop dialplan execution on hangup inside of this application. Dialplan
execution will continue normally, even upon hangup until the AGI application signals a desire to
stop (either by exiting or, in the case of a net script, by closing the connection). A locally
executed AGI script will receive SIGHUP on hangup from the channel except when using
DeadAGl. A fast AGI server will correspondingly receive a HANGUP inline with the command
dialog. Both of theses signals may be disabled by setting the Executes an Asterisk Gateway
Interface compliant program on a channel. AGI allows Asterisk to launch external programs
written in any language to control a telephony channel, play audio, read DTMF digits, etc. by
communicating with the AGI protocol on None - AG SI GHUP channel variable to no before
executing the AGI application.

Use the CLI command agi show conmmands to list available agi commands.

This application sets the following channel variable upon completion:

® AG STATUS - The status of the attempt to the run the AGI script text string, one of:
® SUCCESS
® FAI LURE

NOTFQOUND

® HANGUP

Syntax
EAQ (conmand[, argl[, arg2]])

Arguments

® command

® args
® argl
® arg2

See Also

Application_AGI
Application_DeadAGI

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Echo

Echo()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Echo audio, video, DTMF back to the calling party

Description

Echos back any audio, video or DTMF frames read from the calling channel back to itself. Note:
If '#' detected application exits

Syntax

Echo()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_EndWhile
EndWhile()

Synopsis

End a while loop.

Description

Return to the previous called Wi | e() .

Syntax

Endwhi | e()

Arguments

See Also

Application_While
Application_ExitWhile
Application_ContinueWhile

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Exec

Exec()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Executes dialplan application.

Description

Allows an arbitrary application to be invoked even when not hard coded into the dialplan. If the
underlying application terminates the dialplan, or if the application cannot be found, Exec will
terminate the dialplan.

To invoke external applications, see the application System. If you would like to catch any error
instead, see TryExec.

Syntax
Exec(ar gunent s)

Arguments

® appnane - Application name and arguments of the dialplan application to execute.
® argunents

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Execlf

Execlf()

Synopsis

Executes dialplan application, conditionally.
Description

If expr is true, execute and return the result of appiftrue(args).

If expr is true, but appiftrue is not found, then the application will return a non-zero value.

Syntax
Execl f (expressi on?appiftrue[:...][:appiffalse[:...]])

Arguments

® expression

® execapp
® appiftrue
® appiffal se

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ExeclfTime

ExeclfTime()

Synopsis

Conditional application execution based on the current time.

Description

This application will execute the specified dialplan application, with optional arguments, if the
current time matches the given time specification.

Syntax
Execl f Ti me(ti mesweekdaysndaysnont hs[, ti mezone] ?appar gs)

Arguments

® day_condition
® times
® weekdays
® ndays
® nont hs
® tinmezone
® appnane
® appargs

See Also

Application_Exec
Application_TryExec

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ExitWhile
ExitWhile()

Synopsis

End a While loop.

Description

Exits a Whi | e() loop, whether or not the conditional has been satisfied.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Exi t Wi | e()

Arguments

See Also

Application_While
Application_EndWhile
Application_ContinueWhile

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ExtenSpy

ExtenSpy()

Synopsis
Listen to a channel, and optionally whisper into it.

Description

This application is used to listen to the audio from an Asterisk channel. This includes the audio
coming in and out of the channel being spied on. Only channels created by outgoing calls for the
specified extension will be selected for spying. If the optional context is not supplied, the current
channel's context will be used.

While spying, the following actions may be performed:
® Dialing # cycles the volume level.

® Dialing * will stop spying and look for another channel to spy on.

The The X option supersedes the three features above in that if a valid single digit extension
exists in the correct context ChanSpy will exit to it. This also disables choosing a channel based
on chanpr ef i x and a digit sequence.

Syntax
Ext enSpy(exten[@ontext] [, opti ons])

Arguments

® exten
® ext en - Specify extension.
® cont ext - Optionally specify a context, defaults to def aul t .
® options
® b - Only spy on channels involved in a bridged call.
® B- Instead of whispering on a single channel barge in on both channels involved in the call.
°c
® digit - Specify a DTMF digit that can be used to spy on the next available channel.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® d - Override the typical numeric DTMF functionality and instead use DTMF to switch between spy modes.
® 4 - spy mode
® 5 - whisper mode
® 6 - barge mode
® e - Enable enforced mode, so the spying channel can only monitor extensions whose name is in the ext : delimited list.
® ext
® E - Exit when the spied-on channel hangs up.
® g - both both grp and SPYGROUP can contain either a single group or a colon-delimited list of groups, such as
sal es: support:accounti ng.
® grp - Only spy on channels in which one or more of the groups listed in grp matches one or more groups from the
SPYGROUP variable set on the channel to be spied upon.
® n - Say the name of the person being spied on if that person has recorded his/her name. If a context is specified, then that
voicemail context will be searched when retrieving the name, otherwise the def aul t context be used when searching for the
name (i.e. if SIP/1000 is the channel being spied on and no mailbox is specified, then 1000 will be used when searching for the

name).
® mai |l box
® context

® 0 - Only listen to audio coming from this channel.
® (- Don't play a beep when beginning to spy on a channel, or speak the selected channel name.
® r - Record the session to the monitor spool directory. An optional base for the flename may be specified. The default is
chanspy.
® basenane
® s - Skip the playback of the channel type (i.e. SIP, IAX, etc) when speaking the selected channel name.
® S- Stop when there are no more extensions left to spy on.
® v - Adjust the initial volume in the range from - 4 to 4. A negative value refers to a quieter setting.
® val ue
® w- Enable whi sper mode, so the spying channel can talk to the spied-on channel.
® W- Enable pri vat e whi sper mode, so the spying channel can talk to the spied-on channel but cannot listen to that channel.
® X
® digit - Specify a DTMF digit that can be used to exit the application.
® X- Allow the user to exit ChanSpy to a valid single digit numeric extension in the current context or the context specified by the
SPY_EXI T_CONTEXT channel variable. The name of the last channel that was spied on will be stored in the SPY_CHANNEL
variable.
® 4 - spy mode
® 5 - whisper mode
® 6 - barge mode

See Also

Application_ChanSpy

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ExternallVR

ExternallVR()

Synopsis
Interfaces with an external IVR application.

Description

Either forks a process to run given command or makes a socket to connect to given host and
starts a generator on the channel. The generator's play list is controlled by the external
application, which can add and clear entries via simple commands issued over its stdout. The
external application will receive all DTMF events received on the channel, and notification if the
channel is hung up. The received on the channel, and notification if the channel is hung up. The
application will not be forcibly terminated when the channel is hung up. For more information see
doc/ AST. pdf .

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

External | VR([argl][,arg2] [, options])

Arguments

® command|ivr://host
® argl
® arg2
® options
® n - Tells ExternallVR() not to answer the channel.
® i -Tells ExternallVR() not to send a hangup and exit when the channel receives a hangup, instead it sends an | informative
message meaning that the external application MUST hang up the call with an Hcommand.
® d - Tells ExternallVR() to run on a channel that has been hung up and will not look for hangups. The external application must
exit with an E command.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Festival
Festival()

Synopsis

Say text to the user.

Description

Connect to Festival, send the argument, get back the waveform, play it to the user, allowing any
given interrupt keys to immediately terminate and return the value, or any to allow any number
back (useful in dialplan).

Syntax

Festival (text[,intkeys])

Arguments

® text
® intkeys

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Flash

Flash()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Flashes a DAHDI Trunk.

Description

Performs a flash on a DAHDI trunk. This can be used to access features provided on an
incoming analogue circuit such as conference and call waiting. Use with SendDTMF() to perform
external transfers.

Syntax
Fl ash()

Arguments
See Also

Application_SendDTMF

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_FollowMe

FollowMe()

Synopsis

Find-Me/Follow-Me application.

Description

This application performs Find-Me/Follow-Me functionality for the caller as defined in the profile
matching the followmeid parameter in f ol | owne. conf . If the specified followmeid profile
doesn't existin f ol | owre. conf , execution will be returned to the dialplan and call execution
will continue at the next priority.

Returns -1 on hangup.
Syntax

Fol | owMe(f ol | owrei d[, options])

Arguments

® foll owreid
® options
L]

"

- Playback the incoming status message prior to starting the follow-me step(s)

® a - Record the caller's name so it can be announced to the callee on each step.

® n - Playback the unreachable status message if we've run out of steps to reach the or the callee has elected not to be reachable.
® d - Disable the ‘Please hold while we try to connect your call' announcement.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ForkCDR
ForkCDR()

Synopsis

Forks the Call Data Record.

Description

Causes the Call Data Record to fork an additional cdr record starting from the time of the fork
call. This new cdr record will be linked to end of the list of cdr records attached to the channel.
The original CDR has a LOCKED flag set, which forces most cdr operations to skip it, except for
the functions that set the answer and end times, which ignore the LOCKED flag. This allows all
the cdr records in the channel to be 'ended' together when the channel is closed.

The CDR() func (when setting CDR values) normally ignores the LOCKED flag also, but has
options to vary its behavior. The 'T' option (described below), can override this behavior, but
beware the risks.

First, this app finds the last cdr record in the list, and makes a copy of it. This new copy will be
the newly forked cdr record. Next, this new record is linked to the end of the cdr record list. Next,
The new cdr record is RESET (unless you use an option to prevent this)

This means that:

1. All flags are unset on the cdr record

2. the start, end, and answer times are all set to zero.

3. the billsec and duration fields are set to zero.

4. the start time is set to the current time.

5. the disposition is set to NULL.

Next, unless you specified the v option, all variables will be removed from the original cdr record.
Thus, the v option allows any CDR variables to be replicated to all new forked cdr records.
Without the v option, the variables on the original are effectively moved to the new forked cdr
record.

Next, if the s option is set, the provided variable and value are set on the original cdr record.

Next, if the a option is given, and the original cdr record has an answer time set, then the new
forked cdr record will have its answer time set to its start time. If the old answer time were carried

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

forward, the answer time would be earlier than the start time, giving strange duration and billsec
times.

If the d option was specified, the disposition is copied from the original cdr record to the new
forked cdr. If the D option was specified, the destination channel field in the new forked CDR is
erased. If the e option was specified, the 'end’ time for the original cdr record is set to the current
time. Future hang-up or ending events will not override this time stamp. If the A option is
specified, the original cdr record will have it ANS_LOCKED flag set, which prevent future answer
events from updating the original cdr record's disposition. Normally, an ANSWERED event would
mark all cdr records in the chain as ANSVEERED. If the T option is specified, the original cdr record
will have its DONT_TOUCH flag set, which will force the cdr_answer, cdr_end, and cdr_setvar
functions to leave that cdr record alone.

And, last but not least, the original cdr record has its LOCKED flag set. AlImost all internal CDR
functions (except for the funcs that set the end, and answer times, and set a variable) will honor
this flag and leave a LOCKED cdr record alone. This means that the newly created forked cdr
record will be affected by events transpiring within Asterisk, with the previously noted exceptions.

Syntax

For kCDR([opti ons])

Arguments

® options
® a - Update the answer time on the NEW CDR just after it's been inited. The new CDR may have been answered already. The
reset that forkcdr does will erase the answer time. This will bring it back, but the answer time will be a copy of the fork/start time.
It will only do this if the initial cdr was indeed already answered.
® A- Lock the original CDR against the answer time being updated. This will allow the disposition on the original CDR to remain
the same.
d - Copy the disposition forward from the old cdr, after the init.
D - Clear the dst channel on the new CDR after reset.
e - End the original CDR. Do this after all the necessary data is copied from the original CDR to the new forked CDR.
r - Do NOT reset the new cdr.
s(nanme=val) - Setthe CDR var name in the original CDR, with value val.
T - Mark the original CDR with a DONT_TOUCH flag. setvar, answer, and end cdr funcs will obey this flag; normally they don't
honor the LOCKED flag set on the original CDR record. Using this flag may cause CDR's not to have their end times updated! It
is suggested that if you specify this flag, you might wish to use the Using this flag may cause CDR's not to have their end times
updated! It is suggested that if you specify this flag, you might wish to use the e flag as well!.
® v - When the new CDR is forked, it gets a copy of the vars attached to the current CDR. The vars attached to the original CDR
are removed unless this option is specified.

See Also

Function_CDR
Application_NoCDR
Application_ResetCDR

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_GetCPEID

GetCPEID()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Get ADSI CPE ID.
Description

Obtains and displays ADSI CPE ID and other information in order to properly setup dahdi . conf
for on-hook operations.

Syntax

Get CPEI I()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Gosub

Gosub()

Synopsis
Jump to label, saving return address.

Description

Jumps to the label specified, saving the return address.

Syntax

Gosub([context[,exten,argl[,...][,argN]])

Arguments

® context

® exten

® priority
® argl
® argN

See Also

Application_Gosublf
Application_Macro
Application_Goto
Application_Return
Application_StackPop

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Gosublf

Gosublf()

Synopsis

Conditionally jump to label, saving return address.

Description

If the condition is true, then jump to labeliftrue. If false, jumps to labeliffalse, if specified. In either
case, a jump saves the return point in the dialplan, to be returned to with a Return.

Syntax

Gosubl f(condition?[labeliftrue][:|abeliffalse])

Arguments

® condition

® destination
® |abeliftrue
® |abeliffal se

See Also

Application_Gosub
Application_Return
Application_Macrolf
Function_IF
Application_Gotolf

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Goto

Goto()

Synopsis

Jump to a particular priority, extension, or context.

Description
This application will set the current context, extension, and priority in the channel structure. After

it completes, the pbx engine will continue dialplan execution at the specified location. If no
specific extension, or extension and context, are specified, then this application will just set the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

specified priority of the current extension.

At least a priority is required as an argument, or the goto will return a - 1, and the channel and
call will be terminated.

If the location that is put into the channel information is bogus, and asterisk cannot find that
location in the dialplan, then the execution engine will try to find and execute the code in the i
(invalid) extension in the current context. If that does not exist, it will try to execute the h
extension. If neither the h nor i extensions have been defined, the channel is hung up, and the
execution of instructions on the channel is terminated. What this means is that, for example, you
specify a context that does not exist, then it will not be possible to find the h or i extensions, and
the call will terminate!

Syntax

Got o([context[, extensions,priority]])

Arguments

® cont ext
® extensions
® priority

See Also

Application_Gotolf
Application_GotolfTime
Application_Gosub
Application_Macro

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r324178.

Application_Gotolf

Gotolf()

Synopsis

Conditional goto.

Description

This application will set the current context, extension, and priority in the channel structure based
on the evaluation of the given condition. After this application completes, the pbx engine will
continue dialplan execution at the specified location in the dialplan. The labels are specified with
the same syntax as used within the Goto application. If the label chosen by the condition is
omitted, no jump is performed, and the execution passes to the next instruction. If the target
location is bogus, and does not exist, the execution engine will try to find and execute the code in
the i (invalid) extension in the current context. If that does not exist, it will try to execute the h
extension. If neither the h nor i extensions have been defined, the channel is hung up, and the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

execution of instructions on the channel is terminated. Remember that this command can set the
current context, and if the context specified does not exist, then it will not be able to find any 'h' or
"I extensions there, and the channel and call will both be terminated!.

Syntax

CGotolf(condition?[labeliftrue][:labeliffalse])

Arguments

® condition
® destination
® | abeliftrue - Continue at labeliftrue if the condition is true.
® | abeliffal se - Continue at labeliffalse if the condition is false.

See Also

Application_Goto
Application_GotolfTime
Application_Gosublf
Application_Macrolf

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r324178.

Application_GotolfTime

GotolfTime()

Synopsis

Conditional Goto based on the current time.

Description

This application will set the context, extension, and priority in the channel structure based on the
evaluation of the given time specification. After this application completes, the pbx engine will
continue dialplan execution at the specified location in the dialplan. If the current time is within
the given time specification, the channel will continue at labeliftrue. Otherwise the channel will
continue at labeliffalse. If the label chosen by the condition is omitted, no jump is performed, and
execution passes to the next instruction. If the target jump location is bogus, the same actions
would be taken as for Got 0. Further information on the time specification can be found in
examples illustrating how to do time-based context includes in the dialplan.

Syntax

CGot ol f Ti me(ti mesweekdaysndaysnont hs[, ti nezone] ?[| abeliftrue][:|abeliff

Arguments

® condition

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

tinmes
weekdays
mdays
nmont hs
ti mezone
® destination
® |abeliftrue
® |abeliffal se

See Also

Application_Gotolf
Function_IFTIME
Function_TESTTIME

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Hangup

Hangup()

Synopsis
Hang up the calling channel.

Description

This application will hang up the calling channel.

Syntax

Hangup([causecode])

Arguments
® causecode - If a causecode is given the channel's hangup cause will be set to the given value.

See Also

Application_Answer
Application_Busy
Application_Congestion

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_IAX2Provision
IAX2Provision()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Provision a calling IAXy with a given template.

Description

Provisions the calling IAXy (assuming the calling entity is in fact an 1AXy) with the given template.
Returns - 1 on error or O on success.

Syntax

| AX2Provi sion([tenpl ate])

Arguments
® tenpl at e - If not specified, defaults to def aul t .

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ICES

ICES()

Synopsis
Encode and stream using 'ices'.
Description

Streams to an icecast server using ices (available separately). A configuration file must be
supplied for ices (see contrib/asterisk-ices.xml).

ICES version 2 client and server required.ICES version 2 client and server required.
Syntax

| CES(confi g)

Arguments
¢ confi g - ICES configuration file.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ImportVar

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ImportVar()
Synopsis
Import a variable from a channel into a new variable.

Description

This application imports a variable from the specified channel (as opposed to the current one)
and stores it as a variable (newvar) in the current channel (the channel that is calling this
application). Variables created by this application have the same inheritance properties as those
created with the Set application.

Syntax

| mport Var (newar =channel nanevari abl e)

Arguments

® newar

® vardata
® channel nane
® variable

See Also
Application_Set

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Incomplete

Incomplete()

Synopsis
Returns AST_PBX_INCOMPLETE value.

Description

Signals the PBX routines that the previous matched extension is incomplete and that further
input should be allowed before matching can be considered to be complete. Can be used within
a pattern match when certain criteria warrants a longer match.

Syntax

I nconpl ete([n])

Arguments

® n - If specified, then Incomplete will not attempt to answer the channel first. Most channel types need to be in Answer state in order to

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

receive DTMF.Most channel types need to be in Answer state in order to receive DTMF.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_IVRDemo
IVRDemo()

Synopsis

IVR Demo Application.

Description

This is a skeleton application that shows you the basic structure to create your own asterisk
applications and demonstrates the IVR demo.

Syntax

| VRDeno(fil enane)

Arguments
® filenane
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JabberJoin

JabberJoin()

Synopsis

Join a chat room

Description

Allows Asterisk to join a chat room.

Syntax

Jabber Joi n(Jabber, RoomJI O , Ni cknane])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® Jabber - Client or transport Asterisk uses to connect to Jabber.

® RoomJl D- XMPP/Jabber JID (Name) of chat room.

® N ckname - The nickname Asterisk will use in the chat room. If a different nickname is supplied to an already joined room, the old nick
will be changed to the new one.If a different nickname is supplied to an already joined room, the old nick will be changed to the new one.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JabberLeave
JabberLeave()

Synopsis

Leave a chat room

Description

Allows Asterisk to leave a chat room.

Syntax

Jabber Leave(Jabber, RoomJI O, Ni cknane])

Arguments

® Jabber - Client or transport Asterisk uses to connect to Jabber.
® RoomJl D- XMPP/Jabber JID (Name) of chat room.
® Ni cknan®e - The nickname Asterisk uses in the chat room.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JabberSend

JabberSend()

Synopsis

Sends an XMPP message to a buddy.

Description

Sends the content of message as text message from the given account to the buddy identified by
jid

Example: JabberSend(asterisk,bob@domain.com,Hello world) sends "Hello world" to
bob@domain.com as an XMPP message from the account asterisk, configured in jabber.conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax
Jabber Send(account, ji d, nessage)

Arguments

® account - The local named account to listen on (specified in jabber.conf)

® jid - Jabber ID of the buddy to send the message to. It can be a bare JID (username@domain) or a full JID
(username@domain/resource).

® nmessage - The message to send.

See Also

Function_JABBER_STATUS
Function_JABBER_RECEIVE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JabberSendGroup

JabberSendGroup()

Synopsis

Send a Jabber Message to a specified chat room

Description
Allows user to send a message to a chat room via XMPP.

To be able to send messages to a chat room, a user must have previously joined it. Use the To
be able to send messages to a chat room, a user must have previously joined it. Use the
JabberJoin function to do so.

Syntax

Jabber SendG oup(Jabber, RoomJI D, Message[, Ni cknane])

Arguments

® Jabber - Client or transport Asterisk uses to connect to Jabber.
® Roomdl D- XMPP/Jabber JID (Name) of chat room.

® Message - Message to be sent to the chat room.

® Ni cknane - The nickname Asterisk uses in the chat room.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JabberStatus

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

JabberStatus()

Synopsis
Retrieve the status of a jabber list member

Description

This application is deprecated. Please use the JABBER_STATUS() function instead.

Retrieves the numeric status associated with the specified buddy JID. The return value in the
Variable will be one of the following.

Online.

Chatty.

Away.
Extended Away.
Do Not Disturb.
Offline.

Not In Roster.

Syntax

Jabber St at us(Jabber, JI D, Vari abl e)

Arguments

® Jabber - Client or transport Asterisk users to connect to Jabber.
¢ JI D- XMPP/Jabber JID (Name) of recipient.
® Vari abl e - Variable to store the status of requested user.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_JACK

JACK()

Synopsis
Jack Audio Connection Kit

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

When executing this application, two jack ports will be created; one input and one output. Other
applications can be hooked up to these ports to access audio coming from, or being send to the

channel.

Syntax

JACK([options])

Arguments
® options
® s
® nane - Connect to the specified jack server name
® |
® nane - Connect the output port that gets created to the specified jack input port
®o0
® nane - Connect the input port that gets created to the specified jack output port
°c
® nane - By default, Asterisk will use the channel name for the jack client name. Use this option to specify a custom client
name.
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Log

Log()

Synopsis

Send arbitrary text to a selected log level.

Description

Sends an arbitrary text message to a selected log level.

Syntax

Log(|l evel , message)

Arguments

® | evel - Level mustbe one of ERROR, WARNI NG, NOTI CE, DEBUG, VERBOSE or DTMF.
®* nessage - Output text message.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Macro

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Macro()

Synopsis
Macro Implementation.

Description

Executes a macro using the context macro- name, jumping to the s extension of that context and
executing each step, then returning when the steps end.

The calling extension, context, and priority are stored in The calling extension, context, and
priority are stored in None - MACRO_EXTEN, The calling extension, context, and priority are
stored in None - MACRO_CONTEXT and The calling extension, context, and priority are stored in
None - MACRO PRI ORI TY respectively. Arguments become The calling extension, context, and
priority are stored in None - ARGL, The calling extension, context, and priority are stored in None
- ARR2, etc in the macro context.

If you Goto out of the Macro context, the Macro will terminate and control will be returned at the
location of the Goto.

If If None - MACRO_OFFSET is set at termination, Macro will attempt to continue at priority
MACRO_OFFSET + N + 1 if such a step exists, and N + 1 otherwise.

Because of the way Macro is implemented (it executes the priorities contained within it via
sub-engine), and a fixed per-thread memory stack allowance, macros are limited to 7 levels of
nesting (macro calling macro calling macro, etc.); It may be possible that stack-intensive
applications in deeply nested macros could cause asterisk to crash earlier than this limit. It is
advised that if you need to deeply nest macro calls, that you use the Gosub application (now
allows arguments like a Macro) with explict Return() calls instead.

Use of the application Wai t Ext en within a macro will not function as expected. Please use the
Read application in order to read DTMF from a channel currently executing a macro.

Syntax
Macro(name[,argl[,arg2[,...]]1])

Arguments

® nane - The name of the macro
® args

® argl

® arg2

See Also
Application_MacroExit

Application_Goto
Application_Gosub

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MacroExclusive
MacroExclusive()

Synopsis

Exclusive Macro Implementation.

Description

Executes macro defined in the context macro- name. Only one call at a time may run the macro.
(we'll wait if another call is busy executing in the Macro)

Arguments and return values as in application Macro()

Use of the application Wai t Ext en within a macro will not function as expected. Please use the
Read application in order to read DTMF from a channel currently executing a macro.

Syntax

Macr oExcl usi ve(nane[,argl[,arg2[,...]]])

Arguments

® nane - The name of the macro
® argl
® arg2

See Also
Application_Macro

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MacroExit
MacroEXxit()

Synopsis

Exit from Macro.

Description

Causes the currently running macro to exit as if it had ended normally by running out of priorities
to execute. If used outside a macro, will likely cause unexpected behavior.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax
Macr oExi t ()

Arguments
See Also
Application_Macro

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Macrolf

Macrolf()

Synopsis

Conditional Macro implementation.

Description
Executes macro defined in macroiftrue if expr is true (otherwise macroiffalse if provided)
Arguments and return values as in application Macro()

Use of the application Wai t Ext en within a macro will not function as expected. Please use the
Read application in order to read DTMF from a channel currently executing a macro.

Syntax

Macrol f (expr?macroi ftrue[: macroiffal se])

Arguments

® expr

® destination
® macroiftrue
® macroiffal se

See Also
Application_Gotolf

Application_Gosublf
Function_IF

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MailboxExists

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

MailboxExists()
Synopsis
Check to see if Voicemail mailbox exists.

Description

Check to see if the specified mailbox exists. If no voicemail context is specified, the def aul t
context will be used.

This application will set the following channel variable upon completion:

® VMBOXEXI STSSTATUS - This will contain the status of the execution of the MailboxExists application. Possible values include:
® SUCCESS
® FAI LED

Syntax

Mai | boxExi st s(mai | box[@ontext] [, options])

Arguments

® mai |l box
® mai | box
® context
® opti ons - None options.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MeetMe

MeetMe()

Synopsis

MeetMe conference bridge.

Description

Enters the user into a specified MeetMe conference. If the confno is omitted, the user will be
prompted to enter one. User can exit the conference by hangup, or if the p option is specified, by
pressing #.

The DAHDI kernel modules and at least one hardware driver (or dahdi_dummy) must be present
for conferencing to operate properly. In addition, the chan_dahdi channel driver must be loaded
for the The DAHDI kernel modules and at least one hardware driver (or dahdi_dummy) must be
present for conferencing to operate properly. In addition, the chan_dahdi channel driver must be
loaded for the i and r options to operate at all.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax
Meet Me([confno[, options[,pin]]])

Arguments

® conf no - The conference number
® options
® a - Setadmin mode.
® A- Set marked mode.
® b - Run AGI script specified in MEETME_AG _ BACKGROUND Default:
conf - backgr ound. agi . This does not work with non-DAHDI channels in the same conference).This does not work with
non-DAHDI channels in the same conference).
¢ - Announce user(s) count on joining a conference.
C - Continue in dialplan when kicked out of conference.
d - Dynamically add conference.
D - Dynamically add conference, prompting for a PIN.
e - Select an empty conference.
E - Select an empty pinless conference.
F - Pass DTMF through the conference.
G- Play an intro announcement in conference.
® x - The file to playback
i - Announce user join/leave with review.
I - Announce user join/leave without review.
| - Set listen only mode (Listen only, no talking).
m- Set initially muted.
M- Enable music on hold when the conference has a single caller. Optionally, specify a musiconhold class to use. If one is not
provided, it will use the channel's currently set music class, or def aul t .
® class
® 0 - Set talker optimization - treats talkers who aren't speaking as being muted, meaning (a) No encode is done on transmission
and (b) Received audio that is not registered as talking is omitted causing no buildup in background noise.
® p - Allow user to exit the conference by pressing # (default) or any of the defined keys. If keys contain * this will override option s
. The key used is set to channel variable MEETME_EXI T_KEY.
® keys
® P - Always prompt for the pin even if it is specified.
® (- Quiet mode (don't play enter/leave sounds).
r - Record conference (records as MEETME_RECORDI NGFI LE using format MEETME_RECORDI NGFORVAT. Default filename is
neet ne- conf - r ec- ${ CONFNG} - ${ UNI QUEI D} and the default format is wav.
s - Present menu (user or admin) when * is received (send to menu).
t - Set talk only mode. (Talk only, no listening).
T - Set talker detection (sent to manager interface and meetme list).
w - Wait until the marked user enters the conference.
® secs
x - Close the conference when last marked user exits
® X- Allow user to exit the conference by entering a valid single digit extension MEETME_EXI T_CONTEXT or the current context if
that variable is not defined.
® 1 - Do not play message when first person enters
® S-Kick the user x seconds after he entered into the conference.
® x
® L - Limit the conference to x ms. Play a warning when y ms are left. Repeat the warning every z ms. The following special
variables can be used with this option: File to play when time is up. File to play as warning if y is defined. The default is to say the
time remaining.
® X
*y
z

See Also

Application_MeetMeCount
Application_MeetMeAdmin
Application_MeetMeChannelAdmin

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MeetMeAdmin
MeetMeAdmin()

Synopsis

MeetMe conference administration.

Description
Run admin command for conference confno.

Will additionally set the variable Will additionally set the variable None - MEETMEADM NSTATUS
with one of the following values:

® NEETMEADM NSTATUS -

NOPARSE - Invalid arguments.

NOTFOUND - User specified was not found.

FAI LED - Another failure occurred.

OK - The operation was completed successfully.

Syntax

Meet MeAdmi n(conf no, command][, user])

Arguments

® confno
® command
® e - Eject last user that joined.

® E - Extend conference end time, if scheduled.
® k - Kick one user out of conference.

® K- Kick all users out of conference.

® | - Unlock conference.

® L - Lock conference.

®* m- Unmute one user.

® M- Mute one user.

® n - Unmute all users in the conference.

® N- Mute all non-admin users in the conference.
® r - Reset one user's volume settings.

® R- Reset all users volume settings.

® s - Lower entire conference speaking volume.
® S- Raise entire conference speaking volume.
® t - Lower one user's talk volume.

® T - Raise one user's talk volume.

® u - Lower one user's listen volume.

® U- Raise one user's listen volume.

® v - Lower entire conference listening volume.
® V- Raise entire conference listening volume.

® user

See Also

Application_MeetMe

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MeetMeChannelAdmin

MeetMeChannelAdmin()

Synopsis

MeetMe conference Administration (channel specific).

Description
Run admin command for a specific channel in any conference.

Syntax

Meet MeChannel Adm n(channel , conmand)

Arguments

® channel

¢ command
® k - Kick the specified user out of the conference he is in.
® m- Unmute the specified user.
® M- Mute the specified user.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r324178.

Application_MeetMeCount
MeetMeCount()

Synopsis

MeetMe participant count.

Description

Plays back the number of users in the specified MeetMe conference. If var is specified, playback
will be skipped and the value will be returned in the variable. Upon application completion,
MeetMeCount will hangup the channel, unless priority n+1 exists, in which case priority progress

will continue.

Syntax

Meet MeCount (confno[, var])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® conf no - Conference number.
® var

See Also
Application_MeetMe

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Milliwatt

Milliwatt()

Synopsis

Generate a Constant 1004Hz tone at 0Odbm (mu-law).

Description

Previous versions of this application generated the tone at 1000Hz. If for some reason you would
prefer that behavior, supply the o option to get the old behavior.

Syntax

MIliwatt([options])

Arguments

® options
® 0 - Generate the tone at 1000Hz like previous version.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MinivmAccMess

MinivmAccMess()

Synopsis
Record account specific messages.

Description
This application is part of the Mini-Voicemail system, configured in m ni vm conf .

Use this application to record account specific audio/video messages for busy, unavailable and
temporary messages.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Account specific directories will be created if they do not exist.

* MM ACCMESS_STATUS - This is the result of the attempt to record the specified greeting. FAI LED is set if the file can't be created.
® SUCCESS
® FAI LED

Syntax

M ni vimAccMess(user nanmedonai n[, opti ons])

Arguments

®* mai | box
® user nane - Voicemail username
¢ donai n - Voicemail domain
® options
® u - Record the unavai | abl e greeting.
® b - Record the busy greeting.
® t - Record the temporary greeting.
® n - Account name.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MinivmDelete

MinivmDelete()

Synopsis

Delete Mini-Voicemail voicemail messages.

Description
This application is part of the Mini-Voicemail system, configured in m ni vm conf .

It deletes voicemail file set in MVM_FILENAME or given filename.

* WM DELETE_STATUS - This is the status of the delete operation.
® SUCCESS
® FAI LED

Syntax

M ni vinDel et e(fil enane)

Arguments
® filenane - File to delete

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MinivmGreet
MinivmGreet()

Synopsis

Play Mini-Voicemail prompts.
Description

This application is part of the Mini-Voicemail system, configured in minivm.conf.
MinivmGreet() plays default prompts or user specific prompts for an account.

Busy and unavailable messages can be choosen, but will be overridden if a temporary message
exists for the account.

® MM GREET_STATUS - This is the status of the greeting playback.
® SUCCESS
® USEREXI T
® FAI LED

Syntax

M ni vnir eet (user nanedonai n[, opti ons])

Arguments

®* mai | box
® user nane - Voicemail username
® domai n - Voicemail domain
® options
® b - Play the busy greeting to the calling party.
® s - Skip the playback of instructions for leaving a message to the calling party.
® u - Play the unavai | abl e greeting.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MinivmMWiI

MinivmMWI()

Synopsis

Send Message Waiting Notification to subscriber(s) of mailbox.

Description

This application is part of the Mini-Voicemail system, configured in m ni vm conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

MinivmMWI is used to send message waiting indication to any devices whose channels have
subscribed to the mailbox passed in the first parameter.

Syntax

M ni vimWN (user nanedonai n, ur gent, new, ol d)

Arguments

®* mai | box
® user nane - Voicemail username
¢ domai n - Voicemail domain
® urgent - Number of urgent messages in mailbox.
® new- Number of new messages in mailbox.
® ol d - Number of old messages in mailbox.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_MinivmNotify

MinivmNotify()

Synopsis

Notify voicemail owner about new messages.

Description
This application is part of the Mini-Voicemail system, configured in minivm.conf.

MiniVMnotify forwards messages about new voicemail to e-mail and pager. If there's no user
account for that address, a temporary account will be used with default options (set in
m ni vm conf).

If the channel variable If the channel variable None - WM _COUNTER is set, this will be used in the
message file name and available in the template for the message.

If no template is given, the default email template will be used to send email and default pager
template to send paging message (if the user account is configured with a paging address.

* MM NOTI FY_STATUS - This is the status of the notification attempt
® SUCCESS
® FAI LED

Syntax

M ni viNot i f y(user nanedonai n[, opti ons])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

®* mail box
® user nane - Voicemail username
® domai n - Voicemail domain
® options
® tenpl at e - E-mail template to use for voicemail notification

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MinivmRecord

MinivmRecord()

Synopsis
Receive Mini-Voicemail and forward via e-mail.

Description
This application is part of the Mini-Voicemail system, configured in m ni vm conf

MiniVM records audio file in configured format and forwards message to e-mail and pager.

If there's no user account for that address, a temporary account will be used with default options.

The recorded file name and path will be stored in The recorded file name and path will be stored
in None - WM _FI LENAME and the duration of the message will be stored in The recorded file
name and path will be stored in None - WM _DURATI ON

If the caller hangs up after the recording, the only way to send the message and clean up is to

execute in the If the caller hangs up after the recording, the only way to send the message and
clean up is to execute in the h extension. The application will exit if any of the following DTMF

digits are received and the requested extension exist in the current context.

® MM _RECORD_STATUS - This is the status of the record operation
® SUCCESS
® USEREXI T
® FAI LED

Syntax

M ni vRecor d(user namedonai n[, opti ons])

Arguments

®* mai | box
® user nane - Voicemail username
¢ domuai n - Voicemail domain
® options
® 0 - Jump to the o extension in the current dialplan context.
® * - Jump to the a extension in the current dialplan context.
® g - Use the specified amount of gain when recording the voicemail message. The units are whole-number decibels (dB).
® gai n - Amount of gain to use

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MixMonitor

MixMonitor()

Synopsis

Record a call and mix the audio during the recording. Use of StopMixMonitor is required to
guarantee the audio file is available for processing during dialplan execution.

Description

Records the audio on the current channel to the specified file.

* M XMONI TOR_FI LENAME - Will contain the filename used to record.

Syntax

M xMoni t or (fi | enameext ensi on[, opti ons[, command]])

Arguments

* file
* fil enane - If flename is an absolute path, uses that path, otherwise creates the file in the configured monitoring directory from
asterisk. conf.
® extension
® options
® a - Append to the file instead of overwriting it.
® b - Only save audio to the file while the channel is bridged. Does not include conferences or sounds played to each bridged
partyDoes not include conferences or sounds played to each bridged party If you utilize this option inside a Local channel, you
must make sure the Local channel is not optimized away. To do this, be sure to call your Local channel with the If you utilize this
option inside a Local channel, you must make sure the Local channel is not optimized away. To do this, be sure to call your Local
channel with the / n option. For example: Dial(Local/start@mycontext/n)
® v - Adjust the heard volume by a factor of x (range - 4to 4)
® x
® V- Adjust the spoken volume by a factor of x (range - 4 to 4)
® X
® W- Adjust both, heard and spoken volumes by a factor of x (range -4 to 4)
® x
® conmand - Will be executed when the recording is over. Any strings matching ~{ X} will be unescaped to X. All variables will be evaluated
at the time MixMonitor is called.

See Also

Application_Monitor
Application_StopMixMonitor
Application_PauseMonitor
Application_UnpauseMonitor

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_Monitor
Monitor()

Synopsis

Monitor a channel.

Description

Used to start monitoring a channel. The channel's input and output voice packets are logged to
files until the channel hangs up or monitoring is stopped by the StopMonitor application.

By default, files are stored to / var/ spool / ast eri sk/ noni t or/ . Returns - 1 if monitor files
can't be opened or if the channel is already monitored, otherwise 0.

Syntax

Monitor([file format[:url base][, fnane_base[, options]]])

Arguments

® file_format
® file_format - optional, if not set, defaults to wav
® url base
* fnane_base - if set, changes the filename used to the one specified.
® options
®* m- when the recording ends mix the two leg files into one and delete the two leg files. If the variable MONI TOR_EXEC is set, the
application referenced in it will be executed instead of soxmix/sox and the raw leg files will NOT be deleted automatically.
soxmix/sox or MONI TOR_EXEC is handed 3 arguments, the two leg files and a target mixed file name which is the same as the
leg file names only without the in/out designator. If MONI TOR_EXEC_ARGS is set, the contents will be passed on as additional
arguments to MONI TOR_EXEC. Both MONI TOR_EXEC and the Mix flag can be set from the administrator interface.
® b - Don't begin recording unless a call is bridged to another channel.
® | - Skip recording of input stream (disables moption).
® 0 - Skip recording of output stream (disables moption).

See Also

Application_StopMonitor

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Morsecode

Morsecode()

Synopsis
Plays morse code.

Description

Plays the Morse code equivalent of the passed string.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This application uses the following variables:

® MORSEDI TLEN - Use this value in (ms) for length of dit
® MORSETONE - The pitch of the tone in (Hz), default is 800

Syntax

Mor secode(stri ng)

Arguments
® string - String to playback as morse code to channel

See Also

Application_SayAlpha
Application_SayPhonetic

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MP3Player

MP3Player()

Synopsis

Play an MP3 file or M3U playlist file or stream.

Description

Executes mpg123 to play the given location, which typically would be a mp3 filename or m3u
playlist filename or a URL. Please read http://en.wikipedia.org/wiki/M3U to see how M3U playlist
file format is like, Example usage would be exten =>
1234,1,MP3Player(/var/lib/asterisk/playlist. m3u) User can exit by pressing any key on the
dialpad, or by hanging up.

Syntax

MP3PI ayer (Locat i on)

Arguments
® Locati on - Location of the file to be played. (argument passed to mpg123)

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://en.wikipedia.org/wiki/M3U

Application_MSet

MSet()

Synopsis

Set channel variable(s) or function value(s).

Description

This function can be used to set the value of channel variables or dialplan functions. When
setting variables, if the variable name is prefixed with {}, the variable will be inherited into
channels created from the current channel If the variable name is prefixed with _, the variable will
be inherited into channels created from the current channel and all children channels. MSet
behaves in a similar fashion to the way Set worked in 1.2/1.4 and is thus prone to doing things
that you may not expect. For example, it strips surrounding double-quotes from the right-hand
side (value). If you need to put a separator character (comma or vert-bar), you will need to
escape them by inserting a backslash before them. Avoid its use if possible.

Syntax

Moet (nanelval uel[, nane2val ue2[,...]1])

Arguments

® setl
® nanel
® val uel

® nane2
® val ue2

See Also
Application_Set
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_MusicOnHold
MusicOnHold()

Synopsis

Play Music On Hold indefinitely.

Description

Plays hold music specified by class. If omitted, the default music source for the channel will be
used. Change the default class with Set(CHANNEL(musicclass)=...). If duration is given, hold
music will be played specified number of seconds. If duration is ommited, music plays

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

indefinitely. Returns 0 when done, - 1 on hangup.

Syntax

Musi cOnHol d(cl ass[, duration])

Arguments

® class
® duration

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_NBScat
NBScat()

Synopsis

Play an NBS local stream.
Description

Executes nbscat to listen to the local NBS stream. User can exit by pressing any key.

Syntax
NBScat ()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_NoCDR

NoCDR()

Synopsis

Tell Asterisk to not maintain a CDR for the current call

Description

This application will tell Asterisk not to maintain a CDR for the current call.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax
NoCDR()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_NoOp

NoOp()

Synopsis

Do Nothing (No Operation).

Description

This application does nothing. However, it is useful for debugging purposes.

This method can be used to see the evaluations of variables or functions without having any
effect.

Syntax

NoOp([text])

Arguments
® text - Any text provided can be viewed at the Asterisk CLI.

See Also

Application_Verbose
Application_Log

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ODBC_Commit

ODBC_Commit()

Synopsis

Commits a currently open database transaction.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Commits the database transaction specified by transaction ID or the current active transaction, if
not specified.

Syntax

ODBC Commit([transaction 1D])

Arguments
® transaction ID
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ODBC_Rollback

ODBC_Rollback()

Synopsis

Rollback a currently open database transaction.

Description

Rolls back the database transaction specified by transaction ID or the current active transaction,
if not specified.

Syntax

ODBC_Rol | back([transaction |1D])

Arguments
® transaction ID

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ODBCFinish

ODBCFinish()

Synopsis

Clear the resultset of a sucessful multirow query.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

For queries which are marked as mode=multirow, this will clear any remaining rows of the
specified resultset.

Syntax
CDBCFi ni sh(resul t-id)

Arguments
® result-id
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Originate
Originate()

Synopsis
Originate a call.

Description

This application originates an outbound call and connects it to a specified extension or
application. This application will block until the outgoing call fails or gets answered. At that point,
this application will exit with the status variable set and dialplan processing will continue.

This application sets the following channel variable before exiting:

® ORI G NATE_STATUS - This indicates the result of the call origination.

FAI LED

SUCCESS

BUSY

CONGESTI ON

HANGUP

Rl NG NG

UNKNOWN - In practice, you should never see this value. Please report it to the issue tracker if you ever see it.

Syntax
Oiginate(tech_data,type,argl[,arg2[,arg3]])

Arguments

t ech_dat a - Channel technology and data for creating the outbound channel. For example, SIP/1234.

t ype - This should be app or ext en, depending on whether the outbound channel should be connected to an application or extension.
ar gl - If the type is app, then this is the application name. If the type is ext en, then this is the context that the channel will be sent to.
ar g2 - If the type is app, then this is the data passed as arguments to the application. If the type is ext en, then this is the extension that

the channel will be sent to.
® arg3 - If the type is ext en, then this is the priority that the channel is sent to. If the type is app, then this parameter is ignored.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_OSPAuth
OSPAuUth()

Synopsis

OSP Authentication.

Description

Authenticate a call by OSP.

Input variables:

® OSPI NPEERI P - The last hop IP address.
® OSPI NTOKEN - The inbound OSP token.

Output variables:

® (OSPI NHANDLE - The inbound call OSP transaction handle.
® OSPI NTI MELI M T - The inbound call duration limit in seconds.

This application sets the following channel variable upon completion:

® OSPAUTHSTATUS - The status of OSPAuth attempt as a text string, one of
® SUCCESS
® FAI LED
® ERROR

Syntax

OSPAut h([provi der[, options]])

Arguments

® provi der - The name of the provider that authenticates the call.
® options - Reserverd.

See Also

Application_OSPLookup
Application_ OSPNext
Application_OSPFinish

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_OSPFinish
OSPFinish()

Synopsis

Report OSP entry.

Description
Report call state.

Input variables:

OSPI NHANDLE - The inbound call OSP transaction handle.
OSPOUTHANDLE - The outbound call OSP transaction handle.
OSPAUTHSTATUS - The OSPAuth status.
OSPLOOKUPSTATUS - The OSPLookup status.
OSPNEXTSTATUS - The OSPNext status.

GOSPI NAUDI OQOCS - The inbound call leg audio QoS string.
OSPOUTAUDI OQCS - The outbound call leg audio QoS string.

This application sets the following channel variable upon completion:

® OSPFI NI SHSTATUS - The status of the OSPFinish attempt as a text string, one of
® SUCCESS
® FAI LED
® ERROR

Syntax

OSPFi ni sh([cause[, options]])

Arguments

® cause - Hangup cause.
® options - Reserved.

See Also

Application_ OSPAuth
Application_OSPLookup
Application_ OSPNext

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_OSPLookup

OSPLookup()

Synopsis

Lookup destination by OSP.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description
Looks up destination via OSP.

Input variables:

OSPI NACTUALSRC - The actual source device IP address in indirect mode.
OSPI NPEERI P - The last hop IP address.

OSPI NHANDLE - The inbound call OSP transaction handle.

OSPI NTI MELI M T - The inbound call duration limit in seconds.

OSPI NNETWORKI D - The inbound source network ID.

OSPI NNPRN - The inbound routing number.

OSPI NNPCI C - The inbound carrier identification code.

OSPI NNPDI - The inbound number portability database dip indicator.

OSPI NSPI D - The inbound service provider identity.

OSPI NOCN - The inbound operator company number.

OSPI NSPN - The inbound service provider name.

OSPI NALTSPN - The inbound alternate service provider name.

OSPI NMCC - The inbound mobile country code.

OSPI NMNC - The inbound mobile network code.

OSPI NTOHOST - The inbound To header host part.

OSPI NDI VUSER - The inbound Diversion header user part.

OSPI NDI VHOST - The inbound Diversion header host part.

OSPI NCUSTOM NFOn - The inbound custom information, where n is the index beginning with 1 upto 8.

Output variables:

OSPOUTHANDLE - The outbound call OSP transaction handle.
OSPOUTTECH - The outbound channel technology for the call.
OSPDESTI NATI ON - The outbound destination IP address.
OSPOUTCALLI NG- The outbound calling number.
OSPOUTCALLED - The outbound called number.
OSPOUTNETWORKI D - The outbound destination network ID.
OSPOUTNPRN - The outbound routing number.

OSPOUTNPCI C - The outbound carrier identification code.
OSPOUTNPDI - The outbound number portability database dip indicator.
OSPQUTSPI D - The outbound service provider identity.
OSPOUTQOCN - The outbound operator company number.
OSPOUTSPN - The outbound service provider name.
OSPOUTALTSPN - The outbound alternate service provider name.
OSPOUTMCC - The outbound mobile country code.

OSPOUTMNC - The outbound mobile network code.
OSPOUTTOKEN - The outbound OSP token.

OSPDESTREMAI LS - The number of remained destinations.
OSPQUTTI MELI M T - The outbound call duration limit in seconds.
OSPOUTCALLI DTYPES - The outbound Call-ID types.
OSPQUTCALLI D- The outbound Call-ID. Only for H.323.

OSPDI ALSTR - The outbound Dial command string.

This application sets the following channel variable upon completion:

® (OSPLOOKUPSTATUS - The status of OSPLookup attempt as a text string, one of
® SUCCESS
® FAI LED
® ERROR

Syntax

OSPLookup(exten[, provider[, options]])

Arguments

® ext en - The exten of the call.
® provi der - The name of the provider that is used to route the call.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® options
® h - generate H323 call id for the outbound call
® s - generate SIP call id for the outbound call. Have not been implemented
® | - generate IAX call id for the outbound call. Have not been implemented

See Also

Application_OSPAuth
Application_ OSPNext
Application_ OSPFinish

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_OSPNext

OSPNext()

Synopsis

Lookup next destination by OSP.

Description
Looks up the next destination via OSP.

Input variables:

OSPI NHANDLE - The inbound call OSP transaction handle.
OSPOUTHANDLE - The outbound call OSP transaction handle.
COSPI NTI MELI M T - The inbound call duration limit in seconds.
OSPOUTCALLI DTYPES - The outbound Call-ID types.
OSPDESTREMAI LS - The number of remained destinations.

Output variables:

OSPQUTTECH - The outbound channel technology.

OSPDESTI NATI ON - The destination IP address.

OSPQUTCALLI NG- The outbound calling number.
OSPQUTCALLED - The outbound called number.
OSPOUTNETWORKI D - The outbound destination network ID.
OSPOUTNPRN - The outbound routing number.

OSPQUTNPCI C - The outbound carrier identification code.
OSPOUTNPDI - The outbound number portability database dip indicator.
OSPQUTSPI D - The outbound service provider identity.
OSPOUTQOCN - The outbound operator company number.
OSPQUTSPN - The outbound service provider name.
OSPOUTALTSPN - The outbound alternate service provider name.
OSPOUTMCC - The outbound mobile country code.

OSPOUTMNC - The outbound mobile network code.
OSPQUTTOKEN - The outbound OSP token.

OSPDESTREMAI LS - The number of remained destinations.
OSPQUTTI MELI M T - The outbound call duration limit in seconds.
OSPOUTCALLI D- The outbound Call-ID. Only for H.323.

OSPDI ALSTR - The outbound Dial command string.

This application sets the following channel variable upon completion:

® OSPNEXTSTATUS - The status of the OSPNext attempt as a text string, one of

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® SUCCESS
® FAI LED
® ERROR

Syntax

OSPNext ()

Arguments

See Also

Application_ OSPAuth
Application_OSPLookup
Application_OSPFinish

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Page

Page()

Synopsis
Page series of phones

Description

Places outbound calls to the given technology / resource and dumps them into a conference
bridge as muted participants. The original caller is dumped into the conference as a speaker and
the room is destroyed when the original callers leaves.

Syntax

Page(Technol ogy/ Resour ce[&Technol ogy2/ Resource2[& ..]][,options[,tinec

Arguments

® Technol ogy/ Resour ce
®* Technol ogy/ Resour ce - Specification of the device(s) to dial. These must be in the format of Technol ogy/ Resour ce,
where Technology represents a particular channel driver, and Resource represents a resource available to that particular
channel driver.
® Technol ogy2/ Resour ce2 - Optional extra devices to dial inparallel If you need more then one enter them as
Technology2/Resource2& Technology3/Resourse3&.....
® options
® d - Full duplex audio
i - Ignore attempts to forward the call
g - Quiet, do not play beep to caller
r - Record the page into a file (meetme option r)
s - Only dial a channel if its device state says that it is NOT_| NUSE
A - Play an announcement simultaneously to all paged participants
® x - The announcement to playback in all devices

® n - Do not play simultaneous announcement to caller (implies Am)
® timeout - Specify the length of time that the system will attempt to connect a call. After this duration, any intercom calls that have not
been answered will be hung up by the system.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Application_MeetMe

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Park
Park()

Synopsis

Park yourself.

Description

Used to park yourself (typically in combination with a supervised transfer to know the parking
space). This application is always registered internally and does not need to be explicitly added
into the dialplan, although you should include the par kedcal | s context (or the context specified
infeatures. conf).

If you set the If you set the None - PARKI NGLOT variable, the call will be parked in the specifed
parking context. Note setting this variable overrides the If you set the None - {{ PARKINGLOT}}
set by the CHANNEL function.

If you set the If you set the None - PARKI NGEXTEN variable to an extension in your parking
context, Park() will park the call on that extension, unless it already exists. In that case, execution
will continue at next priority.

If you set the If you set the None - PARKI NG_OT variable, Park() will park the call in that
parkinglot.

If you set the If you set the None - PARKI NGDYNAM C variable, this parkinglot from features.conf
will be used as template for the newly created dynamic lot.

If you set the If you set the None - PARKI NGDYNCONTEXT variable the newly created dynamic
parking lot will use this context.

If you set the If you set the None - PARKI NGDYNPQCS variable the newly created dynamic
parkinglot will use those parking postitions.

Syntax

Park([timeout[,return_context[,return_exten[,return_priority[, options]

Arguments

® tineout - A custom parking timeout for this parked call. Value in milliseconds.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ret urn_cont ext - The context to return the call to after it times out.
ret ur n_ext en - The extension to return the call to after it times out.
return_priority - The priority to return the call to after it times out.
opt i ons - A list of options for this parked call.

® r - Send ringing instead of MOH to the parked call.

® R- Randomize the selection of a parking space.

® s - Silence announcement of the parking space number.

See Also

Application_ParkAndAnnounce
Application_ParkedCall

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ParkAndAnnounce
ParkAndAnnounce()

Synopsis

Park and Announce.

Description

Park a call into the parkinglot and announce the call to another channel.

The variable The variable None - PARKEDAT will contain the parking extension into which the call
was placed. Use with the Local channel to allow the dialplan to make use of this information.

Syntax

Par kAndAnnounce(announce[: announcel[:...]],timeout, dial [, return_contex

Arguments

® announce_tenpl ate
® announce - Colon-separated list of files to announce. The word PARKED will be replaced by a say_digits of the extension in
which the call is parked.
® announcel
® timeout - Time in seconds before the call returns into the return context.
® di al - The app_dial style resource to call to make the announcement. Console/dsp calls the console.
® return_context - The goto-style label to jump the call back into after timeout. Default pri ority+1.

See Also

Application_Park
Application_ParkedCall

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ParkedCall

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ParkedCall()
Synopsis
Answer a parked call.

Description

Used to connect to a parked call. This application is always registered internally and does not
need to be explicitly added into the dialplan, although you should include the par kedcal | s
context. If no extension is provided, then the first available parked call will be acquired.

Syntax

Par kedCal | (ext en)

Arguments
® exten

See Also

Application_Park
Application_ParkAndAnnounce

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_PauseMonitor

PauseMonitor()

Synopsis

Pause monitoring of a channel.

Description

Pauses monitoring of a channel until it is re-enabled by a call to UnpauseMonitor.

Syntax

PauseMoni t or ()

Arguments

See Also

Application_UnpauseMonitor

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_PauseQueueMember
PauseQueueMember()

Synopsis

Pauses a queue member.

Description

Pauses (blocks calls for) a queue member. The given interface will be paused in the given
gueue. This prevents any calls from being sent from the queue to the interface until it is
unpaused with UnpauseQueueMember or the manager interface. If no queuename is given, the
interface is paused in every queue it is a member of. The application will fail if the interface is not
found.

This application sets the following channel variable upon completion:

® PQWSTATUS - The status of the attempt to pause a queue member as a text string.
® PAUSED
® NOTFOUND

Example: PauseQueueMember(,SIP/3000)

Syntax

PauseQueueMenber ([queuenane, i nterface[, opti ons[, reason]]])

Arguments

® queuenane
® interface
® options

® reason - Is used to add extra information to the appropriate queue_log entries and manager events.

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_ QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function QUEUE_WAITING_COUNT
Function QUEUE_MEMBER_LIST
Function QUEUE_MEMBER_PENALTY

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Pickup

Pickup()

Synopsis

Directed extension call pickup.

Description

This application can pickup any ringing channel that is calling the specified extension. If no
context is specified, the current context will be used. If you use the special string Pl CKUPMARK
for the context parameter, for example 10@PICKUPMARK, this application tries to find a channel
which has defined a This application can pickup any ringing channel that is calling the specified
None - PI CKUPMARK channel variable with the same value as extension (in this example, 10).
When no parameter is specified, the application will pickup a channel matching the pickup group
of the active channel.

Syntax
Pi ckup(ext ensi on[@ont ext] [&extensi on2[@ontext2][& ..]])

Arguments

® ext
® extension
® cont ext

® ext2
® extension2
® context?2

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_PickupChan
PickupChan()

Synopsis

Pickup a ringing channel.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This will pickup a specified channel if ringing.

Syntax

Pi ckupChan(channel [, channel 2[,...][, options]])

Arguments

® channel
® channel 2
® options
® p - Channel name specified partial name. Used when find channel by callid.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Playback
Playback()

Synopsis

Play a file.

Description

Plays back given filenames (do not put extension of wav/alaw etc). The playback command
answer the channel if no options are specified. If the file is non-existant it will fail

This application sets the following channel variable upon completion:

® PLAYBACKSTATUS - The status of the playback attempt as a text string.
® SUCCESS
® FAI LED

See Also: Background (application) — for playing sound files that are interruptible

WaitExten (application) — wait for digits from caller, optionally play music on hold

Syntax

Pl ayback(fil ename[& il ename2[& ..]][,options])

Arguments

* filenanes
® filenanme
® filename2
® options - Comma separated list of options
® ski p - Do not play if not answered
®* noanswer - Playback without answering, otherwise the channel will be answered before the sound is played. Not all channel
types support playing messages while still on hook.Not all channel types support playing messages while still on hook.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_PlayTones
PlayTones()

Synopsis

Play a tone list.

Description

Plays a tone list. Execution will continue with the next step in the dialplan immediately while the
tones continue to play.

See the sample i ndi cati ons. conf for a description of the specification of a tonelist.

Syntax

Pl ayTones(arg)

Arguments

® arg - Arg is either the tone name defined in the i ndi cat i ons. conf configuration file, or a directly specified list of frequencies and
durations.

See Also

Application_StopPlayTones

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_PrivacyManager

PrivacyManager()

Synopsis

Require phone number to be entered, if no CallerID sent

Description

If no Caller*ID is sent, PrivacyManager answers the channel and asks the caller to enter their
phone number. The caller is given maxretries attempts to do so. The application does nothing if
Caller*ID was received on the channel.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The application sets the following channel variable upon completion:

® PRI VACYMGRSTATUS - The status of the privacy manager's attempt to collect a phone number from the user.
® SUCCESS
® FAI LED

Syntax

Pri vacyManager ([maxretri es[, m nl engt h[, options[, context]]]])

Arguments

maxretries - Total tries caller is allowed to input a callerid. Defaults to 3.
m nl engt h - Minimum allowable digits in the input callerid number. Defaults to 10.
opt i ons - Position reserved for options.

L]
L]
L]
® cont ext - Context to check the given callerid against patterns.

See Also
Application_Zapateller
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r321436.

Application_Proceeding

Proceeding()

Synopsis

Indicate proceeding.

Description

This application will request that a proceeding message be provided to the calling channel.

Syntax

Proceedi ng()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Progress

Progress()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Indicate progress.

Description

This application will request that in-band progress information be provided to the calling channel.

Syntax
Progress()

Arguments

See Also

Application_Busy
Application_Congestion
Application_Ringing
Application_PlayTones

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Queue

Queue()

Synopsis

Queue a call for a call queue.

Description
In addition to transferring the call, a call may be parked and then picked up by another user.

This application will return to the dialplan if the queue does not exist, or any of the join options
cause the caller to not enter the queue.

This application sets the following channel variable upon completion:

® QUEUESTATUS - The status of the call as a text string.
¢ TI MEQUT

FULL

JO NEMPTY

LEAVEEMPTY

JO NUNAVAI L

LEAVEUNAVAI L

CONTI NUE

Syntax

Queue(queuenane[, opti ons[, URL[, announceoverride[,timeout[, AG [, macro[,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments

® queuenane
® options

C- Mark all calls as "answered elsewhere" when cancelled.

¢ - Continue in the dialplan if the callee hangs up.

d - data-quality (modem) call (minimum delay).

h - Allow callee to hang up by pressing *.

H - Allow caller to hang up by pressing *.

n - No retries on the timeout; will exit this application and go to the next step.

i - Ignore call forward requests from queue members and do nothing when they are requested.

| - Asterisk will ignore any connected line update requests or any redirecting party update requests it may receive on this dial
attempt.

r - Ring instead of playing MOH. Periodic Announcements are still made, if applicable.

R - Ring instead of playing MOH when a member channel is actually ringing.

t - Allow the called user to transfer the calling user.

T - Allow the calling user to transfer the call.

w - Allow the called user to write the conversation to disk via Monitor.

W- Allow the calling user to write the conversation to disk via Monitor.

k - Allow the called party to enable parking of the call by sending the DTMF sequence defined for call parking in
features. conf.

K - Allow the calling party to enable parking of the call by sending the DTMF sequence defined for call parking in
features. conf.

x - Allow the called user to write the conversation to disk via MixMonitor.

X - Allow the calling user to write the conversation to disk via MixMonitor.

® URL - URL will be sent to the called party if the channel supports it.
® announceoverride

cycle.

ti meout - Will cause the queue to fail out after a specified number of seconds, checked between each queues. conf timeout and retry

AG - Will setup an AGI script to be executed on the calling party's channel once they are connected to a queue member.
macr o -
gosub -
r ul e - Will cause the queue's defaultrule to be overridden by the rule specified.

posi ti on - Attempt to enter the caller into the queue at the numerical position specified. 1 would attempt to enter the caller at the head

Will run a macro on the calling party's channel once they are connected to a queue member.
Will run a gosub on the calling party's channel once they are connected to a queue member.

of the queue, and 3 would attempt to place the caller third in the queue.

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_ QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_ QUEUE_MEMBER_LIST
Function. QUEUE_MEMBER_PENALTY

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Queuelog

Queuelog()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Writes to the queue_log file.

Description
Allows you to write your own events into the queue log.

Example: QueueLog(101,${UNIQUEID},${AGENT},WENTONBREAK,600)

Syntax

QueuelLog(queuenane, uni quei d, agent, event [, addi ti onal i nfo])

Arguments

gueuenamnme

uni quei d

agent

event
additionalinfo

See Also

Application_Queue
Application_QueuelLog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_RaiseException
RaiseException()

Synopsis

Handle an exceptional condition.

Description

This application will jump to the e extension in the current context, setting the dialplan function
EXCEPTION(). If the e extension does not exist, the call will hangup.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Rai seExcepti on(reason)

Arguments
® reason

See Also

Function_ EXCEPTION

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Read

Read()

Synopsis

Read a variable.

Description

Reads a #-terminated string of digits a certain number of times from the user in to the given
variable.

This application sets the following channel variable upon completion:

® READSTATUS - This is the status of the read operation.
* X
® ERROR
® HANGUP
® | NTERRUPTED
¢ SKI PPED
® TI MEQUT

Syntax

Read(variabl e[, filenanme[& il enane2[& ..]][, maxdi gi ts[, options[, attenpt

Arguments

® vari abl e - The input digits will be stored in the given variable name.
* fil enanmes
* fil enamne - file(s) to play before reading digits or tone with option i
® filenanme2
* maxdi gi t s - Maximum acceptable number of digits. Stops reading after maxdigits have been entered (without requiring the user to
press the # key). Defaults to 0 - no limit - wait for the user press the # key. Any value below 0 means the same. Max accepted value is
255.
® options
® s - to return immediately if the line is not up.
® | -to play filename as an indication tone from your i ndi cati ons. conf.
® n - to read digits even if the line is not up.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® attenpts - If greater than 1, that many attempts will be made in the event no data is entered.
® tineout - The number of seconds to wait for a digit response. If greater than 0, that value will override the default timeout. Can be
floating point.

See Also

Application_SendDTMF

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ReadExten

ReadExten()

Synopsis

Read an extension into a variable.

Description
Reads a # terminated string of digits from the user into the given variable.

Will set READEXTENSTATUS on exit with one of the following statuses:

® READEXTENSTATUS -
® (K- A valid extension exists in ${variable}.
® TI MEQUT - No extension was entered in the specified time. Also sets ${variable} to "t".
® | NVALI D- An invalid extension, ${INVALID_EXTEN}, was entered. Also sets ${variable} to "i".
® SKI P - Line was not up and the option 's' was specified.
® ERROR - Invalid arguments were passed.

Syntax

ReadExt en(vari abl e[, fil enane[, context[,option[,tinmeout]]]])

Arguments

® variable
* fil enamne - File to play before reading digits or tone with option i
® cont ext - Context in which to match extensions.

® option
® s - Return immediately if the channel is not answered.
® | - Play filename as an indication tone from your i ndi cat i ons. conf or a directly specified list of frequencies and durations.

® n - Read digits even if the channel is not answered.
® tineout - Aninteger number of seconds to wait for a digit response. If greater than 0, that value will override the default timeout.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ReadFile

ReadFile()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis

Read the contents of a text file into a channel variable.
Description

Read the contents of a text file into channel variable varname

ReadFile has been deprecated in favor of Set(varname=3${FILE(file,0,length)})

Syntax

ReadFi | e(varname=fil e[, | ength])

Arguments

® var nane - Result stored here.
* fil eparams
® file-The name of the file to read.
® | engt h - Maximum number of characters to capture. If not specified defaults to max.

See Also

Application_System
Application_Read

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ReceiveFax

ReceiveFax()

Synopsis
Receive a FAX and save as a TIFF/F file.
Description

This application is provided by res_fax, which is a FAX technology agnostic module that utilizes
FAX technology resource modules to complete a FAX transmission.

Session arguments can be set by the FAXOPT function and to check results of the ReceiveFax()
application.

Syntax

Recei veFax(fil enane[, options])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® filename
® options
® d - Enable FAX debugging.
® f - Allow audio fallback FAX transfer on T.38 capable channels.
® s - Send progress Manager events (overrides statusevents setting in res_fax.conf).

See Also

Function_FAXOPT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r3125009.

Application_ReceiveFAX (app_fax)

ReceiveFAX()

Synopsis
Receive a Fax

Description

Receives a FAX from the channel into the given filename overwriting the file if it already exists.
File created will be in TIFF format.

This application sets the following channel variables:

® LOCALSTATI ONI D- To identify itself to the remote end
® L OCALHEADERI NFO- To generate a header line on each page
® FAXSTATUS -
® SUCCESS
® FAI LED
FAXERROR - Cause of failure
REMOTESTATI ONI D - The CSID of the remote side
FAXPAGES - Number of pages sent
FAXBI TRATE - Transmission rate
FAXRESOLUTI ON - Resolution of sent fax

Syntax

Recei veFAX(fi | enane[, c])

Arguments

® fil enamne - Filename of TIFF file save incoming fax
® c - Makes the application behave as the calling machine (Default behavior is as answering machine)

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r3125009.

Application_ReceiveFax (res_fax)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ReceiveFax()

Synopsis
Receive a FAX and save as a TIFF/F file.

Description

This application is provided by res_fax, which is a FAX technology agnostic module that utilizes
FAX technology resource modules to complete a FAX transmission.

Session arguments can be set by the FAXOPT function and to check results of the ReceiveFax()
application.

Syntax

Recei veFax(fil enane[, options])

Arguments

® filename
® options
® d - Enable FAX debugging.
® f - Allow audio fallback FAX transfer on T.38 capable channels.
® s - Send progress Manager events (overrides statusevents setting in res_fax.conf).

See Also

Function_FAXOPT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r3125009.

Application_Record

Record()

Synopsis
Record to a file.

Description

If filename contains %, these characters will be replaced with a number incremented by one
each time the file is recorded. Use core show fil e formats to see the available formats on
your system User can press # to terminate the recording and continue to the next priority. If the
user hangs up during a recording, all data will be lost and the application will terminate.

® RECORDED_FI LE - Will be set to the final filename of the recording.

® RECORD_STATUS - This is the final status of the command
®* DTM - A terminating DTMF was received (‘# or "*', depending upon option 't")
® S| LENCE - The maximum silence occurred in the recording.
® SKI P - The line was not yet answered and the 's' option was specified.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

* TI MEQUT - The maximum length was reached.
® HANGUP - The channel was hung up.
® ERROR - An unrecoverable error occurred, which resulted in a WARNING to the logs.

Syntax

Record(fil enameformat[, sil ence[, maxduration[, options]]])

Arguments

* filenane

® filename

* format - Is the format of the file type to be recorded (wav, gsm, etc).
® sil ence - Is the number of seconds of silence to allow before returning.
® maxdur ati on - Is the maximum recording duration in seconds. If missing or O there is no maximum.
® options

® a - Append to existing recording rather than replacing.

® n - Do not answer, but record anyway if line not yet answered.

® (- quiet (do not play a beep tone).

® s - skip recording if the line is not yet answered.

® t - use alternate *' terminator key (DTMF) instead of default '#'

® x - Ignore all terminator keys (DTMF) and keep recording until hangup.

® k - Keep recorded file upon hangup.

® y - Terminate recording if any DTMF digit is received.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_RemoveQueueMember
RemoveQueueMember()

Synopsis

Dynamically removes queue members.

Description
If the interface is NOT in the queue it will return an error.

This application sets the following channel variable upon completion:

* RQVBTATUS -
* REMOVED
* NOTI NQUEUE
®* NOSUCHQUEUE

Example: RemoveQueueMember(techsupport,SIP/3000)

Syntax

RenoveQueueMenber (queuenane[, i nterface[, options]])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® queuenane
® interface
® options

See Also

Application_Queue
Application_Queuelog

Application_ AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function QUEUE_MEMBER
Function_QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_ResetCDR
ResetCDR()

Synopsis

Resets the Call Data Record.

Description

This application causes the Call Data Record to be reset.

Syntax

Reset CDR([opti ons])

Arguments

® options
® w- Store the current CDR record before resetting it.
® a - Store any stacked records.
® v - Save CDR variables.
® e - Enable CDR only (negate effects of NoCDR).

See Also

Application_ForkCDR
Application_NoCDR

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_RetryDial

RetryDial()

Synopsis

Place a call, retrying on failure allowing an optional exit extension.

Description

This application will attempt to place a call using the normal Dial application. If no channel can be
reached, the announce file will be played. Then, it will wait sleep number of seconds before
retrying the call. After retries number of attempts, the calling channel will continue at the next
priority in the dialplan. If the retries setting is set to 0, this application will retry endlessly. While
waiting to retry a call, a 1 digit extension may be dialed. If that extension exists in either the
context defined in This application will attempt to place a call using the normal Dial application. If
no channel can be reached, the None - EXI TCONTEXT or the current one, The call will jump to
that extension immediately. The dialargs are specified in the same format that arguments are
provided to the Dial application.

Syntax

RetryDi al (announce, sl eep, retries, di al args)

Arguments

® announce - Filename of sound that will be played when no channel can be reached

® s| eep - Number of seconds to wait after a dial attempt failed before a new attempt is made

® retries - Number of retries When this is reached flow will continue at the next priority in the dialplan
® di al ar gs - Same format as arguments provided to the Dial application

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Return

Return()

Synopsis
Return from gosub routine.
Description

Jumps to the last label on the stack, removing it. The return value, if any, is saved in the channel
variable Jumps to the last label on the stack, removing it. The return None - GOSUB_RETVAL.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Ret urn([val ue])

Arguments
® val ue - Return value.

See Also

Application_Gosub
Application_StackPop

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Ringing

Ringing()

Synopsis
Indicate ringing tone.
Description

This application will request that the channel indicate a ringing tone to the user.

Syntax

Ri ngi ng()

Arguments

See Also

Application_Busy
Application_Congestion
Application_Progress
Application_PlayTones

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_SayAlpha

SayAlpha()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Say Alpha.

Description

This application will play the sounds that correspond to the letters of the given string.

Syntax
SayAl pha(string)

Arguments
® string

See Also

Application_SayDigits
Application_SayNumber
Application_SayPhonetic
Function_ CHANNEL

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SayCountedAd;j

SayCountedAdj()

Synopsis

Say a adjective in declined form in order to count things

Description

Selects and plays the proper form of an adjective according to the gender and of the noun which
it modifies and the number of objects named by the noun-verb combination which have been
counted. Used when saying things such as "5 new messages"”. The various singular and plural
forms of the adjective are selected by adding suffixes to filename.

If the channel language is English, then no suffix will ever be added (since, in English, adjectives
are not declined). If the channel language is Russian or some other slavic language, then the
suffix will the specified gender for nominative, and "x" for genative plural. (The genative singular
is not used when counting things.) For example, SayCountedAdj(1,new,f) will play sound file
"newa" (containing the word "novaya"), but SayCountedAdj(5,new,f) will play sound file "newx"
(containing the word "novikh").

Syntax

SayCount edAdj (nunber, fil enane[, gender])

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments

® nunber - The number of things
® fil enamne - File name stem for the adjective

See Also

Application_SayCountedNoun
Application_SayNumber

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SayCountedNoun

SayCountedNoun()

Synopsis

Say a noun in declined form in order to count things

Description

Selects and plays the proper singular or plural form of a noun when saying things such as "five
calls". English has simple rules for deciding when to say "call* and when to say "calls", but other
languages have complicated rules which would be extremely difficult to implement in the Asterisk
dialplan language.

The correct sound file is selected by examining the number and adding the appropriate suffix to
filename. If the channel language is English, then the suffix will be either empty or "s". If the
channel language is Russian or some other Slavic language, then the suffix will be empty for
nominative, "x1" for genative singular, and "x2" for genative plural.

Note that combining filename with a suffix will not necessarily produce a correctly spelled plural
form. For example, SayCountedNoun(2,man) will play the sound file "mans" rather than "men".
This behavior is intentional. Since the file name is never seen by the end user, there is no need
to implement complicated spelling rules. We simply record the word "men" in the sound file
named "mans".

Syntax
SayCount edNoun(nunber, fi | enane)

Arguments

® nunber - The number of things
® fil enane - File name stem for the noun that is the the name of the things

See Also

Application_SayCountedAd;

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_SayNumber

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SayCountPL
SayCountPL()

Synopsis

Say Polish counting words.

Description

Polish grammar has some funny rules for counting words. for example 1 zloty, 2 zlote, 5 zlotych.
This application will take the words for 1, 2-4 and 5 and decide based on grammar rules which
one to use with the number you pass to it.

Example: SayCountPL(zloty,zlote,zlotych,122) will give: zlote

Syntax

SayCount PL(wor d1, wor d2, wor d5, numnber)

Arguments

wor dl
wor d2
wor d5
nunber

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_SayDigits

SayDigits()

Synopsis

Say Digits.

Description

This application will play the sounds that correspond to the digits of the given number. This will
use the language that is currently set for the channel.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SayDi gits(digits)

Arguments
® digits
See Also

Application_SayAlpha
Application_SayNumber
Application_SayPhonetic
Function_ CHANNEL

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SayNumber
SayNumber()

Synopsis

Say Number.

Description

This application will play the sounds that correspond to the given digits. Optionally, a gender may
be specified. This will use the language that is currently set for the channel. See the
LANGUAGE() function for more information on setting the language for the channel.

Syntax

SayNunber (di gi t s[, gender])

Arguments

® digits
® gender

See Also

Application_SayAlpha
Application_SayDigits
Application_SayPhonetic
Function_ CHANNEL

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_SayPhonetic
SayPhonetic()

Synopsis

Say Phonetic.

Description

This application will play the sounds from the phonetic alphabet that correspond to the letters in
the given string.

Syntax

SayPhoneti c(string)

Arguments
® string

See Also

Application_SayAlpha
Application_SayDigits
Application_SayNumber

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_SayUnixTime

SayUnixTime()

Synopsis

Says a specified time in a custom format.

Description

Uses some of the sound files stored in / var /| i b/ ast eri sk/ sounds to construct a phrase
saying the specified date and/or time in the specified format.

Syntax
SayUni xTi me([uni xtime[,tinmezone[,format]]])

Arguments

® uni xti me - time, in seconds since Jan 1, 1970. May be negative. Defaults to now.
® timezone -timezone, see / usr/ shar e/ zonei nf o for a list. Defaults to machine default.
* format - aformat the time is to be said in. See voi cenai | . conf . Defaults to ABdY "digits/at" | M

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Function_STRFTIME
Function_STRPTIME
Function_IFTIME

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SendDTMF
SendDTMF()

Synopsis

Sends arbitrary DTMF digits

Description
DTMF digits sent to a channel with half second pause

It will pass all digits or terminate if it encounters an error.

Syntax

SendDTM~(di gi ts[,tinmeout _ns[,duration_ns[,channel]]])

Arguments

® di gits - List of digits 0-9,*#,abcd

® timeout _ns - Amount of time to wait in ms between tones. (defaults t0.25s)
® durati on_ns - Duration of each digit

® channel - Channel where digits will be played

See Also

Application_Read

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SendFax

SendFax()

Synopsis
Sends a specified TIFF/F file as a FAX.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This application is provided by res_fax, which is a FAX technology agnostic module that utilizes
FAX technology resource modules to complete a FAX transmission.

Session arguments can be set by the FAXOPT function and to check results of the SendFax()
application.

Syntax

SendFax([fil ename2[& ..]][, options])

Arguments

* filename
* fil enane2 - TIFF file to send as a FAX.
® options
® d - Enable FAX debugging.
® f - Allow audio fallback FAX transfer on T.38 capable channels.
® s - Send progress Manager events (overrides statusevents setting in res_fax.conf).
® z - Initiate a T.38 reinvite on the channel if the remote end does not.

See Also

Function_FAXOPT

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r312509.

Application_SendFAX (app_fax)
SendFAX()

Synopsis
Send a Fax

Description
Send a given TIFF file to the channel as a FAX.

This application sets the following channel variables:

® LOCALSTATI ONI D- To identify itself to the remote end
® | OCALHEADERI NFO- To generate a header line on each page
® FAXSTATUS -
® SUCCESS
® FAI LED
FAXERROR - Cause of failure
REMOTESTATI ONI D - The CSID of the remote side
FAXPAGES - Number of pages sent
FAXBI TRATE - Transmission rate
FAXRESOLUTI ON - Resolution of sent fax

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SendFAX(fil enane[, a])

Arguments

® fil enane - Filename of TIFF file to fax
® a - Makes the application behave as the answering machine (Default behavior is as calling machine)

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r3125009.

Application_SendFax (res_fax)
SendFax()
Synopsis

Sends a specified TIFF/F file as a FAX.

Description

This application is provided by res_fax, which is a FAX technology agnostic module that utilizes
FAX technology resource modules to complete a FAX transmission.

Session arguments can be set by the FAXOPT function and to check results of the SendFax()
application.

Syntax

SendFax([filename2[& ..]][,options])

Arguments

* filenanme
® fil enane2 - TIFF file to send as a FAX.
® options
® d - Enable FAX debugging.
® f - Allow audio fallback FAX transfer on T.38 capable channels.
® s - Send progress Manager events (overrides statusevents setting in res_fax.conf).
® 7 - Initiate a T.38 reinvite on the channel if the remote end does not.

See Also

Function_FAXOPT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r312509.

Application_Sendlmage

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Sendimage()
Synopsis
Sends an image file.

Description
Send an image file on a channel supporting it.

Result of transmission will be stored in Result of transmission will be stored in None -
SENDI MAGESTATUS

® SENDI MAGESTATUS -
® SUCCESS - Transmission succeeded.
® FAI LURE - Transmission failed.
® UNSUPPORTED - Image transmission not supported by channel.

Syntax

Sendl mage(fil enane)

Arguments
* fil ename - Path of the filename (image) to send.

See Also

Application_SendText
Application_SendURL

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SendText
SendText()

Synopsis

Send a Text Message.

Description
Sends text to current channel (callee).

Result of transmission will be stored in the Result of transmission will be stored in the None -
SENDTEXTSTATUS

® SENDTEXTSTATUS -
® SUCCESS - Transmission succeeded.
® FAIl LURE - Transmission failed.
® UNSUPPORTED - Text transmission not supported by channel.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

At this moment, text is supposed to be 7 bit ASCII in most channels.At this moment, text is
supposed to be 7 bit ASCII in most channels.

Syntax

SendText (t ext)

Arguments
® text

See Also

Application_Sendimage
Application_SendURL

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SendURL
SendURL()

Synopsis

Send a URL.

Description
Requests client go to URL (IAX2) or sends the URL to the client (other channels).

Result is returned in the Result is returned in the None - SENDURLSTATUS channel variable:

® SENDURLSTATUS -

SUCCESS - URL successfully sent to client.

FAI LURE - Failed to send URL.

NOLQAD - Client failed to load URL (wait enabled).
UNSUPPORTED - Channel does not support URL transport.

SendURL continues normally if the URL was sent correctly or if the channel does not support
HTML transport. Otherwise, the channel is hung up.

Syntax
SendURL(URL[, option])

Arguments

® URL
® option
® w- Execution will wait for an acknowledgement that the URL has been loaded before continuing.

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_Sendimage
Application_SendText

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Set
Set()

Synopsis

Set channel variable or function value.

Description

This function can be used to set the value of channel variables or dialplan functions. When
setting variables, if the variable name is prefixed with {}, the variable will be inherited into
channels created from the current channel. If the variable name is prefixed with _, the variable
will be inherited into channels created from the current channel and all children channels.

If (and only if), in If (and only if), in/ et c/ ast eri sk/ ast eri sk. conf, you have a [conpat |
category, and you have app_set = 1. 6 under that,then the behavior of this app changes, and
does not strip surrounding quotes from the right hand side as it did previously in 1.4. The
app_set = 1.6 isonlyinserted if nake sanpl es is executed, or if users insert this by hand
into the ast eri sk. conf file. The advantages of not stripping out quoting, and not caring about
the separator characters (comma and vertical bar) were sufficient to make these changes in 1.6.
Confusion about how many backslashes would be needed to properly protect separators and
guotes in various database access strings has been greatly reduced by these changes.

Syntax
Set (nane, val ue)

Arguments

® nane
¢ val ue

See Also

Application_MSet
Function_GLOBAL
Function_SET
Function_ENV

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_SetAMAFlags
SetAMAFlags()

Synopsis

Set the AMA Flags.

Description

This application will set the channel's AMA Flags for billing purposes.

Syntax
Set AMAFI ags([fl ag])

Arguments
® flag

See Also

Function_CDR

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SetCallerPres
SetCallerPres()

Synopsis

Set CallerID Presentation.

Description

Set Caller*ID presentation on a call.

Syntax
Set Cal | er Pres(presentati on)

Arguments

® presentation

® al | owed_not _screened - Presentation Allowed, Not Screened.
al | oned_passed_scr een - Presentation Allowed, Passed Screen.
al | owed_f ai | ed_scr een - Presentation Allowed, Failed Screen.
al | owed - Presentation Allowed, Network Number.
prohi b_not _screened - Presentation Prohibited, Not Screened.
prohi b_passed_scr een - Presentation Prohibited, Passed Screen.
prohi b_fail ed_screen - Presentation Prohibited, Failed Screen.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® prohi b - Presentation Prohibited, Network Number.
® unavai | abl e - Number Unavailable.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SetMusicOnHold
SetMusicOnHold()

Synopsis

Set default Music On Hold class.
Description

I DEPRECATED. USe Set(CHANNEL(musicclass)=...) instead !!!

Sets the default class for music on hold for a given channel. When music on hold is activated,
this class will be used to select which music is played.

I DEPRECATED. USe Set(CHANNEL(musicclass)=...) instead !!!

Syntax

Set Musi cOnHol d(cl ass)

Arguments
® class
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SIPAddHeader

SIPAddHeader()

Synopsis
Add a SIP header to the outbound call.

Description

Adds a header to a SIP call placed with DIAL.

Remember to use the X-header if you are adding non-standard SIP headers, like

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

X- Ast eri sk- Account code: . Use this with care. Adding the wrong headers may jeopardize
the SIP dialog.

Always returns 0.

Syntax
S| PAddHeader (Header, Cont ent)

Arguments

® Header
® Content

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SIPDtmfMode
SIPDtmfMode()

Synopsis

Change the dtmfmode for a SIP call.

Description

Changes the dtmfmode for a SIP call.

Syntax
S| PDt nf Mode(node)

Arguments

®* node
® inband
® info
® rfc2833

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SIPRemoveHeader

SIPRemoveHeader()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Remove SIP headers previously added with SIPAddHeader

Description

SIPRemoveHeader() allows you to remove headers which were previously added with
SIPAddHeader(). If no parameter is supplied, all previously added headers will be removed. If a
parameter is supplied, only the matching headers will be removed.

For example you have added these 2 headers:

SIPAddHeader(P-Asserted-ldentity: sip:foo@bar);
SIPAddHeader(P-Preferred-Identity: sip:bar@foo);

/I remove all headers

SIPRemoveHeader();

/I remove all P- headers

SIPRemoveHeader(P-);

/l remove only the PAI header (note the : at the end)

SIPRemoveHeader(P-Asserted-Identity@;

Always returns 0.

Syntax

S| PRenoveHeader ([Header])

Arguments
® Header
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Ske

Skel()

Synopsis
Simple one line explaination.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This application is a template to build other applications from. It shows you the basic structure to
create your own Asterisk applications.

Syntax
Skel (dumy[, opti ons])

Arguments

¢ dummy

® options
® a - Option A.
® b - Option B.
® ¢ - Option C.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SLAStation
SLAStation()

Synopsis

Shared Line Appearance Station.

Description

This application should be executed by an SLA station. The argument depends on how the call
was initiated. If the phone was just taken off hook, then the argument station should be just the
station name. If the call was initiated by pressing a line key, then the station name should be
preceded by an underscore and the trunk name associated with that line button.

For example:
stationl |linel

On exit, this application will set the variable On exit, this application will set the variable None -
SLASTATI ON_STATUS to one of the following values:

® SLASTATI ON_STATUS -
® FAI LURE
® CONGESTI ON
® SUCCESS

Syntax

SLASt ati on(station)

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® station - Station name
See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SLATrunk

SLATrunk()

Synopsis

Shared Line Appearance Trunk.

Description

This application should be executed by an SLA trunk on an inbound call. The channel calling this
application should correspond to the SLA trunk with the name trunk that is being passed as an
argument.

On exit, this application will set the variable On exit, this application will set the variable None -
SLATRUNK _STATUS to one of the following values:

® SLATRUNK_STATUS -
® FAI LURE
® SUCCESS
® UNANSWERED
¢ RI NGTI MEQUT

Syntax

SLATrunk(trunk[, options])

Arguments

® trunk - Trunk name
® options
® M- Play back the specified MOH class instead of ringing
® class

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SMS
SMS()

Synopsis

Communicates with SMS service centres and SMS capable analogue phones.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

SMS handles exchange of SMS data with a call to/from SMS capable phone or SMS PSTN
service center. Can send and/or receive SMS messages. Works to ETSI ES 201 912; compatible
with BT SMS PSTN service in UK and Telecom Italia in Italy.

Typical usage is to use to handle calls from the SMS service centre CLI, or to set up a call using
out goi ng or manager interface to connect service centre to SMS().

"Messages are processed as per text file message queues. smsq (a separate software) is a
command to generate message queues and send messages.

The protocol has tight delay bounds. Please use short frames and disable/keep short the jitter
buffer on the ATA to make sure that respones (ACK etc.) are received in time.The protocol has
tight delay bounds. Please use short frames and disable/keep short the jitter buffer on the ATA to
make sure that respones (ACK etc.) are received in time.

Syntax
SMS(nane[, opti ons[, addr[, body]]])

Arguments

® nane - The name of the queue used in / var/ spool / ast eri sk/ sns
® options
® a - Answer, i.e. send initial FSK packet.

® s - Act as service centre talking to a phone.
® t - Use protocol 2 (default used is protocol 1).
® p - Set the initial delay to N ms (default is 300). addr and body are a deprecated format to send messages out.
® r - Set the Status Report Request (SRR) bit.
® 0 - The body should be coded as octets not 7-bit symbols.

® addr

® body

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SoftHangup

SoftHangup()

Synopsis

Hangs up the requested channel.

Description

Hangs up the requested channel. If there are no channels to hangup, the application will report it.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Sof t Hangup(Technol ogy/ Resour ce[, opti ons])

Arguments

® Technol ogy/ Resour ce
® options
® a - Hang up all channels on a specified device instead of a single resource

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechActivateGrammar
SpeechActivateGrammar()

Synopsis

Activate a grammar.

Description

This activates the specified grammar to be recognized by the engine. A grammar tells the speech
recognition engine what to recognize, and how to portray it back to you in the dialplan. The
grammar name is the only argument to this application.

Syntax

SpeechAct i vat eG anmar (gr amar _nane)

Arguments

® granmar _nane

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechBackground

SpeechBackground()

Synopsis
Play a sound file and wait for speech to be recognized.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This application plays a sound file and waits for the person to speak. Once they start speaking
playback of the file stops, and silence is heard. Once they stop talking the processing sound is
played to indicate the speech recognition engine is working. Once results are available the
application returns and results (score and text) are available using dialplan functions.

The first text and score are ${SPEECH_TEXT(0)} AND ${SPEECH_SCORE(0)} while the second
are ${SPEECH_TEXT(1)} and ${SPEECH_SCORE(1)}.

The first argument is the sound file and the second is the timeout integer in seconds.

Syntax

SpeechBackground(sound_file[,timeout[, options]])

Arguments

® sound_file
® timeout - Timeout integer in seconds. Note the timeout will only start once the sound file has stopped playing.
® options

® n - Don't answer the channel if it has not already been answered.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechCreate
SpeechCreate()

Synopsis

Create a Speech Structure.

Description

This application creates information to be used by all the other applications. It must be called
before doing any speech recognition activities such as activating a grammar. It takes the engine
name to use as the argument, if not specified the default engine will be used.

Syntax
SpeechCr eat e(engi ne_nane)

Arguments
® engi ne_nane
See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechDeactivateGrammar

SpeechDeactivateGrammar()

Synopsis

Deactivate a grammar.

Description

This deactivates the specified grammar so that it is no longer recognized.

Syntax
SpeechDeact i vat eG anmar (gr anmar _nane)

Arguments
® granmar _nane - The grammar name to deactivate

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechDestroy
SpeechDestroy()

Synopsis

End speech recognition.

Description

This destroys the information used by all the other speech recognition applications. If you call this
application but end up wanting to recognize more speech, you must call SpeechCreate() again
before calling any other application.

Syntax

SpeechDestroy()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_SpeechLoadGrammar
SpeechLoadGrammar()

Synopsis

Load a grammar.

Description

Load a grammar only on the channel, not globally.

Syntax

SpeechLoadG ammar (gr ammar _nane, pat h)

Arguments

® granmar _nane

® path
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechProcessingSound
SpeechProcessingSound()

Synopsis

Change background processing sound.

Description

This changes the processing sound that SpeechBackground plays back when the speech
recognition engine is processing and working to get results.

Syntax

SpeechProcessi ngSound(sound_fil e)

Arguments
® sound file

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechStart

SpeechStart()

Synopsis

Start recognizing voice in the audio stream.

Description

Tell the speech recognition engine that it should start trying to get results from audio being fed to
it.

Syntax

SpeechStart ()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_SpeechUnloadGrammar
SpeechUnloadGrammar()

Synopsis

Unload a grammar.

Description

Unload a grammar.

Syntax

SpeechUnl oadG anmar (gr amar _nane)

Arguments
® granmar _nane

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_StackPop

StackPop()

Synopsis

Remove one address from gosub stack.
Description

Removes last label on the stack, discarding it.

Syntax
St ackPop()

Arguments

See Also

Application_Return
Application_Gosub

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_StartMusicOnHold
StartMusicOnHold()
Synopsis

Play Music On Hold.

Description

Starts playing music on hold, uses default music class for channel. Starts playing music specified
by class. If omitted, the default music source for the channel will be used. Always returns 0.

Syntax

St art Musi cOnHol d(cl ass)

Arguments
® class

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_StopMixMonitor

StopMixMonitor()

Synopsis

Stop recording a call through MixMonitor, and free the recording's file handle.

Description

Stops the audio recording that was started with a call to M xMoni t or () on the current channel.
Syntax

St opM xMoni t or ()

Arguments

See Also

Application_MixMonitor

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_StopMonitor

StopMonitor()

Synopsis

Stop monitoring a channel.

Description

Stops monitoring a channel. Has no effect if the channel is not monitored.
Syntax

St opMoni t or ()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_StopMusicOnHold

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

StopMusicOnHold()

Synopsis

Stop playing Music On Hold.
Description

Stops playing music on hold.

Syntax

St opMusi cOnHol d()

Arguments
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_StopPlayTones

StopPlayTones()

Synopsis

Stop playing a tone list.

Description

Stop playing a tone list, initiated by PlayTones().

Syntax

St opPl ayTones()

Arguments

See Also

Application_PlayTones

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_System
System()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Execute a system command.

Description

Executes a command by using system(). If the command fails, the console should report a
fallthrough.

Result of execution is returned in the Result of execution is returned in the None -
SYSTEMSTATUS channel variable:

* SYSTEMSTATUS -
® FAI LURE - Could not execute the specified command.
® SUCCESS - Specified command successfully executed.

Syntax

Syst em(conmand)

Arguments
® comand - Command to execute

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_TestClient
TestClient()

Synopsis

Execute Interface Test Client.

Description

Executes test client with given testid. Results stored in
[var/log/asterisk/testreports/<testid>-client.txt

Syntax

Testdient(testid)

Arguments
® testid-AnID to identify this test.

See Also

Application_TestServer

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_TestServer
TestServer()

Synopsis

Execute Interface Test Server.

Description

Perform test server function and write call report. Results stored in
/var/|log/asterisk/testreports/<testid>-server.txt

Syntax

Test Server ()

Arguments
See Also
Application_TestClient

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Transfer
Transfer()

Synopsis

Transfer caller to remote extension.

Description

Requests the remote caller be transferred to a given destination. If TECH (SIP, IAX2, LOCAL
etc) is used, only an incoming call with the same channel technology will be transfered. Note that
for SIP, if you transfer before call is setup, a 302 redirect SIP message will be returned to the
caller.

The result of the application will be reported in the The result of the application will be reported in
the None - TRANSFERSTATUS channel variable:

® TRANSFERSTATUS -
® SUCCESS - Transfer succeeded.
® FAI LURE - Transfer failed.
® UNSUPPORTED - Transfer unsupported by channel driver.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Transfer ([Tech] desti nati on)

Arguments

® dest
® Tech
® destination

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_TryExec

TryExec()

Synopsis

Executes dialplan application, always returning.

Description

Allows an arbitrary application to be invoked even when not hard coded into the dialplan. To
invoke external applications see the application System. Always returns to the dialplan. The
channel variable TRYSTATUS will be set to one of:

® TRYSTATUS -
® SUCCESS - If the application returned zero.
® FAI LED - If the application returned non-zero.
® NOAPP - If the application was not found or was not specified.

Syntax
TryExec(ar gunents)

Arguments

® appnane
® argunents

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_TrySystem

TrySystem()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Try executing a system command.

Description
Executes a command by using system().

Result of execution is returned in the Result of execution is returned in the None -
SYSTEMSTATUS channel variable:

® SYSTEMSTATUS -
® FAI LURE - Could not execute the specified command.
® SUCCESS - Specified command successfully executed.
* APPERROR - Specified command successfully executed, but returned error code.

Syntax
TrySyst em(comrand)

Arguments
®* commuand - Command to execute

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_UnpauseMonitor
UnpauseMonitor()

Synopsis

Unpause monitoring of a channel.

Description

Unpauses monitoring of a channel on which monitoring had previously been paused with
PauseMonitor.

Syntax

UnpauseMoni t or ()

Arguments

See Also

Application_PauseMonitor

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_UnpauseQueueMember
UnpauseQueueMember()

Synopsis

Unpauses a queue member.

Description

Unpauses (resumes calls to) a queue member. This is the counterpart to
PauseQueueMenber () and operates exactly the same way, except it unpauses instead of
pausing the given interface.

This application sets the following channel variable upon completion:

* UPQWSTATUS - The status of the attempt to unpause a queue member as a text string.
® UNPAUSED
® NOTFOUND

Example: UnpauseQueueMember(,SIP/3000)

Syntax

UnpauseQueueMenber ([queuenane, i nterface[, opti ons[, reason]]])

Arguments

® queuenane
® interface
® options

® reason - Is used to add extra information to the appropriate queue_log entries and manager events.

See Also

Application_Queue
Application_QueuelLog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_UserEvent

UserEvent()

Synopsis

Send an arbitrary event to the manager interface.

Description

Sends an arbitrary event to the manager interface, with an optional body representing additional
arguments. The body may be specified as a, delimited list of headers. Each additional argument
will be placed on a new line in the event. The format of the event will be:

Event: UserEvent

UserEvent: <specified event name>

[body]

If no body is specified, only Event and UserEvent headers will be present.
Syntax

User Event (event nane[, body])

Arguments

® event nane
® body

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Verbose

Verbose()

Synopsis

Send arbitrary text to verbose output.

Description

Sends an arbitrary text message to verbose output.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Ver bose([| evel , message])

Arguments

® | evel - Mustbe an integer value. If not specified, defaults to 0.
® nessage - Output text message.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_VMAuthenticate
VMAuthenticate()

Synopsis

Authenticate with Voicemail passwords.

Description

This application behaves the same way as the Authenticate application, but the passwords are
taken from voi cemai | . conf . If the mailbox is specified, only that mailbox's password will be
considered valid. If the mailbox is not specified, the channel variable This application behaves
the same way as the Authenticate application, but the passwords are taken from None -
AUTH_MAI LBOX will be set with the authenticated mailbox.

The VMAuthenticate application will exit if the following DTMF digit is entered as Mailbox or
Password, and the extension exists:

Jump to the a extension in the current dialplan context.

Syntax

VMAuUt henti cate([mai | box] [@ontext] [, options])

Arguments

® mai | box
® mai | box
® cont ext
® options
® s - Skip playing the initial prompts.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_VMSayName
VMSayName()

Synopsis

Play the name of a voicemail user
Description

This application will say the recorded name of the voicemail user specified as the argument to
this application. If no context is provided, def aul t is assumed.

Syntax

VMSayNane([mai | box] [@ont ext])

Arguments

® mail box
® mai | box
® context

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_VoiceMail
VoiceMail()

Synopsis

Leave a Voicemail message.
Description

This application allows the calling party to leave a message for the specified list of mailboxes.
When multiple mailboxes are specified, the greeting will be taken from the first mailbox specified.
Dialplan execution will stop if the specified mailbox does not exist.

The Voicemail application will exit if any of the following DTMF digits are received:

Jump to the o extension in the current dialplan context.

Jump to the a extension in the current dialplan context.

This application will set the following channel variable upon completion:

® VMSTATUS - This indicates the status of the execution of the VoiceMail application.
® SUCCESS
® USEREXI T

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® FAI LED

Syntax

Voi ceMai | (mai | box1[&mai | box2[& ..]][,options])

Arguments

® mai | boxs
® mai | box1
® mai | box2
® options
® b - Play the busy greeting to the calling party.
® d - Accept digits for a new extension in context c, if played during the greeting. Context defaults to the current context.
®c
® g - Use the specified amount of gain when recording the voicemail message. The units are whole-number decibels (dB). Only
works on supported technologies, which is DAHDI only.
* #
- Skip the playback of instructions for leaving a message to the calling party.
u - Play the unavai | abl e greeting.
U - Mark message as URGENT.
P - Mark message as PRI ORI TY.

2]

See Also

Application_VoiceMailMain

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_VoiceMailMain

VoiceMailMain()

Synopsis

Check Voicemail messages.

Description

This application allows the calling party to check voicemail messages. A specific mailbox, and
optional corresponding context, may be specified. If a mailbox is not provided, the calling party

will be prompted to enter one. If a context is not specified, the def aul t context will be used.

The VoiceMailMain application will exit if the following DTMF digit is entered as Mailbox or
Password, and the extension exists:

Jump to the a extension in the current dialplan context.

Syntax

Voi ceMai | Mai n([mai | box] [@ontext] [, options])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

®* mail box

® mai | box
® cont ext
® options

® p - Consider the mailbox parameter as a prefix to the mailbox that is entered by the caller.
® g - Use the specified amount of gain when recording a voicemail message. The units are whole-number decibels (dB).
*#
® s - Skip checking the passcode for the mailbox.
® a - Skip folder prompt and go directly to folder specified. Defaults to | NBOX (or 0).
® fol der
0 - INBOX
1-0.d
2 - Work
3 - Family
4 - Friends
5 - Custl
6 - Cust2
7 - Cust3
8 - Cust4
® 9-Custs
0 - INBOX
1-0.d
2 - Work
3 - Family
4 - Friends
5 - Custl
6 - Cust2
7 - Cust3
8 - Cust4
9 - Custb

See Also

Application_VoiceMall

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_Wait

Wait()

Synopsis

Waits for some time.

Description

This application waits for a specified number of seconds.
Syntax

Wi t (seconds)

Arguments
® seconds - Can be passed with fractions of a second. For example, 1. 5 will ask the application to wait for 1.5 seconds.

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitExten

WaitExten()

Synopsis

Waits for an extension to be entered.

Description
This application waits for the user to enter a new extension for a specified number of seconds.

Use of the application Wai t Ext en within a macro will not function as expected. Please use the
Read application in order to read DTMF from a channel currently executing a macro.

Syntax

Wi t Ext en([seconds][, options]])

Arguments

® seconds - Can be passed with fractions of a second. For example, 1. 5 will ask the application to wait for 1.5 seconds.
® options
® m- Provide music on hold to the caller while waiting for an extension.
® x - Specify the class for music on hold.

See Also

Application_BackGround
Function_TIMEOUT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitForNoise
WaitForNoise()

Synopsis

Waits for a specified amount of noise.

Description

Waits for up to noiserequired milliseconds of noise, iterations times. An optional timeout specified
the number of seconds to return after, even if we do not receive the specified amount of noise.
Use timeout with caution, as it may defeat the purpose of this application, which is to wait
indefinitely until noise is detected on the line.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

Wi t For Noi se(noi serequired[,iterations[,tineout]])

Arguments

® noi serequired
® jterations - If not specified, defaults to 1.
® tineout -Is specified only to avoid an infinite loop in cases where silence is never achieved.

See Also

Application_WaitForSilence

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitForRing
WaitForRing()

Synopsis

Wait for Ring Application.

Description

Returns 0 after waiting at least timeout seconds, and only after the next ring has completed.
Returns 0 on success or - 1 on hangup.

Syntax

Wai t For Ri ng(ti neout)

Arguments
® timeout

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitForSilence

WaitForSilence()

Synopsis

Waits for a specified amount of silence.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Waits for up to silencerequired milliseconds of silence, iterations times. An optional timeout
specified the number of seconds to return after, even if we do not receive the specified amount of
silence. Use timeout with caution, as it may defeat the purpose of this application, which is to
wait indefinitely until silence is detected on the line. This is particularly useful for
reverse-911-type call broadcast applications where you need to wait for an answering machine to
complete its spiel before playing a message.

Typically you will want to include two or more calls to WaitForSilence when dealing with an
answering machine; first waiting for the spiel to finish, then waiting for the beep, etc.

Examples:
WaitForSilence(500,2) will wait for 1/2 second of silence, twice
WaitForSilence(1000) will wait for 1 second of silence, once

WaitForSilence(300,3,10) will wait for 300ms silence, 3 times, and returns after 10 sec, even if
silence is not detected

Sets the channel variable Sets the channel variable None - WAl TSTATUS to one of these values:

®* WAl TSTATUS -
® S| LENCE - if exited with silence detected.
* Tl MEQUT - if exited without silence detected after timeout.

Syntax

Wai t For Si | ence(silencerequired[,iterations[,timeout]])

Arguments

® silencerequired
® jterations - If not specified, defaults to 1.
® tineout -Is specified only to avoid an infinite loop in cases where silence is never achieved.

See Also

Application_WaitForNoise

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitMusicOnHold

WaitMusicOnHold()

Synopsis

Wait, playing Music On Hold.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

11l DEPRECATED. Use MusicOnHold instead !!!

Plays hold music specified number of seconds. Returns 0 when done, or - 1 on hangup. If no
hold music is available, the delay will still occur with no sound.

11 DEPRECATED. Use MusicOnHold instead !!!

Syntax
Wai t Musi cOnHol d(del ay)

Arguments
® del ay
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_WaitUntil

WaitUntil()

Synopsis

Wait (sleep) until the current time is the given epoch.

Description
Waits until the given epoch.

Sets Sets None - WAI TUNTI LSTATUS to one of the following values:

® WAl TUNTI LSTATUS -
® K- Wait succeeded.
® FAI LURE - Invalid argument.
® HANGUP - Channel hungup before time elapsed.
® PAST - Time specified had already past.

Syntax
Wai t Unti | (epoch)

Arguments
® epoch
See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Application_While

While()

Synopsis

Start a while loop.

Description

Start a While Loop. Execution will return to this point when EndWhi | e() is called until expr is no
longer true.

Syntax
VWi | e(expr)

Arguments
® expr

See Also

Application_EndWhile
Application_ExitWhile
Application_ContinueWhile

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Application_Zapateller
Zapateller()

Synopsis

Block telemarketers with SIT.

Description
Generates special information tone to block telemarketers from calling you.

This application will set the following channel variable upon completion:

® ZAPATELLERSTATUS - This will contain the last action accomplished by the Zapateller application. Possible values include:
® NOTH NG
® ANSWERED
® ZAPPED

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Zapat el | er (options)

Arguments

® opti ons - Comma delimited list of options.
® answer - Causes the line to be answered before playing the tone.
® nocal | eri d - Causes Zapateller to only play the tone if there is no callerid information available.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Dialplan Application Template Page
MyApplication()
Synopsys

Description

Syntax

® MyApplication(arg[, sonething[, options]])

Arguments
® arg
® something
® options
® a
® option 'a’ is asdfadf
*b
® option 'b' is asdfasdfadf
*c
® option 'c' is for cookie
See Also

Dialplan Function Template Page
AGI Command Template Page
AMI Action Template Page

Import Version
This documentation was imported from Asterisk version VERSI ON STRI NG HERE.

Dialplan Functions

Dialplan Function Template Page

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

MY_FUNCTION()

Synopsys

Description

Syntax

® MY_FUNCTI ON(ar g[, sonet hi ng[, options]])

Arguments
® arg
® something
® options
® a
® option 'a’ is asdfadf
°b
® option 'b' is asdfasdfadf
°c
® option 'c' is for cookie
See Also

Dialplan Application Template Page
AGI Command Template Page
AMI Action Template Page

Import Version

This documentation was imported from Asterisk version VERSI ON STRI NG HERE.

Function_AES DECRYPT

AES_DECRYPT()

Synopsis

Decrypt a string encoded in base64 with AES given a 16 character key.
Description

Returns the plain text string.

Syntax

AES DECRYPT(key, string)

Arguments

® key - AES Key

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® string - Input string.

See Also

Function_AES_ENCRYPT
Function_BASE64 ENCODE
Function_BASE64_DECODE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ AES ENCRYPT

AES_ENCRYPT()

Synopsis
Encrypt a string with AES given a 16 character key.
Description

Returns an AES encrypted string encoded in base64.

Syntax

AES ENCRYPT(key, string)

Arguments

® key - AES Key
® string - Input string

See Also

Function_ AES_DECRYPT
Function_BASE64 _ENCODE
Function_BASE64 DECODE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_AGC

AGC()

Synopsis
Apply automatic gain control to audio on a channel.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The AGC function will apply automatic gain control to the audio on the channel that it is executed
on. Using r x for audio received and t x for audio transmitted to the channel. When using this
function you set a target audio level. It is primarily intended for use with analog lines, but could
be useful for other channels as well. The target volume is set with a number between 1- 32768.
The larger the number the louder (more gain) the channel will receive.

Examples:
exten => 1,1,Set(AGC(rx)=8000)
exten => 1,2,Set(AGC(tx)=off)

Syntax

AGC(channel di recti on)

Arguments
® channel di recti on - This can be eitherr x ort x
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ AGENT

AGENT/()

Synopsis

Gets information about an Agent

Description

Syntax
AGENT(agentid[,iten])

Arguments

® agentid

® i tem- The valid items to retrieve are:

st at us - (default) The status of the agent (LOGGEDIN | LOGGEDOUT)

passwor d - The password of the agent

name - The name of the agent

nmohcl ass - MusicOnHold class

channel - The name of the active channel for the Agent (AgentLogin)

ful I channel - The untruncated name of the active channel for the Agent (AgentLogin)

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ARRAY

ARRAY()

Synopsis

Allows setting multiple variables at once.

Description

The comma-delimited list passed as a value to which the function is set will be interpreted as a
set of values to which the comma-delimited list of variable names in the argument should be set.

Example: Set(ARRAY (varl,var2)=1,2) will set varl to 1 and var2 to 2

Syntax

ARRAY(var1[,var2[,...][,varN1])

Arguments

® varl
® var2
® varN

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_AST_CONFIG

AST_CONFIG()

Synopsis
Retrieve a variable from a configuration file.

Description

This function reads a variable from an Asterisk configuration file.

Syntax

AST_CONFI G(config _fil e, category, vari abl e_nane)

Arguments

® config file
® category

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® vari abl e_nanme

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_AUDIOHOOK_INHERIT

AUDIOHOOK_INHERIT()

Synopsis
Set whether an audiohook may be inherited to another channel

Description

By enabling audiohook inheritance on the channel, you are giving permission for an audiohook to
be inherited by a descendent channel. Inheritance may be be disabled at any point as well.

Example scenario:

exten => 2000,1,MixMonitor(blah.wav)

exten => 2000,n,Set(AUDIOHOOK _INHERIT(MixMonitor)=yes)

exten => 2000,n,Dial(SIP/2000)

exten => 4000,1,Dial(SIP/4000)

exten => 5000,1,MixMonitor(blah2.wav)

exten => 5000,n,Dial(SIP/5000)

In this basic dialplan scenario, let's consider the following sample calls

Call 1: Caller dials 2000. The person who answers then executes an attended
transfer to 4000.

Result: Since extension 2000 set MixMonitor to be inheritable, after the
transfer to 4000 has completed, the call will continue to be recorded to blah.wav
Call 2: Caller dials 5000. The person who answers then executes an attended
transfer to 4000.

Result: Since extension 5000 did not set MixMonitor to be inheritable, the

recording will stop once the call has been transferred to 4000.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

AUDI OHOOK _| NHERI T(sour ce)

Arguments

® sour ce - The built-in sources in Asterisk are Note that the names are not case-sensitive
® M xMbni tor
® Chanspy
® Vol une
® Speex
® JACK_HOOK

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_BASE64_DECODE

BASE64 DECODE()

Synopsis
Decode a base64 string.
Description

Returns the plain text string.

Syntax

BASE64 DECCDE(st ri ng)

Arguments
® string - Input string.

See Also

Function_ BASE64 ENCODE
Function_ AES _DECRYPT
Function_ AES_ENCRYPT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_BASE64_ENCODE

BASE64_ENCODE()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Encode a string in base64.

Description

Returns the base64 string.

Syntax

BASE64 ENCCDE(st ri ng)

Arguments
® string - Input string

See Also

Function_BASE64_DECODE
Function_AES_DECRYPT
Function_AES_ENCRYPT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ BLACKLIST

BLACKLIST()

Synopsis

Check if the callerid is on the blacklist.

Description

Uses astdb to check if the Caller*ID is in family bl ackl i st . Returns 1 or O.

Syntax

BLACKLI ST()

Arguments

See Also

Function_DB

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALENDAR_BUSY

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CALENDAR_BUSY()
Synopsis

Determine if the calendar is marked busy at this time.
Description

Check the specified calendar's current busy status.

Syntax

CALENDAR_BUSY(cal endar)

Arguments
® cal endar

See Also

Function_CALENDAR_EVENT
Function_CALENDAR_QUERY
Function_CALENDAR_QUERY_RESULT
Function_CALENDAR_WRITE

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALENDAR_EVENT
CALENDAR_EVENT()

Synopsis

Get calendar event notification data from a notification call.

Description

Whenever a calendar event notification call is made, the event data may be accessed with this
function.

Syntax

CALENDAR_EVENT(fi el d)

Arguments

e field
® summary - The VEVENT SUMMARY property or Exchange event 'subject’
® descri ption - The text description of the event
® organi zer - The organizer of the event

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® | ocati on - The location of the eventt

® cat egori es - The categories of the event

® priority - The priority of the event

® cal endar - The name of the calendar associated with the event

® ui d - The unique identifier for this event

® start - The start time of the event

® end - The end time of the event

® busyst at e - The busy state of the event 0=FREE, 1=TENTATIVE, 2=BUSY

See Also

Function_CALENDAR_BUSY

Function_ CALENDAR_QUERY

Function CALENDAR_QUERY_RESULT
Function CALENDAR_WRITE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALENDAR_QUERY

CALENDAR_QUERY()

Synopsis

Query a calendar server and store the data on a channel

Description

Get a list of events in the currently accessible timeframe of the calendar The function returns the
id for accessing the result with CALENDAR_QUERY_RESULT()

Syntax

CALENDAR_QUERY(cal endar[,start[, end]])

Arguments

® cal endar - The calendar that should be queried
® start - The start time of the query (in seconds since epoch)
® end - The end time of the query (in seconds since epoch)

See Also

Function_CALENDAR_BUSY
Function_CALENDAR_EVENT
Function_CALENDAR_QUERY_RESULT
Function_CALENDAR_WRITE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALENDAR_QUERY_RESULT

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CALENDAR_QUERY_RESULT()

Synopsis

Retrieve data from a previously run CALENDAR_QUERY/() call

Description

After running CALENDAR_QUERY and getting a result id, calling CALENDAR_QUERY with that id
and a field will return the data for that field. If multiple events matched the query, and entry is
provided, information from that event will be returned.

Syntax

CALENDAR QUERY_RESULT(i d, fiel d[,entry])

Arguments

® id - The query ID returned by CALENDAR_QUERY

* field

® get num- number of events occurring during time range

® sunmary - A summary of the event

® descri ption - The full event description

® organi zer - The event organizer

® | ocati on - The event location

® cat egori es - The categories of the event

® priority - The priority of the event

® cal endar - The name of the calendar associted with the event
® ui d - The unique identifier for the event

® start - The start time of the event (in seconds since epoch)

® end - The end time of the event (in seconds since epoch)

® busyst at e - The busy status of the event 0=FREE, 1=TENTATIVE, 2=BUSY
y - Return data from a specific event returned by the query

Function_CALENDAR_BUSY
Function_CALENDAR_EVENT
Function_CALENDAR_QUERY
Function_CALENDAR_WRITE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALENDAR_WRITE

CALENDAR_WRITE()

Synopsis
Write an event to a calendar

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Example: CALENDAR_WRITE(calendar,field1,field2,field3)=vall,val2,val3

The field and value arguments can easily be set/passed using the HASHKEYS() and HASH()
functions

Syntax

CALENDAR_WRI TE(cal endar,field[,...])

Arguments

® cal endar - The calendar to write to
e field
® summary - A summary of the event
descri pti on - The full event description
organi zer - The event organizer
| ocat i on - The event location
cat egori es - The categories of the event
priority - The priority of the event
ui d - The unique identifier for the event
start - The start time of the event (in seconds since epoch)
end - The end time of the event (in seconds since epoch)
busyst at e - The busy status of the event 0=FREE, 1=TENTATIVE, 2=BUSY

See Also

Function_CALENDAR_BUSY
Function_CALENDAR_EVENT

Function CALENDAR_QUERY

Function CALENDAR_QUERY_ RESULT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALLCOMPLETION

CALLCOMPLETION()

Synopsis

Get or set a call completion configuration parameter for a channel.

Description

The CALLCOMPLETION function can be used to get or set a call completion configuration
parameter for a channel. Note that setting a configuration parameter will only change the
parameter for the duration of the call. For more information see doc/ AST. pdf . For more
information on call completion parameters, see conf i gs/ ccss. conf. sanpl e.

Syntax

CALLCOVPLETI ON(opt i on)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments

® opti on - The allowable options are:
® cc_agent_policy
cc_nonitor_policy
cc_offer_tinmer
ccnr _avai |l abl e_ti ner
cchs_avail able_ti mer
cc_recal |l _tinmer
cc_nmax_agents
cc_max_nonitors
cc_cal | back_macro
cc_agent _dial string

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALLERID

CALLERID()

Synopsis
Gets or sets Caller*ID data on the channel.
Description

Gets or sets Caller*ID data on the channel. Uses channel callerid by default or optional callerid, if
specified.

The allowable values for the name-charset field are the following:
Unknown

ISO8859-1

Withdrawn

1SO8859-2

ISO8859-3

1ISO8859-4

1ISO8859-5

1SO8859-7

1ISO10646 Bmp String

1ISO10646 UTF-8 String

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

CALLERI D(dat at ype[, CI D))

Arguments

® dat at ype - The allowable datatypes are:
al |

nanme

name-val i d

nane- char set
nane- pr es

num

numvalid

num pl an

num pres

subaddr
subaddr-valid
subaddr - t ype
subaddr - odd

tag

ANl - al |

ANl - nane

ANl - nane-val i d
ANl - nare- char set
ANl - nane- pres

ANl - num

ANl - num val i d
ANl - num pl an

ANl - num pres

ANl -t ag

RDNI S

DNI D

dni d- num pl an

dni d- subaddr

dni d- subaddr-val i d
dni d- subaddr - t ype
dni d- subaddr - odd
® Cl D- Optional Caller*ID

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CALLERPRES

CALLERPRES()

Synopsis
Gets or sets Caller*ID presentation on the channel.
Description

Gets or sets Caller*ID presentation on the channel. This function is deprecated in favor of
CALLERID(num-pres) and CALLERID(name-pres). The following values are valid:

Presentation Allowed, Not Screened.

Presentation Allowed, Passed Screen.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Presentation Allowed, Failed Screen.
Presentation Allowed, Network Number.
Presentation Prohibited, Not Screened.
Presentation Prohibited, Passed Screen.
Presentation Prohibited, Failed Screen.
Presentation Prohibited, Network Number.
Number Unavailable.

Syntax

CALLERPRES()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CDR

CDR()

Synopsis

Gets or sets a CDR variable.

Description

All of the CDR field names are read-only, except for account code, userfi el d, and anaf | ags
. You may, however, supply a name not on the above list, and create your own variable, whose

value can be changed with this function, and this variable will be stored on the cdr.

For setting CDR values, the For setting CDR values, the | flag does not apply to setting the
account code, userfi el d, oramaf | ags.

Raw values for di sposition:
NO ANSWER
NO ANSWER (NULL record)

FAILED

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

BUSY

ANSWERED

Raw values for amaf | ags :
OMIT

BILLING
DOCUMENTATION

Example: exten => 1,1,Set(CDR(userfield)=test)

Syntax
CDR(nane[, opti ons])

Arguments

® nane - CDR field name:
® clid-Caller ID.
| ast dat a - Last application arguments.
di sposi ti on - ANSWERED, NO ANSWER, BUSY, FAILED.
src - Source.
start - Time the call started.
amaf | ags - DOCUMENTATION, BILL, IGNORE, etc.
dst - Destination.
answer - Time the call was answered.
account code - The channel's account code.
dcont ext - Destination context.
end - Time the call ended.
uni quei d - The channel's unique id.
dst channel - Destination channel.
dur at i on - Duration of the call.
user fi el d - The channel's user specified field.
| ast app - Last application.
bi | | sec - Duration of the call once it was answered.
channel - Channel name.
® sequence - CDR sequence number.
® options
® f - Returns billsec or duration fields as floating point values.
| - Uses the most recent CDR on a channel with multiple records
r - Searches the entire stack of CDRs on the channel.
s - Skips any CDR's that are marked 'LOCKED' due to forkCDR() calls. (on setting/writing CDR vars only)
u - Retrieves the raw, unprocessed value. For example, 'start’, ‘answer', and 'end’ will be retrieved as epoch values, when the u
option is passed, but formatted as YYYY-MM-DD HH:MM:SS otherwise. Similarly, disposition and amaflags will return their raw
integral values.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ CHANNEL

CHANNEL()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Gets/sets various pieces of information about the channel.

Description

Gets/sets various pieces of information about the channel, additional item may be available from
the channel driver; see its documentation for details. Any item requested that is not available on
the current channel will return an empty string.

Syntax
CHANNEL (i t em)

Arguments

® it em- Standard items (provided by all channel technologies) are: chan_sip provides the following additional options: chan_iax2
provides the following additional options: chan_dahdi provides the following additional options:

® audi or eadf or mat - R/O format currently being read.
® audi onati vef or mat - R/O format used natively for audio.
® audi owitefornmat - R/O format currently being written.
® cal | group - R/W call groups for call pickup.
® channel t ype - R/O technology used for channel.
® checkhangup - R/O Whether the channel is hanging up (1/0)
® | anguage - R/W language for sounds played.
® nusi ccl ass - R/W class (from musiconhold.conf) for hold music.
® nane - The name of the channel
® parki ngl ot - R/W parkinglot for parking.
® rxgai n - R/W set rxgain level on channel drivers that support it.
® secure_bridge_signaling-Whether or not channels bridged to this channel require secure signaling
® secure_bridge_nedi a - Whether or not channels bridged to this channel require secure media
® st at e - R/O state for channel
® tonezone - R/W zone for indications played
® transfercapability-R/WISDN Transfer Capability, one of:
® SPEECH
®* DG TAL
® RESTRI CTED DI G TAL
¢ 3K1AUDI O
* DI G TAL_W TONES
® VI DEO
® txgai n - R/W set txgain level on channel drivers that support it.
® vi deonati vef ormat - R/O format used natively for video
® trace - R/W whether or not context tracing is enabled, only available if CHANNEL_TRACE is defined.
® peeri p - R/O Get the IP address of the peer.
® recvi p - R/O Get the source IP address of the peer.
® from- R/O Get the URI from the From: header.
® uri - R/O Getthe URI from the Contact: header.
® useragent - R/O Get the useragent.
® peernane - R/O Get the name of the peer.
® t38passt hrough - R/O 1 if T38 is offered or enabled in this channel, otherwise 0
L]

rt pgos - R/O Get QOS information about the RTP stream This option takes two additional arguments: Argument 1:
audi o Get data about the audio stream vi deo Get data about the video stream t ext Get data about the text stream Argument
2:
| ocal _ssrc Local SSRC (stream ID) | ocal _| ost packet s Local lost packets | ocal _j i tter Local calculated jitter
I ocal _maxjitter Local calculated jitter (maximum) | ocal _mi nj i tter Local calculated jitter (minimum)
I ocal _norndevjitter Local calculated jitter (normal deviation) | ocal _st devj i tter Local calculated jitter (standard
deviation) | ocal _count Number of received packets r endt e_ssr ¢ Remote SSRC (stream ID) r enpt e_| ost packet s
Remote lost packets renpt e_j i tt er Remote reported jitter r enpt e_nmaxj i tt er Remote calculated jitter (maximum)
renot e_mi njitter Remote calculated jitter (minimum) r endt e_nor ndevj i t t er Remote calculated jitter (normal deviation)
renot e_stdevjitter Remote calculated jitter (standard deviation) r enpt e_count Number of transmitted packets rt t
Round trip time maxr tt Round trip time (maximum) nmi nrtt Round trip time (minimum) nor ndevr t t Round trip time (normal
deviation) st devr tt Round trip time (standard deviation) al | All statistics (in a form suited to logging, but not for parsing)
® rtpdest - R/O Get remote RTP destination information. This option takes one additional argument: Argument 1:

audi o Get audio destination vi deo Get video destination t ext Get text destination
® dahdi _channel - R/O DAHDI channel related to this channel.
® dahdi _span - R/O DAHDI span related to this channel.
® dahdi _t ype - R/O DAHDI channel type, one of:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® anal og
® nfc/r2
® pri
® pseudo
® ss7
* keypad_di gi t s - R/O PRI Keypad digits that came in with the SETUP message.
® reversechar ge - R/O PRI Reverse Charging Indication, one of:
® -1-None
® {{1}} - Reverse Charging Requested
® no_nedi a_pat h - R/O PRI Nonzero if the channel has no B channel. The channel is either on hold or a call waiting call.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r314358.

Function CHANNELS

CHANNELS()

Synopsis

Gets the list of channels, optionally filtering by a regular expression.

Description

Gets the list of channels, optionally filtering by a regular_expression. If no argument is provided,
all known channels are returned. The regular_expression must correspond to the POSIX.2
specification, as shown in regex(7). The list returned will be space-delimited.

Syntax

CHANNELS([r egul ar _expressi on])

Arguments
® regul ar_expression

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CHECKSIPDOMAIN

CHECKSIPDOMAIN()

Synopsis
Checks if domain is a local domain.

Description

This function checks if the domain in the argument is configured as a local SIP domain that this

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Asterisk server is configured to handle. Returns the domain name if it is locally handled,
otherwise an empty string. Check the domai n= configuration in si p. conf .

Syntax

CHECKSI PDOVAI N(domai n)

Arguments
® domain
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CONNECTEDLINE

CONNECTEDLINE()

Synopsis

Gets or sets Connected Line data on the channel.
Description

Gets or sets Connected Line data on the channel.
The allowable values for the name-charset field are the following:
Unknown

ISO8859-1

Withdrawn

1SO8859-2

ISO8859-3

ISO8859-4

1SO8859-5

1SO8859-7

1ISO10646 Bmp String

1ISO10646 UTF-8 String

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CONNECTEDLI NE(dat at ype[,i])

Arguments

® dat at ype - The allowable datatypes are:
al |

name

name-val i d

name- char set

nane- pres

num

numvalid

num pl an

num pres

subaddr

subaddr-val i d

subaddr - t ype

subaddr - odd

tag

® i -If set, this will prevent the channel from sending out protocol messages because of the value being set

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CSV_QUOTE

CSV_QUOTE()

Synopsis

Quotes a given string for use in a CSV file, escaping embedded quotes as necessary
Description

Example: ${CSV_QUOTE("a,b" 123)} will return ""a,b™ 123"

Syntax

CSV_QUOTE(st ri ng)
Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_CUT

CuT()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis

Slices and dices strings, based upon a named delimiter.

Description

Cut out information from a string (varname), based upon a named delimiter.

Syntax
CUT(var namne, char - del i m range- spec)

Arguments

® var nane - Variable you want cut

® char - del i m- Delimiter, defaults to -

® range- spec - Number of the field you want (1-based offset), may also be specified as a range (with -) or group of ranges and fields
(with &)

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DB

DB()

Synopsis

Read from or write to the Asterisk database.

Description

This function will read from or write a value to the Asterisk database. On a read, this function
returns the corresponding value from the database, or blank if it does not exist. Reading a
database value will also set the variable DB_RESULT. If you wish to find out if an entry exists,
use the DB_EXISTS function.

Syntax
DB(fam |y, key)

Arguments

® fanmly
® key

See Also

Application_DBdel
Function_DB_DELETE

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_DBdeltree
Function_DB_EXISTS

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DB_DELETE

DB_DELETE()

Synopsis

Return a value from the database and delete it.

Description

This function will retrieve a value from the Asterisk database and then remove that key from the
database. This function will retrieve a value from the Asterisk database and then remove that key
from the database. None - DB_RESULT will be set to the key's value if it exists.

Syntax
DB DELETE(fam |y, key)

Arguments

* family
® key

See Also

Application_DBdel
Function_DB
Application_DBdeltree

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DB_EXISTS

DB_EXISTS()

Synopsis
Check to see if a key exists in the Asterisk database.
Description

This function will check to see if a key exists in the Asterisk database. If it exists, the function will
return 1. If not, it will return 0. Checking for existence of a database key will also set the variable

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

DB_RESULT to the key's value if it exists.

Syntax
DB _EXI STS(fam |y, key)

Arguments

® famly
® key

See Also
Function_DB

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DEC

DEC()

Synopsis
Decrements the value of a variable, while returning the updated value to the dialplan
Description

Decrements the value of a variable, while returning the updated value to the dialplan
Example: DEC(MyVAR) - Increments MyVar

Note: DEC(${MyVAR}) - Is wrong, as INC expects the variable name, not its value

Syntax

DEC(vari abl e)

Arguments
® vari abl e - The variable name to be manipulated, without the braces.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DENOISE

DENOISE()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Apply noise reduction to audio on a channel.
Description

The DENOISE function will apply noise reduction to audio on the channel that it is executed on. It
is very useful for noisy analog lines, especially when adjusting gains or using AGC. Use r x for
audio received from the channel and t x to apply the filter to the audio being sent to the channel.

Examples:
exten => 1,1,Set(DENOISE(rx)=on)
exten => 1,2,Set(DENOISE(tx)=0ff)

Syntax

DENO SE(channel di recti on)

Arguments
® channel di recti on - This can be either r x or t x the values that can be set to this are either on and of f

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DEVICE_STATE

DEVICE_STATE()

Synopsis
Get or Set a device state.
Description

The DEVICE_STATE function can be used to retrieve the device state from any device state
provider. For example:

NoOp(SIP/mypeer has state ${DEVICE_STATE(SIP/mypeer)})
NoOp(Conference number 1234 has state ${DEVICE_STATE(MeetMe:1234)})

The DEVICE_STATE function can also be used to set custom device state from the dialplan. The
Cust om prefix must be used. For example:

Set(DEVICE_STATE(Custom:lamp1)=BUSY)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Set(DEVICE_STATE(Custom:lamp2)=NOT _INUSE)

You can subscribe to the status of a custom device state using a hint in the dialplan:
exten => 1234, hint,Custom:lamp1

The possible values for both uses of this function are:

UNKNOWN | NOT_INUSE | INUSE | BUSY | INVALID | UNAVAILABLE | RINGING |
RINGINUSE | ONHOLD

Syntax

DEVI CE_STATE(devi ce)

Arguments
® device

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DIALGROUP

DIALGROUP()

Synopsis

Manages a group of users for dialing.

Description

Presents an interface meant to be used in concert with the Dial application, by presenting a list of
channels which should be dialled when referenced.

When DIALGROUP is read from, the argument is interpreted as the particular group for which a
dial should be attempted. When DIALGROUP is written to with no arguments, the entire list is
replaced with the argument specified.

Functionality is similar to a queue, except that when no interfaces are available, execution may
continue in the dialplan. This is useful when you want certain people to be the first to answer any
calls, with immediate fallback to a queue when the front line people are busy or unavailable, but
you still want front line people to log in and out of that group, just like a queue.

Example:

exten => 1,1,Set(DIALGROUP(mygroup,add)=SIP/10)

exten => 1,n,Set(DIALGROUP(mygroup,add)=SIP/20)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 1,n,Dial(${DIALGROUP(mygroup)})

Syntax

DI ALGROUP(gr oup|[, op])

Arguments

® group
® op - The operation name, possible values are:
add - add a channel name or interface (write-only) del - remove a channel name or interface (write-only)

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DIALPLAN_EXISTS
DIALPLAN_EXISTS()

Synopsis

Checks the existence of a dialplan target.

Description

This function returns 1 if the target exits. Otherwise, it returns 0.

Syntax

DI ALPLAN_EXI STS(context [, extension[,priority]])

Arguments

® context
® extension
® priority

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ DUNDILOOKUP

DUNDILOOKUP()

Synopsis

Do a DUND:i lookup of a phone number.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

This will do a DUND:I lookup of the given phone number.

This function will return the Technology/Resource found in the first result in the DUNDiI lookup. If
no results were found, the result will be blank.

Syntax

DUNDI LOOKUP(nunber [, cont ext [, options]])

Arguments

® nunber
® cont ext - If not specified the default will be e164.

® options
® b - Bypass the internal DUNDi cache

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DUNDIQUERY
DUNDIQUERY/()

Synopsis

Initiate a DUNDiI query.

Description

This will do a DUND:I lookup of the given phone number.

The result of this function will be a numeric ID that can be used to retrieve the results with the
DUNDI RESULT function.

Syntax

DUNDI QUERY(nunber [, context [, opti ons]])

Arguments

® nunber
® cont ext - If not specified the default will be e164.

® options
® b - Bypass the internal DUNDi cache

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_DUNDIRESULT

DUNDIRESULT()

Synopsis

Retrieve results from a DUNDIQUERY.

Description

This function will retrieve results from a previous use\n" of the DUNDI QUERY function.

Syntax
DUNDI RESULT(i d[, resul t nuny)

Arguments

® i d - The identifier returned by the DUNDI QUERY function.

® resultnum
® nunber - The number of the result that you want to retrieve, this starts at 1
® get num- The total number of results that are available.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ ENUMLOOKUP

ENUMLOOKUP()

Synopsis

General or specific querying of NAPTR records for ENUM or ENUM-like DNS pointers.

Description

For more information see doc/ AST. pdf .

Syntax

ENUMLOCOKUP(nunber [, met hod-t ype[, opti ons[, record#[, zone-suffix]]]])

Arguments

® nunber
* et hod- t ype - If no method-type is given, the default will be si p.
® options
® c - Returns an integer count of the number of NAPTRs of a certain RR type. Combination of ¢ and Method-type of ALL will return
a count of all NAPTRs for the record.
® u - Returns the full URI and does not strip off the URI-scheme.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® s - Triggers ISN specific rewriting.
® i - Looks for branches into an Infrastructure ENUM tree.
® d - for a direct DNS lookup without any flipping of digits.
® recor d# - If no record# is given, defaults to 1.
® zone-suffi x - If no zone-suffix is given, the default will be e164. ar pa

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ ENUMQUERY
ENUMQUERY/()

Synopsis

Initiate an ENUM query.

Description

This will do a ENUM lookup of the given phone number.

Syntax

ENUMQUERY(nunber [, net hod-t ype[, zone-suffix]])

Arguments

® nunber
* et hod- t ype - If no method-type is given, the default will be si p.
® zone-suffi x - If no zone-suffix is given, the default will be e164. ar pa

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function ENUMRESULT

ENUMRESULT()

Synopsis
Retrieve results from a ENUMQUERY.

Description

This function will retrieve results from a previous use of the ENUMQUERY function.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ENUMRESULT(i d, resul t num

Arguments

® i d - The identifier returned by the ENUMQUERY function.
® resul t num- The number of the result that you want to retrieve. Results start at 1. If this argument is specified as get num then it will
return the total number of results that are available.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ENV

ENV()

Synopsis

Gets or sets the environment variable specified.

Description

Variables starting with AST _ are reserved to the system and may not be set.

Syntax

ENV(var nane)

Arguments
® var nane - Environment variable name

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function EVAL

EVAL()

Synopsis
Evaluate stored variables
Description

Using EVAL basically causes a string to be evaluated twice. When a variable or expression is in
the dialplan, it will be evaluated at runtime. However, if the results of the evaluation is in fact

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

another variable or expression, using EVAL will have it evaluated a second time.

Example: If the Example: If the None - MYVAR contains Example: If the None - OTHERVAR, then
the result of ${EVAL(Example: If the None - MYVAR)} in the dialplan will be the contents of
Example: If the None - OTHERVAR. Normally just putting Example: If the None - MYVAR in the
dialplan the result would be Example: If the None - OTHERVAR.

Syntax

EVAL(vari abl e)

Arguments
® variable

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_EXCEPTION

EXCEPTION()

Synopsis

Retrieve the details of the current dialplan exception.

Description

Retrieve the details (specified field) of the current dialplan exception.

Syntax

EXCEPTI ON(f i el d)

Arguments

® field - The following fields are available for retrieval:
® reason - INVALID, ERROR, RESPONSETIMEOUT, ABSOLUTETIMEOUT, or custom value set by the RaiseException()
application
® cont ext - The context executing when the exception occurred.
® ext en - The extension executing when the exception occurred.
® priority -The numeric priority executing when the exception occurred.

See Also

Application_RaiseException

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function EXISTS

EXISTS()

Synopsis

Test the existence of a value.
Description

Returns 1 if exists, O otherwise.

Syntax

EXI STS(dat a)

Arguments
® data

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_EXTENSION_STATE

EXTENSION_STATE()

Synopsis
Get an extension's state.

Description

The EXTENSION_STATE function can be used to retrieve the state from any hinted extension.
For example:

NoOp(1234@default has state ${EXTENSION_STATE(1234)})
NoOp(4567@home has state ${EXTENSION_STATE(4567@home)})
The possible values returned by this function are:

UNKNOWN | NOT_INUSE | INUSE | BUSY | INVALID | UNAVAILABLE | RINGING |
RINGINUSE | HOLDINUSE | ONHOLD

Syntax

EXTENSI ON_STATE(ext ensi on[, context])

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Arguments

® extension
® context - Ifitis not specified defaults to def aul t .

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FAXOPT

FAXOPT()

Synopsis

Gets/sets various pieces of information about a fax session.

Description

FAXOPT can be used to override the settings for a FAX session listed in res_f ax. conf, it can
also be used to retreive information about a FAX session that has finished eg. pages/status.

Syntax
FAXOPT(i t en)
Arguments
® jtem

® ecm- R/W Error Correction Mode (ECM) enable with 'yes', disable with 'no'.
® error - R/O FAX transmission error code upon failure.
® fil enane - R/O Filename of the first file of the FAX transmission.
® fil enanmes - R/O Filenames of all of the files in the FAX transmission (comma separated).
®* headeri nf o - R/W FAX header information.
® | ocal stationid-R/W Local Station Identification.
® m nrat e - R/W Minimum transfer rate set before transmission.
® maxr at e - R/W Maximum transfer rate set before transmission.
®* nodem- R/W Modem type (v17/v27/v29).
® pages - R/O Number of pages transferred.
® rat e - R/O Negotiated transmission rate.
®* renotestationi d-R/O Remote Station Identification after transmission.
® resol uti on - R/O Negotiated image resolution after transmission.
® sessioni d - R/O Session ID of the FAX transmission.
® stat us - R/O Result Status of the FAX transmission.
® statusstr - R/O Verbose Result Status of the FAX transmission.

See Also

Application_ReceiveFax
Application_SendFax

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_FIELDNUM

FIELDNUM()

Synopsis

Return the 1-based offset of a field in a list

Description

Search the variable named varname for the string value delimited by delim and return a 1-based
offset as to its location. If not found or an error occured, return 0.

The delimiter may be specified as a special or extended ASCII character, by encoding it. The
characters\ n,\r,and \t are all recognized as the newline, carriage return, and tab characters,
respectively. Also, octal and hexadecimal specifications are recognized by the patterns \ Onnn
and \ xHH, respectively. For example, if you wanted to encode a comma as the delimiter, you
could use either \ 054 or \ x2C.

Example: If ${example} contains ex- anp- | e, then ${FIELDNUM(example,-,amp)} returns 2.

Syntax

FI ELDNUM var name, del i m val ue)

Arguments

® varnane
® delim
® val ue

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FIELDQTY

FIELDQTY()

Synopsis

Count the fields with an arbitrary delimiter

Description

The delimiter may be specified as a special or extended ASCII character, by encoding it. The
characters\ n,\r,and \t are all recognized as the newline, carriage return, and tab characters,
respectively. Also, octal and hexadecimal specifications are recognized by the patterns \ Onnn
and \ xHH, respectively. For example, if you wanted to encode a comma as the delimiter, you
could use either \ 054 or \ x2C.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Example: If ${example} contains ex- anp- | e, then ${FIELDQTY (example,-)} returns 3.

Syntax

FI ELDQTY(var nane, del i m

Arguments

® var nane
® delim

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FILE

FILEQ

Synopsis
Read or write text file.

Description

Read and write text file in character and line mode.

Examples:

Read mode (byte):

;reads the entire content of the file.

Set(foo=${FILE(/tmp/test.txt)})

;reads from the 11th byte to the end of the file (i.e. skips the first 10).
Set(foo=${FILE(/tmp/test.txt,10)})

;reads from the 11th to 20th byte in the file (i.e. skip the first 10, then read 10 bytes).
Set(foo=${FILE(/tmp/test.txt,10,10)})

Read mode (line):

; reads the 3rd line of the file.

Set(foo=${FILE(/tmp/test.txt,3,1,1)})

: reads the 3rd and 4th lines of the file.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Set(foo=${FILE(/tmp/test.txt,3,2,)})

; reads from the third line to the end of the file.
Set(foo=${FILE(/tmp/test.txt,3,,))})

; reads the last three lines of the file.
Set(foo=${FILE(/tmp/test.txt,-3,,1)})

; reads the 3rd line of a DOS-formatted file.
Set(foo=${FILE(/tmp/test.txt,3,1,l,d)})

Write mode (byte):

: truncate the file and write "bar"
Set(FILE(/tmp/test.txt)=bar)

; Append "bar"

Set(FILE(/tmpltest.txt,,,a)=bar)

; Replace the first byte with "bar" (replaces 1 character with 3)
Set(FILE(/tmp/test.txt,0,1)=bar)

: Replace 10 bytes beginning at the 21st byte of the file with "bar"
Set(FILE(/tmp/test.txt,20,10)=bar)

; Replace all bytes from the 21st with "bar"
Set(FILE(/tmp/test.txt,20)=bar)

; Insert "bar" after the 4th character
Set(FILE(/tmp/test.txt,4,0)=bar)

Write mode (line):

; Replace the first line of the file with "bar"
Set(FILE(/tmp/foo.txt,0,1,I)=bar)

; Replace the last line of the file with "bar"

Set(FILE(/tmp/foo.txt,-1,,1)=bar)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

; Append "bar" to the file with a newline

Set(FILE(/tmp/foo.txt,,,al)=bar)

Syntax

FILE(fil enane[, of fset[,length[,options[,format]]]])

Arguments

® filename
* of f set - Maybe specified as any number. If negative, offset specifies the number of bytes back from the end of the file.
® | engt h - If specified, will limit the length of the data read to that size. If negative, trims length bytes from the end of the file.
® options
® | - Line mode: offset and length are assumed to be measured in lines, instead of byte offsets.
® a - In write mode only, the append option is used to append to the end of the file, instead of overwriting the existing file.
® d - In write mode and line mode only, this option does not automatically append a newline string to the end of a value. This is
useful for deleting lines, instead of setting them to blank.
® format - The format parameter may be used to delimit the type of line terminators in line mode.
® u - Unix newline format.
® d - DOS newline format.
® m- Macintosh newline format.

See Also

Function_FILE_COUNT_LINE
Function_FILE_FORMAT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function FILE_COUNT_LINE
FILE_COUNT_LINE()

Synopsis

Obtains the number of lines of a text file.

Description

Returns the number of lines, or - 1 on error.

Syntax

FI LE_ COUNT_LINE(filenane[,format])

Arguments

® filenane
* fornmat - Format may be one of the following: If not specified, an attempt will be made to determine the newline format type.If not
specified, an attempt will be made to determine the newline format type.
® u - Unix newline format.
® d - DOS newline format.
®* m- Macintosh newline format.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Function_FILE
Function_FILE_FORMAT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FILE_FORMAT

FILE_FORMAT()

Synopsis

Return the newline format of a text file.
Description

Return the line terminator type:

'u' - Unix "\n" format

'd' - DOS "\r\n" format

'm' - Macintosh "\r" format

'X' - Cannot be determined

Syntax

FI LE_FORVAT(fi | enane)

Arguments
® filename

See Also

Function_FILE
Function_FILE_COUNT _LINE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FILTER

FILTER()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Filter the string to include only the allowed characters

Description

Permits all characters listed in allowed-chars, filtering all others outs. In addition to literally listing
the characters, you may also use ranges of characters (delimited by a -

Hexadecimal characters started with a \ x (i.e. \x20)

Octal characters started with a\ 0 (i.e. \040)

Also\t,\nand\r are recognized.

If you want the If you want the - character it needs to be prefixed with a {{}}

Syntax

FI LTER(al | owed- chars, string)

Arguments

® al |l owed-chars
® string

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_FRAME_TRACE

FRAME_TRACE()

Synopsis

View internal ast_frames as they are read and written on a channel.

Description

Examples:

exten => 1,1,Set(FRAME_TRACE(white)=DTMF_BEGIN,DTMF_END); view only DTMF frames.
exten => 1,1,Set(FRAME_TRACE()=DTMF_BEGIN,DTMF_END); view only DTMF frames.

exten => 1,1,Set(FRAME_TRACE(black)=DTMF_BEGIN,DTMF_END); view everything except
DTMF frames.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

FRAME _TRACE(filter list type)

Arguments

e filter |list type -Afilter can be applied to the trace to limit what frames are viewed. This filter can either be a whi t e or bl ack list
of frame types. When no filter type is present, whi t e is used. If no arguments are provided at all, all frames will be output. Below are the
different types of frames that can be filtered.

® DTMF_BEG N

DTME_END

VA CE

VI DEO

CONTROL

NULL

I AX

TEXT

I MAGE

HTML

CNG

MODEM

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_GLOBAL

GLOBAL()

Synopsis

Gets or sets the global variable specified.

Description

Set or get the value of a global variable specified in varname

Syntax

GLOBAL(var narne)

Arguments
® var nane - Global variable name

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_GROUP

GROUP()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Gets or sets the channel group.
Description

category can be employed for more fine grained group management. Each channel can only be
member of exactly one group per category.

Syntax

GROUP([cat egory])

Arguments
® cat egory - Category name.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_GROUP_COUNT

GROUP_COUNT/()

Synopsis

Counts the number of channels in the specified group.

Description

Calculates the group count for the specified group, or uses the channel's current group if not
specifed (and non-empty).

Syntax

GROUP_COUNT([gr oupnarme[, cat egory]])

Arguments

® groupnane - Group name.
® cat egory - Category name

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ GROUP_LIST

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

GROUP_LIST()
Synopsis

Gets a list of the groups set on a channel.
Description

Gets a list of the groups set on a channel.

Syntax

GROUP_LI ST()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_GROUP_MATCH_COUNT

GROUP_MATCH_COUNT()

Synopsis
Counts the number of channels in the groups matching the specified pattern.

Description

Calculates the group count for all groups that match the specified pattern. Note: category
matching is applied after matching based on group. Uses standard regular expression matching
on both (see regex(7)).

Syntax

GROUP_NVATCH_COUNT(gr oupmat ch[, cat egory])

Arguments

® groupmat ch - A standard regular expression used to match a group name.
® cat egory - A standard regular expression used to match a category name.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_HASH

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

HASH()
Synopsis
Implementation of a dialplan associative array

Description

In two arguments mode, gets and sets values to corresponding keys within a named associative
array. The single-argument mode will only work when assigned to from a function defined by
func_odbc

Syntax

HASH(hashnane|[, hashkey])

Arguments

® hashnane
® hashkey

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_HASHKEYS

HASHKEYS()

Synopsis

Retrieve the keys of the HASH() function.

Description

Returns a comma-delimited list of the current keys of the associative array defined by the
HASH)() function. Note that if you iterate over the keys of the result, adding keys during iteration
will cause the result of the HASHKEYS() function to change.

Syntax

HASHKEYS(hashnane)

Arguments
® hashnane

See Also

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_HINT

HINT()

Synopsis

Get the devices set for a dialplan hint.

Description

The HINT function can be used to retrieve the list of devices that are mapped to a dialplan hint.
For example:

NoOp(Hint for Extension 1234 is ${HINT(1234)})

Syntax

HI NT(ext ensi on[@ontext] [, options])

Arguments

® extension
® extension
® cont ext
® options
® n - Retrieve name on the hint instead of list of devices.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IAXPEER
IAXPEER()

Synopsis

Gets IAX peer information.

Description

Syntax

| AXPEER(peer name[,item)

Arguments

® peernane

® CURRENTCHANNEL - If peername is specified to this value, return the IP address of the endpoint of the current channel
® it em- If peername is specified, valid items are:

® i p - (default) The IP address.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

st at us - The peer's status (if qual i fy=yes)

mai | box - The configured mailbox.

cont ext - The configured context.

expi r e - The epoch time of the next expire.

dynami ¢ - Is it dynamic? (yes/no).

cal I eri d_name - The configured Caller ID name.

cal I eri d_num- The configured Caller ID number.

codecs - The configured codecs.

codec| x] - Preferred codec index number x (beginning with 0)

See Also

Function_SIPPEER

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IAXVAR

IAXVAR()

Synopsis

Sets or retrieves a remote variable.

Description

Syntax

| AXVAR(var nane)

Arguments
® varnane

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ICONV

ICONV()

Synopsis
Converts charsets of strings.
Description

Converts string from in-charset into out-charset. For available charsets, use i conv -1 on your
shell command line.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Due to limitations within the API, ICONV will not currently work with charsets with embedded
NULLSs. If found, the string will terminate.Due to limitations within the API, ICONV will not
currently work with charsets with embedded NULLs. If found, the string will terminate.

Syntax

| CONV(i n-charset, out -charset, string)

Arguments

® in-charset -Inputcharset
® out-charset - Output charset
® string - String to convert, from in-charset to out-charset

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IF

IF()

Synopsis

Check for an expresion.

Description

Returns the data following ? if true, else the data following :

Syntax
| F(expresion?[true][:fal se])

Arguments

® expresion

®* retval ue
® true
¢ fal se

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IFMODULE

IFMODULE()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Checks if an Asterisk module is loaded in memory.

Description

Checks if a module is loaded. Use the full module name as shown by the listin rodul e |i st.
Returns 1 if module exists in memory, otherwise 0

Syntax
| FMODULE(nodul enane. so)

Arguments
® nodul enane. so - Module name complete with . so

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IFTIME
IFTIME()

Synopsis

Temporal Conditional.

Description

Returns the data following ? if true, else the data following :

Syntax

| FTI ME(ti nmespec?[true][:false])

Arguments

® timespec

®* retval ue
® true
® fal se

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_IMPORT

IMPORT()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Retrieve the value of a variable from another channel.

Description

Syntax

| MPORT(channel , vari abl e)

Arguments

¢ channel
® variable

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_INC

INC()

Synopsis
Increments the value of a variable, while returning the updated value to the dialplan
Description

Increments the value of a variable, while returning the updated value to the dialplan
Example: INC(MyVAR) - Increments MyVar

Note: INC(${MyVAR}) - Is wrong, as INC expects the variable name, not its value

Syntax

I NC(vari abl e)

Arguments
® vari abl e - The variable name to be manipulated, without the braces.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function ISNULL

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ISNULL()

Synopsis
Check if a value is NULL.

Description

Returns 1 if NULL or O otherwise.

Syntax

| SNULL(dat a)

Arguments
® data

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_JABBER_RECEIVE
JABBER_RECEIVE()

Synopsis

Reads XMPP messages.

Description

Receives a text message on the given account from the buddy identified by jid and returns the
contents.

Example: ${JABBER_RECEIVE(asterisk,bob@domain.com)} returns an XMPP message sent
from bob@domain.com (or nothing in case of a time out), to the asterisk XMPP account
configured in jabber.conf.

Syntax

JABBER _RECEI VE(account,jid[,tinmeout])

Arguments

® account - The local named account to listen on (specified in jabber.conf)

® jid-Jabber ID of the buddy to receive message from. It can be a bare JID (username@domain) or a full JID
(username@domain/resource).

® timeout -Inseconds, defaults to 20.

See Also

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_JABBER_STATUS
Application_JabberSend

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_JABBER_STATUS
JABBER_STATUS()

Synopsis

Retrieves a buddy's status.

Description

Retrieves the numeric status associated with the buddy identified by jid. If the buddy does not
exist in the buddylist, returns 7.

Status will be 1-7.
1=0Online, 2=Chatty, 3=Away, 4=XAway, 5=DND, 6=0ffline
If not in roster variable will be setto 7.

Example: ${JABBER_STATUS(asterisk,bob@domain.com)} returns 1 if bob@domain.com is
online. asterisk is the associated XMPP account configured in jabber.conf.

Syntax

JABBER _STATUS(account, jid)

Arguments

® account - The local named account to listen on (specified in jabber.conf)
® jid-Jabber ID of the buddy to receive message from. It can be a bare JID (username@domain) or a full JID
(username@domain/resource).

See Also

Function_JABBER_RECEIVE
Application_JabberSend

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_KEYPADHASH

KEYPADHASH()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Hash the letters in string into equivalent keypad numbers.
Description

Example: ${KEYPADHASH(Les)} returns "537"

Syntax

KEYPADHASH(st ri ng)

Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_LEN

LEN()

Synopsis

Return the length of the string given.
Description

Example: ${LEN(example)} returns 7

Syntax
LEN(stri ng)

Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ LISTFILTER

LISTFILTER()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Remove an item from a list, by name.

Description

Remove value from the list contained in the varname variable, where the list delimiter is specified
by the delim parameter. This is very useful for removing a single channel name from a list of
channels, for example.

Syntax

LI STFI LTER(var nane, del i m val ue)

Arguments

® varnane
® delim
® val ue

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_LOCAL

LOCAL()

Synopsis

Manage variables local to the gosub stack frame.

Description

Read and write a variable local to the gosub stack frame, once we Return() it will be lost (or it will
go back to whatever value it had before the Gosub()).

Syntax

LOCAL (var nane)

Arguments
® varnanme

See Also

Application_Gosub
Application_Gosublf
Application_Return

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ LOCAL_PEEK

LOCAL_PEEK()

Synopsis

Retrieve variables hidden by the local gosub stack frame.

Description

Read a variable varname hidden by n levels of gosub stack frames. Note that
${LOCAL_PEEK(0,foo)} is the same as Read a variable None - f 00, since the value of n peeks
under 0 levels of stack frames; in other words, 0 is the current level. If n exceeds the available
number of stack frames, then an empty string is returned.

Syntax

LOCAL_PEEK(n, var nane)

Arguments

®n
® var nane

See Also

Application_Gosub
Application_Gosublf
Application_Return

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_LOCK

LOCK()

Synopsis

Attempt to obtain a named mutex.

Description

Attempts to grab a named lock exclusively, and prevents other channels from obtaining the same
lock. LOCK will wait for the lock to become available. Returns 1 if the lock was obtained or 0 on
error.

To avoid the possibility of a deadlock, LOCK will only attempt to obtain the lock for 3 seconds if
the channel already has another lock.To avoid the possibility of a deadlock, LOCK will only

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

attempt to obtain the lock for 3 seconds if the channel already has another lock.

Syntax

LOCK(| ocknane)

Arguments
® | ocknane

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MAILBOX_EXISTS
MAILBOX_EXISTS()

Synopsis

Tell if a mailbox is configured.

Description

Returns a boolean of whether the corresponding mailbox exists. If context is not specified,
defaults to the def aul t context.

Syntax

MAI LBOX_EXI STS(mai | box[, context])

Arguments

® mai |l box
® context

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MASTER_CHANNEL

MASTER_CHANNEL()

Synopsis
Gets or sets variables on the master channel

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Allows access to the channel which created the current channel, if any. If the channel is already
a master channel, then accesses local channel variables.

Syntax

MASTER CHANNEL ()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MATH

MATH()

Synopsis

Performs Mathematical Functions.

Description

Performs mathematical functions based on two parameters and an operator. The returned value
type is type

Example: Set(i=${MATH(123%16,int)}) - sets var i=11

Syntax
MATH(expr essi on[, type])

Arguments

® expression - Is of the form: numberl op number2 where the possible values for op are:
+,-,1,%,%,<<,>> " AND,OR,XOR,<,%gt;,>=,<=,== (and behave as their C equivalents)
® type - Wanted type of result: f, float - float(default) i, int - integer h, hex - hex c, char - char

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MD5

MD5()

Synopsis

Computes an MD5 digest.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description

Computes an MD5 digest.

Syntax

MD5(dat a)

Arguments
® data

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MEETME_INFO

MEETME_INFO()

Synopsis

Query a given conference of various properties.

Description

Syntax

VEETME | NFQ(keywor d, conf no)

Arguments

® keyword - Options:

® | ock - Boolean of whether the corresponding conference is locked.

® parties - Number of parties in a given conference

® activity - Duration of conference in seconds.

® dynani c - Boolean of whether the corresponding conference is dynamic.
® conf no - Conference number to retrieve information from.

See Also

Application_MeetMe
Application_MeetMeCount
Application_MeetMeAdmin
Application_MeetMeChannelAdmin

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MINIVMACCOUNT

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

MINIVMACCOUNT()
Synopsis
Gets MiniVoicemail account information.

Description

Syntax

M NI VMACCOUNT(account ,item

Arguments

® account

® i tem- Valid items are:

pat h - Path to account mailbox (if account exists, otherwise temporary mailbox).
hasaccount - 1 is static Minivm account exists, O otherwise.

f ul I nane - Full name of account owner.

emai | - Email address used for account.

et enpl at e - Email template for account (default template if none is configured).
pt enpl at e - Pager template for account (default template if none is configured).
account code - Account code for the voicemail account.

pi ncode - Pin code for voicemail account.

ti mezone - Time zone for voicemail account.

| anguage - Language for voicemail account.

<channel vari abl e name> - Channel variable value (set in configuration for account).

See Also

Application_MinivmRecord
Application_MinivmGreet
Application_MinivmNotify
Application_MinivmDelete
Application_MinivmAccMess
Application_MinivmMWiI
Function_MINIVMCOUNTER

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MINIVMCOUNTER

MINIVMCOUNTER()

Synopsis

Reads or sets counters for MiniVoicemail message.

Description

The operation is atomic and the counter is locked while changing the value. The counters are
stored as text files in the minivm account directories. It might be better to use realtime functions if
you are using a database to operate your Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

M NI VMCOUNTER(account , nane[, oper and])

Arguments

® account - If account is given and it exists, the counter is specific for the account. If account is a domain and the domain directory exists,
counters are specific for a domain.
® nane - The name of the counter is a string, up to 10 characters.
® oper and - The counters never goes below zero. Valid operands for changing the value of a counter when assigning a value are:
® i -Increment by value.
® d - Decrement by value.
® s - Setto value.

See Also

Application_MinivmRecord
Application_MinivmGreet
Application_MinivmNotify
Application_MinivmDelete
Application_MinivmAccMess
Application_MinivmMWiI
Function_MINIVMACCOUNT

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_MUTEAUDIO

MUTEAUDIO()

Synopsis

Muting audio streams in the channel

Description

The MUTEAUDIO function can be used to mute inbound (to the PBX) or outbound audio in a call.
Example:

MUTEAUDIO(in)=on MUTEAUDIO(in)=off

Syntax

MUTEAUDI O(di r ecti on)

Arguments

® direction - Must be one of
® in - Inbound stream (to the PBX)
® out - Outbound stream (from the PBX)
® al |l - Both streams

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ODBC

ODBC()

Synopsis

Controls ODBC transaction properties.
Description

The ODBC() function allows setting several properties to influence how a connected database
processes transactions.

Syntax
ODBC(property[,argunent])

Arguments

[]
property
® transacti on - Gets or sets the active transaction ID. If set, and the transaction ID does not exist and a database name is

specified as an argument, it will be created.
® forcecomit - Controls whether a transaction will be automatically committed when the channel hangs up. Defaults to false. If

a transaction ID is specified in the optional argument, the property will be applied to that ID, otherwise to the current active ID.
® i sol ati on - Controls the data isolation on uncommitted transactions. May be one of the following:
read_conmitted, read_unconm tted, repeatabl e_read, orserial i zabl e. Defaults to the database setting in
res_odbc. conf orread_conmi tt ed if not specified. If a transaction ID is specified as an optional argument, it will be applied
to that ID, otherwise the current active ID.
® argunent

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ODBC_FETCH
ODBC_FETCH()

Synopsis

Fetch a row from a multirow query.

Description

For queries which are marked as mode=multirow, the original query returns a result-id from
which results may be fetched. This function implements the actual fetch of the results.

This also sets This also sets None - ODBC_FETCH_STATUS.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® ODBC_FETCH _STATUS -
® SUCESS - If rows are available.
® FAI LURE - If no rows are available.

Syntax
ODBC _FETCH(resul t-id)

Arguments
® result-id
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ PASSTHRU

PASSTHRU()

Synopsis

Pass the given argument back as a value.

Description

Literally returns the given string. The intent is to permit other dialplan functions which take a
variable name as an argument to be able to take a literal string, instead.

Syntax

PASSTHRU([st ri ng])

Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_PITCH_SHIFT

PITCH_SHIFT()

Synopsis

Pitch shift both tx and rx audio streams on a channel.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description
Examples:

exten => 1,1,Set(PITCH_SHIFT(tx)=highest); raises pitch an octave
exten => 1,1,Set(PITCH_SHIFT(rx)=higher) ; raises pitch more

exten =>1,1,Set(PITCH_SHIFT(both)=high) ; raises pitch

exten =>1,1,Set(PITCH_SHIFT(rx)=low) ; lowers pitch

exten => 1,1,Set(PITCH_SHIFT(tx)=lower) ; lowers pitch more

exten => 1,1,Set(PITCH_SHIFT(both)=lowest) ; lowers pitch an octave
exten => 1,1,Set(PITCH_SHIFT(rx)=0.8) ; lowers pitch

exten =>1,1,Set(PITCH_SHIFT(tx)=1.5) ; raises pitch

Syntax

Pl TCH _SHI FT(channel direction)

Arguments

® channel direction - Direction can be either r x, t x, or bot h. The direction can either be set to a valid floating point number between
0.1 and 4.0 or one of the enum values listed below. A value of 1.0 has no effect. Greater than 1 raises the pitch. Lower than 1 lowers the
pitch. The pitch amount can also be set by the following values
® hi ghest
® hi gher
® high
® low
® | ower
® | owest

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_POP

POP()

Synopsis

Removes and returns the last item off of a variable containing delimited text

Description

Example:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => s,1,Set(array=one,two,three)

exten => s,n,While($["$\{SET(var=$\{POP(array)\p\}" I=""])
exten => s,n,NoOp(var is ${var})

exten => s,n,EndWhile

This would iterate over each value in array, right to left, and would result in NoOp(var is three),
NoOp(var is two), and NoOp(var is one) being executed.

Syntax

POP(varname[,delimter])

Arguments

® var nane
® delimter

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_PP_EACH_EXTENSION
PP_EACH_EXTENSION()

Synopsis

Execute specified template for each extension.

Description

Output the specified template for each extension associated with the specified MAC address.

Syntax
PP_EACH_EXTENSI ON(mac, t enpl at e)

Arguments

® mac
® tenplate

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_PP_EACH_USER

PP_EACH_USER()

Synopsis

Generate a string for each phoneprov user.

Description

Pass in a string, with phoneprov variables you want substituted in the format of %{VARNAME},
and you will get the string rendered for each user in phoneprov excluding ones with MAC
address exclude_mac. Probably not useful outside of res_phoneprov.

Example: ${PP_EACH_USER(<item><fn>%{DISPLAY_NAME]}</fn></item>|${MAC})

Syntax

PP_EACH USER(stri ng, excl ude_nac)

Arguments

® string
® excl ude_mac

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Function_PUSH

PUSH()

Synopsis

Appends one or more values to the end of a variable containing delimited text

Description

Example: Set(PUSH(array)=one,two,three) would append one, two, and three to the end of the
values stored in the variable "array".

Syntax

PUSH(var name[,delim ter])

Arguments

® var nane
® delimter

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_EXISTS

QUEUE_EXISTS()

Synopsis

Check if a named queue exists on this server

Description

Returns 1 if the specified queue exists, O if it does not

Syntax

QUEUE_EXI STS([queuenane])

Arguments

® queuenane

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_ QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_MEMBER

QUEUE_MEMBER()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Count number of members answering a queue.

Description

Returns the number of members currently associated with the specified queuename.

Syntax

QUEUE_MEMBER(queuenane, opti on)

Arguments

® queuenane
® option
® | ogged - Returns the number of logged-in members for the specified queue.
® free - Returns the number of logged-in members for the specified queue that either can take calls or are currently wrapping up
after a previous call.
® ready - Returns the number of logged-in members for the specified queue that are immediately available to answer a call.
® count - Returns the total number of members for the specified queue.

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_ QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_MEMBER_COUNT

QUEUE_MEMBER_COUNT()

Synopsis

Count number of members answering a queue.

Description

Returns the number of members currently associated with the specified queuename.

This function has been deprecated in favor of the QUEUE_MEMBER() function

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

QUEUE_MEMBER COUNT(queuenarne)

Arguments
® queuenane

See Also

Application_Queue
Application_Queuelog

Application_ AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_MEMBER_LIST

QUEUE_MEMBER_LIST()

Synopsis
Returns a list of interfaces on a queue.

Description

Returns a comma-separated list of members associated with the specified queuename.

Syntax

QUEUE_MEMBER LI ST(queuenane)

Arguments

queuenane

See Also

Application_Queue

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_MEMBER_PENALTY
QUEUE_MEMBER_PENALTY()

Synopsis

Gets or sets queue members penalty.
Description

Gets or sets queue members penalty.

Syntax

QUEUE_MEMBER PENALTY(queuenane, i nt erface)

Arguments

® queuenane
® interface

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function QUEUE_VARIABLES
Function QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_VARIABLES

QUEUE_VARIABLES()

Synopsis

Return Queue information in variables.
Description

Makes the following queue variables available.

Returns 0 if queue is found and setqueuevar is defined, - 1 otherwise.

Syntax

QUEUE_VARI ABLES(queuenane)

Arguments

® queuenane
® QUEUEMAX - Maxmimum number of calls allowed.
QUEUESTRATEGY - The strategy of the queue.
QUEUECALLS - Number of calls currently in the queue.
QUEUEHOLDTI ME - Current average hold time.
QUEUECOVPLETED - Number of completed calls for the queue.
QUEUEABANDONED - Number of abandoned calls.
QUEUESRVLEVEL - Queue service level.
QUEUESRVLEVELPERF - Current service level performance.

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_ QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_ QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function_ QUEUE_MEMBER_PENALTY

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUEUE_WAITING_COUNT

QUEUE_WAITING_COUNT()

Synopsis

Count number of calls currently waiting in a queue.

Description

Returns the number of callers currently waiting in the specified queuename.

Syntax

QUEUE_WAI TI NG_COUNT([queuenane])

Arguments
® queuenane

See Also

Application_Queue
Application_Queuelog
Application_AddQueueMember
Application_RemoveQueueMember
Application_PauseQueueMember
Application_UnpauseQueueMember
Function_QUEUE_VARIABLES
Function_ QUEUE_MEMBER
Function_QUEUE_MEMBER_COUNT
Function_ QUEUE_EXISTS
Function_QUEUE_WAITING_COUNT
Function_QUEUE_MEMBER_LIST
Function. QUEUE_MEMBER_PENALTY

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_QUOTE

QUOTE()

Synopsis

Quotes a given string, escaping embedded quotes as necessary

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Example: ${QUOTE(ab"c"de)} will return "abcde"

Syntax

QUOTE(st ring)

Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_RAND

RAND()

Synopsis

Choose a random number in a range.

Description

Choose a random number between min and max. min defaults to O, if not specified, while max
defaults to RAND_MAX (2147483647 on many systems).

Example: Set(junky=${RAND(1,8)}); Sets junky to a random number between 1 and 8, inclusive.

Syntax
RAND([mi n[, max]])

Arguments

® mn
® max

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REALTIME

REALTIME()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

RealTime Read/Write Functions.

Description

This function will read or write values from/to a RealTime repository. REALTIME(....) will read
names/values from the repository, and REALTIME(....)= will write a new value/field to the
repository. On a read, this function returns a delimited text string. The name/value pairs are
delimited by deliml, and the name and value are delimited between each other with delim2. If
there is no match, NULL will be returned by the function. On a write, this function will always
return NULL.

Syntax

REALTI ME(fam |y, fiel dmatch[, val ue[,deliml|field[,delinR]]])

Arguments

famly

fieldnmatch

val ue

del i mL| fi el d - Use deliml with delim2 on read and field without delim2 on write If we are reading and delim1 is not specified, defaults
to,

® del i n2 - Parameter only used when reading, if not specified defaults to =

See Also

Function REALTIME_STORE
Function REALTIME_DESTROY
Function_ REALTIME_FIELD
Function REALTIME_HASH

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REALTIME_DESTROY

REALTIME_DESTROY()

Synopsis
RealTime Destroy Function.

Description

This function acts in the same way as REALTIME(....) does, except that it destroys the matched
record in the RT engine.

Syntax

REALTI ME_DESTROY(fam |y, fi el dmatch[, val ue[, deliml[, delinR]]])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® famly

® fieldmatch
¢ val ue

® delint

® delink

See Also

Function_REALTIME
Function_REALTIME_STORE
Function_REALTIME_FIELD
Function_REALTIME_HASH

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REALTIME_FIELD
REALTIME_FIELD()

Synopsis

RealTime query function.

Description

This function retrieves a single item, fieldname from the RT engine, where fieldmatch contains
the value value. When written to, the REALTIME_FIELD() function performs identically to the
REALTIME() function.

Syntax

REALTI ME_FI ELD(fam |y, fi el dmat ch, val ue, fi el dnane)

Arguments

® fanmly

® fieldmatch
® val ue

® fieldname

See Also

Function_REALTIME
Function_REALTIME_STORE
Function_REALTIME_DESTROY
Function_REALTIME_HASH

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_REALTIME_HASH
REALTIME_HASH()

Synopsis

RealTime query function.

Description

This function retrieves a single record from the RT engine, where fieldmatch contains the value
value and formats the output suitably, such that it can be assigned to the HASH() function. The
HASHY() function then provides a suitable method for retrieving each field value of the record.

Syntax

REALTI ME_HASH(fam |y, fi el dmat ch, val ue)

Arguments

® famly
® fieldmatch
® val ue

See Also

Function_REALTIME
Function_REALTIME_STORE
Function_REALTIME_DESTROY
Function_REALTIME_FIELD

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REALTIME_STORE
REALTIME_STORE()

Synopsis

RealTime Store Function.

Description

This function will insert a new set of values into the RealTime repository. If RT engine provides
an unique ID of the stored record, REALTIME_STORE(...)=.. creates channel variable named
RTSTOREID, which contains value of unique ID. Currently, a maximum of 30 field/value pairs is
supported.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

REALTI ME_STORE(fanily, fiel dl,fiel dN[,...],fiel d30)

Arguments

® famly
® fieldl
® fieldN
® field30

See Also

Function_REALTIME

Function_ REALTIME_DESTROY
Function_REALTIME_FIELD
Function REALTIME_HASH

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REDIRECTING

REDIRECTING()

Synopsis

Gets or sets Redirecting data on the channel.
Description

Gets or sets Redirecting data on the channel.
The allowable values for the reason field are the following:
Unknown

Call Forwarding Busy

Call Forwarding No Reply

Callee is Unavailable

Time of Day

Do Not Disturb

Call Deflection

Follow Me

Called DTE Out-Of-Order

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Callee is Away

Call Forwarding By The Called DTE
Call Forwarding Unconditional

The allowable values for the xxx-name-charset field are the following:
Unknown

1SO8859-1

Withdrawn

ISO8859-2

ISO8859-3

1SO8859-4

1SO8859-5

ISO8859-7

1ISO10646 Bmp String

1ISO10646 UTF-8 String

Syntax

REDI RECTI NG dat at ype[,i])

Arguments

® dat at ype - The allowable datatypes are:
fromall

from nane
fromname-valid
from nane- char set
from nane- pres
from num
fromnumvalid
from num pl an
from num pres
from subaddr
from subaddr-valid
from subaddr -t ype
f rom subaddr - odd
fromtag

to-all

t o- name
to-nanme-valid

t o- name- char set

t o- nanme- pres

t 0- num
to-numvalid

t o- num pl an
to-num pres

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

t 0- subaddr

t o- subaddr-valid

t o- subaddr -t ype

t o- subaddr - odd

to-tag

reason

count

® | -If set, this will prevent the channel from sending out protocol messages because of the value being set

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REGEX

REGEX()

Synopsis

Check string against a regular expression.

Description
Return 1 on regular expression match or 0 otherwise

Please note that the space following the double quotes separating the regex from the data is
optional and if present, is skipped. If a space is desired at the beginning of the data, then put two
spaces there; the second will not be skipped.

Syntax

REGEX("regul ar expression", string)

Arguments

® "regul ar expression"
® string

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_REPLACE

REPLACE()

Synopsis
Replace a set of characters in a given string with another character.

Description

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Iterates through a string replacing all the find-chars with replace-char. replace-char may be either
empty or contain one character. If empty, all find-chars will be deleted from the output.

The replacement only occurs in the output. The original variable is not altered.The replacement
only occurs in the output. The original variable is not altered.

Syntax
REPLACE(var name, fi nd-chars[, repl ace-char])

Arguments

® varnane
® find-chars
® repl ace-char

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SET

SET()

Synopsis

SET assigns a value to a channel variable.
Description

Syntax

SET(var nane[, val ue])

Arguments

® var nane
® val ue

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SHA1

SHA1()

Synopsis

Computes a SHA1 digest.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Description
Generate a SHAL digest via the SHA1 algorythm.
Example: Set(shalhash=${SHA1(junky)})

Sets the asterisk variable shalhash to the string
60f a5675b9303eb62f 99a9cd47f 9f 5837d18f 9a0 which is known as his hash

Syntax

SHA1(dat a)

Arguments

® dat a - Input string
See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SHARED

SHARED()

Synopsis
Gets or sets the shared variable specified.

Description
Implements a shared variable area, in which you may share variables between channels.

The variables used in this space are separate from the general namespace of the channel and
thus The variables used in this space are separate from the general namespace of the channel
and thus None - SHARED(f 0o0) and The variables used in this space are separate from the
general namespace of the channel and thus None - f oo represent two completely different
variables, despite sharing the same name.

Finally, realize that there is an inherent race between channels operating at the same time,
fiddling with each others' internal variables, which is why this special variable namespace exists;
it is to remind you that variables in the SHARED namespace may change at any time, without
warning. You should therefore take special care to ensure that when using the SHARED
namespace, you retrieve the variable and store it in a regular channel variable before using itin a
set of calculations (or you might be surprised by the result).

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SHARED(var nane[, channel])

Arguments

® var nane - Variable name
® channel - If not specified will default to current channel. It is the complete channel name:
S| P/ 12- abcd1234 or the prefix only SI P/ 12.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SHELL

SHELL()

Synopsis

Executes a command as if you were at a shell.

Description
Returns the value from a system command

Example:
Set (f 00=${ SHELL(echo \bar)})

When using the SHELL() dialplan function, your \SHELL)\ is /bin/sh, which may differ as to the
underlying shell, depending upon your production platform. Also keep in mind that if you are
using a common path, you should be mindful of race conditions that could result from two calls
running SHELL() simultaneously.When using the SHELL() dialplan function, your \SHELL\ is
/bin/sh, which may differ as to the underlying shell, depending upon your production platform.
Also keep in mind that if you are using a common path, you should be mindful of race conditions
that could result from two calls running SHELL() simultaneously.

Syntax

SHELL(comrand)

Arguments
¢ command - This is the argument to the function, the command you want to pass to the shell.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Function_SHIFT

SHIFT()

Synopsis

Removes and returns the first item off of a variable containing delimited text
Description

Example:

exten => s,1,Set(array=one,two,three)

exten => s,n,While($["S\{SET (var=8\{SHIFT (array)\})\}" 1= ")

exten => s,n,NoOp(var is ${var})

exten => s,n,EndWhile

This would iterate over each value in array, left to right, and would result in NoOp(var is one),
NoOp(var is two), and NoOp(var is three) being executed.

Syntax

SHI FT(varname[,delimter])

Arguments

® varnane
® delinmter

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.
Function_SIP_HEADER

SIP_HEADER()

Synopsis

Gets the specified SIP header.

Description

Since there are several headers (such as Via) which can occur multiple times, SIP_HEADER
takes an optional second argument to specify which header with that name to retrieve. Headers
start at offset 1.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SI P_HEADER(name[, nunber])

Arguments

® name
® nunber - If not specified, defaults to 1.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SIPCHANINFO

SIPCHANINFO()

Synopsis

Gets the specified SIP parameter from the current channel.

Description

Syntax
Sl PCHANI NFQ(i t em)

Arguments

® jitem

peeri p - The IP address of the peer.

recvi p - The source IP address of the peer.

f rom- The URI from the Fr om header.

uri - The URI from the Cont act : header.

user agent - The useragent.

peer nane - The name of the peer.

t 38passt hrough - 1 if T38 is offered or enabled in this channel, otherwise 0.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SIPPEER
SIPPEER()

Synopsis

Gets SIP peer information.

Description

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

S| PPEER(peer nane[,item)

Arguments

® peernane

® item
® | p - (default) The ip address.
® port - The port number.
® mai | box - The configured mailbox.
® cont ext - The configured context.
® expire - The epoch time of the next expire.
® dynani c - Is it dynamic? (yes/no).
® call eri d_name - The configured Caller ID name.
® call eri d_num- The configured Caller ID number.
® cal | group - The configured Callgroup.
® pi ckupgr oup - The configured Pickupgroup.
® codecs - The configured codecs.
® stat us - Status (if qualify=yes).
® regext en - Registration extension.
® [imt -Calllimit (call-limit).

® busyl evel - Configured call level for signalling busy.

® curcal |l s - Current amount of calls. Only available if call-limit is set.

® | anguage - Default language for peer.

® account code - Account code for this peer.

® useragent - Current user agent id for peer.

* maxf orwar ds - The value used for SIP loop prevention in outbound requests

® chanvar[nane] - A channel variable configured with setvar for this peer.

® codec|[x] - Preferred codec index number x (beginning with zero).

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SMDI_MSG

SMDI_MSG()

Synopsis

Retrieve details about an SMDI message.

Description

This function is used to access details of an SMDI message that was pulled from the incoming
SMDI message queue using the SMDI_MSG_RETRIEVE() function.

Syntax
SMDI _MSE nessage_i d, conponent)

Arguments

® nessage_id

® conponent - Valid message components are:
® nunber - The message desk number
® term nal - The message desk terminal
® station - The forwarding station

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® call erid - The callerID of the calling party that was forwarded
® type - The call type. The value here is the exact character that came in on the SMDI link. Typically, example values are:
Options:
® D- Direct Calls
- Forward All Calls
- Forward Busy Calls
- Forward No Answer Calls

ZW>»0

See Also

Function_SMDI_MSG_RETRIEVE

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SMDI_MSG_RETRIEVE
SMDI_MSG_RETRIEVE()

Synopsis

Retrieve an SMDI message.

Description

This function is used to retrieve an incoming SMDI message. It returns an ID which can be used
with the SMDI_MSG() function to access details of the message. Note that this is a destructive
function in the sense that once an SMDI message is retrieved using this function, it is no longer
in the global SMDI message queue, and can not be accessed by any other Asterisk channels.
The timeout for this function is optional, and the default is 3 seconds. When providing a timeout,
it should be in milliseconds.

The default search is done on the forwarding station ID. However, if you set one of the search
key options in the options field, you can change this behavior.

Syntax

SMDI _MSG_RETRI EVE(sndi port, search key[,tineout[, options]])

Arguments

® smdi port

® search key

® timeout

® options
® t - Instead of searching on the forwarding station, search on the message desk terminal.
® n - Instead of searching on the forwarding station, search on the message desk number.

See Also

Function_SMDI_MSG

Import Version

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SORT

SORT()

Synopsis

Sorts a list of key/vals into a list of keys, based upon the vals.
Description

Takes a comma-separated list of keys and values, each separated by a colon, and returns a
comma-separated list of the keys, sorted by their values. Values will be evaluated as

floating-point numbers.

Syntax

SORT(keylval 1], key2val 2[,...]1])

Arguments
® keyval
® keyl
® val1l
® keyvaln
® key2
® val 2
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPEECH

SPEECH()

Synopsis
Gets information about speech recognition results.
Description

Gets information about speech recognition results.

Syntax

SPEECH(ar gunent)

Arguments

® argunent

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® status - Returns 1 upon speech object existing, or 0 if not
® spoke - Returns 1 if spoker spoke, or O if not
® resul ts - Returns number of results that were recognized.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPEECH_ENGINE

SPEECH_ENGINE()

Synopsis

Change a speech engine specific attribute.
Description

Changes a speech engine specific attribute.

Syntax

SPEECH_ENG NE(nane)

Arguments
® nane

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPEECH_GRAMMAR

SPEECH_GRAMMAR()

Synopsis
Gets the matched grammar of a result if available.

Description

Gets the matched grammar of a result if available.

Syntax

SPEECH _CRAVMMAR([nbest _nunber, resul t _nunber])

Arguments

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® nbest _nunber
® result _nunber

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPEECH_RESULTS_TYPE

SPEECH_RESULTS_TYPE()
Synopsis

Sets the type of results that will be returned.

Description

Sets the type of results that will be returned. Valid options are normal or nbest.

Syntax

SPEECH_RESULTS_TYPE()

Arguments
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_ SPEECH_SCORE

SPEECH_SCORE()

Synopsis

Gets the confidence score of a result.
Description

Gets the confidence score of a result.

Syntax

SPEECH_SCORE([nbest _number, resul t _nunber])
Arguments

® nbest _nunber
® result_nunber

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPEECH_TEXT
SPEECH_TEXT()

Synopsis

Gets the recognized text of a result.

Description

Gets the recognized text of a result.

Syntax

SPEECH _TEXT([nbest _nunber, result_nunber])

Arguments

® nbest _nunber
® result _nunber

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SPRINTF

SPRINTF()

Synopsis

Format a variable according to a format string.

Description

Parses the format string specified and returns a string matching that format. Supports most
options found in sprintf(3). Returns a shortened string if a format specifier is not recognized.

Syntax
SPRI NTF(format,argl[,arg2[,...][,argN])

Arguments

® format
® argl

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® arg2
® argN

See Also
sprintf(3)
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SQL_ESC

SQL_ESC()

Synopsis

Escapes single ticks for use in SQL statements.

Description

Used in SQL templates to escape data which may contain single ticks * which are otherwise
used to delimit data.

Example: SELECT foo FROM bar WHERE baz="${SQL_ESC(${ARG1})}

Syntax

SQL_ESC(string)

Arguments
® string
See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SRVQUERY

SRVQUERY()

Synopsis
Initiate an SRV query.
Description

This will do an SRV lookup of the given service.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

SRVQUERY(servi ce)

Arguments

® servi ce - The service for which to look up SRV records. An example would be something like _si p. _udp. exanpl e. com
See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SRVRESULT
SRVRESULT()

Synopsis

Retrieve results from an SRVQUERY.

Description

This function will retrieve results from a previous use of the SRVQUERY function.

Syntax

SRVRESULT(i d, resul t num

Arguments

® i d - The identifier returned by the SRVQUERY function.
® resul t num- The number of the result that you want to retrieve. Results start at 1. If this argument is specified as get num then it will
return the total number of results that are available.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_STAT

STAT()

Synopsis

Does a check on the specified file.

Description

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

STAT(fl ag, fil enane)

Arguments

® fl ag - Flag may be one of the following: d - Checks if the file is a directory. e - Checks if the file exists. f - Checks if the file is a regular
file. m - Returns the file mode (in octal) s - Returns the size (in bytes) of the file A - Returns the epoch at which the file was last accessed.
C - Returns the epoch at which the inode was last changed. M - Returns the epoch at which the file was last modified.

® filename

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_STRFTIME

STRFTIME()

Synopsis

Returns the current date/time in the specified format.

Description

STRFTIME supports all of the same formats as the underlying C function strftime(3). It also
supports the following format:
% n] q - fractions of a second, with leading zeros.

Example:
%3q will give milliseconds and %d.q will give tenths of a second. The default is set at milliseconds
(n=3). The common case is to use it in combination with %S, as in ¥5. %3(.

Syntax

STRFTI ME([epochl, ti mezone[, format]]])

Arguments

® epoch
® tinmezone
® format

See Also

strftinme(3)

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_STRPTIME

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

STRPTIME()
Synopsis
Returns the epoch of the arbitrary date/time string structured as described by the format.

Description

This is useful for converting a date into EPOCH time, possibly to pass to an application like
SayUnixTime or to calculate the difference between the two date strings

Example: ${STRPTIME(2006-03-01 07:30:35,America/Chicago,%Y-%m-%d %H:%M:%S)}
returns 1141219835

Syntax

STRPTI ME(dat eti ne, ti mezone, f or mat)

Arguments

® datetine
® tinmezone
® formt

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_SYSINFO

SYSINFO()

Synopsis

Returns system information specified by parameter.

Description

Returns information from a given parameter.

Syntax

SYSI NFQ(par anet er)

Arguments

® paraneter
® | oadavg - System load average from past minute.
® nuntal | s - Number of active calls currently in progress.
® upti me - System uptime in hours. This parameter is dependant upon operating system.This parameter is dependant upon
operating system.
® total ram- Total usable main memory size in KiB. This parameter is dependant upon operating system.This parameter is

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

dependant upon operating system.

® freeram- Available memory size in KiB. This parameter is dependant upon operating system.This parameter is dependant
upon operating system.

® buf f erram- Memory used by buffers in KiB. This parameter is dependant upon operating system.This parameter is dependant
upon operating system.

® total swap - Total swap space still available in KiB. This parameter is dependant upon operating system.This parameter is
dependant upon operating system.

® freeswap - Free swap space still available in KiB. This parameter is dependant upon operating system.This parameter is
dependant upon operating system.

® nunprocs - Number of current processes. This parameter is dependant upon operating system.This parameter is dependant
upon operating system.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TESTTIME

TESTTIME()

Synopsis

Sets a time to be used with the channel to test logical conditions.

Description

To test dialplan timing conditions at times other than the current time, use this function to set an
alternate date and time. For example, you may wish to evaluate whether a location will correctly
identify to callers that the area is closed on Christmas Day, when Christmas would otherwise fall
on a day when the office is normally open.

Syntax

TESTTI ME(date tine[, zone])

Arguments

¢ dat e - Date in ISO 8601 format
® tine-Timein HH:MM:SS format (24-hour time)
® zone - Timezone name

See Also

Application_GotolfTime

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TIMEOUT

TIMEOUT()

Synopsis

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Gets or sets timeouts on the channel. Timeout values are in seconds.

Description

The timeouts that can be manipulated are:

absol ut e : The absolute maximum amount of time permitted for a call. Setting of O disables the
timeout. di gi t : The maximum amount of time permitted between digits when the user is typing
in an extension. When this timeout expires, after the user has started to type in an extension, the
extension will be considered complete, and will be interpreted. Note that if an extension typed in
is valid, it will not have to timeout to be tested, so typically at the expiry of this timeout, the
extension will be considered invalid (and thus control would be passed to the i extension, or if it
doesn't exist the call would be terminated). The default timeout is 5 seconds. r esponse : The
maximum amount of time permitted after falling through a series of priorities for a channel in
which the user may begin typing an extension. If the user does not type an extension in this
amount of time, control will pass to the t extension if it exists, and if not the call would be
terminated. The default timeout is 10 seconds.

Syntax

TI MEQUT(t i meouttype)

Arguments

® tineouttype - The timeout that will be manipulated. The possible timeout types are:
absol ute, digit orresponse

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TOLOWER

TOLOWER()

Synopsis
Convert string to all lowercase letters.

Description

Example: ${TOLOWER(Example)} returns "example"”

Syntax

TOLONER(st ri ng)

Arguments

® string

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TOUPPER

TOUPPER()

Synopsis

Convert string to all uppercase letters.
Description

Example: ${TOUPPER(Example)} returns "EXAMPLE"

Syntax

TOUPPER(st ri ng)

Arguments
® string
See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TRYLOCK

TRYLOCK()

Synopsis

Attempt to obtain a named mutex.

Description

Attempts to grab a named lock exclusively, and prevents other channels from obtaining the same
lock. Returns 1 if the lock was available or O otherwise.

Syntax

TRYLOCK(| ocknane)

Arguments

® | ocknane

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_TXTCIDNAME
TXTCIDNAME()
Synopsis

TXTCIDNAME looks up a caller name via DNS.

Description

This function looks up the given phone number in DNS to retrieve the caller id name. The result
will either be blank or be the value found in the TXT record in DNS.

Syntax

TXTCl DNAME(nunber [, zone-suf fi x])

Arguments

® nunber
® zone-suffi x - If no zone-suffix is given, the default will be e164. ar pa

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_UNLOCK

UNLOCK()

Synopsis

Unlocks a named mutex.

Description

Unlocks a previously locked mutex. Returns 1 if the channel had a lock or O otherwise.

It is generally unnecessary to unlock in a hangup routine, as any locks held are automatically

freed when the channel is destroyed.It is generally unnecessary to unlock in a hangup routine, as
any locks held are automatically freed when the channel is destroyed.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

UNLOCK(| ocknane)

Arguments
® | ockname

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_UNSHIFT

UNSHIFT()

Synopsis

Inserts one or more values to the beginning of a variable containing delimited text

Description

Example: Set(UNSHIFT(array)=one,two,three) would insert one, two, and three before the values
stored in the variable "array".

Syntax

UNSHI FT(varnane[,delimter])

Arguments

® var nane
® delimter

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_URIDECODE

URIDECODE()

Synopsis
Decodes a URI-encoded string according to RFC 2396.

Description

Returns the decoded URI-encoded data string.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Syntax

URI DECCDE(dat a)

Arguments
® dat a - Input string to be decoded.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_URIENCODE

URIENCODE()

Synopsis

Encodes a string to URI-safe encoding according to RFC 2396.
Description

Returns the encoded string defined in data.

Syntax

URI ENCODE(dat a)

Arguments
® dat a - Input string to be encoded.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_VALID_EXTEN

VALID_EXTEN()

Synopsis
Determine whether an extension exists or not.

Description

Returns a true value if the indicated context, extension, and priority exist.

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

VALI D_EXTEN([cont ext, extension[,priority]])

Arguments

® cont ext - Defaults to the current context
® extension
® priority - Priority defaults to 1.

See Also
Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_VERSION

VERSION()

Synopsis

Return the Version info for this Asterisk.

Description
If there are no arguments, return the version of Asterisk in this format: SVN-branch-1.4-r44830M
Example: Set(junky=${VERSION()};

Sets junky to the string SVN- br anch- 1. 6-r 74830M or possibly, SVN-t r unk-r 45126M

Syntax

VERSI ON([i nf 0])

Arguments

® i nfo - The possible values are:

ASTERI SK_VERSI ON_NUM- A string of digits is returned (right now fixed at 999999).

BUI LD_USER - The string representing the user's name whose account was used to configure Asterisk, is returned.

BUI LD_HOSTNAME - The string representing the name of the host on which Asterisk was configured, is returned.

BUI LD_MACHI NE - The string representing the type of machine on which Asterisk was configured, is returned.

BUI LD_OS - The string representing the OS of the machine on which Asterisk was configured, is returned.

BUI LD_DATE - The string representing the date on which Asterisk was configured, is returned.

BUI LD_KERNEL - The string representing the kernel version of the machine on which Asterisk was configured, is returned.

See Also

Import Version
This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_VMCOUNT

VMCOUNT()

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Synopsis
Count the voicemails in a specified mailbox.
Description

Count the number of voicemails in a specified mailbox, you could also specify the context and
the mailbox folder.

Example:
exten => s, 1, Set (f 00=${ VMCOUNT(125) })

Syntax

VMCOUNT(vimbox[@ontext] [, fol der])

Arguments

* vnbox

® vnbox

® cont ext - If not specified, defaults to def aul t .
® fol der - If not specified, defaults to | NBOX

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Function_VOLUME

VOLUME()

Synopsis
Set the TX or RX volume of a channel.

Description

The VOLUME function can be used to increase or decrease the t x or r x gain of any channel.
For example:

Set(VOLUME(TX)=3)

Set(VOLUME(RX)=2)

Set(VOLUME(TX,p)=3)

Set(VOLUME(RX,p)=3>

Syntax

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

VOLUVE(di rection[, options])

Arguments

® direction-Mustbe TXor RX.
® options
® p - Enable DTMF volume control

See Also

Import Version

This documentation was imported from Asterisk version SVN-branch-1.8-r311874.

Configuration and Operation

Here be the top-level page for all of the Asterisk Reference Information as found in the doc/ and
doc/tex subdirectories of the Asterisk source.

It's been there all along, but now it's here, in an easy to view format (no need to install B00MB of
dependancies in Debian just to convert .tex into PDF), that's also searchable. Hoo-ray!

Asterisk Calendaring

The Asterisk Calendaring APl aims to be a generic interface for integrating Asterisk with various
calendaring technologies. The goal is to be able to support reading and writing of calendar
events as well as allowing notification of pending events through the Asterisk dialplan.

There are three calendaring modules that ship with Asterisk that provide support for iCalendar,
CalDAV, and Microsoft Exchange Server calendars. All three modules support event notification.
Both CalDAV and Exchange support reading and writing calendars, while iCalendar is a
read-only format.

Configuring Asterisk Calendaring

All asterisk calendaring modules are configured through calender.conf. Each calendar module
can define its own set of required parameters in addition to the parameters available to all
calendar types. An effort has been made to keep all options the same in all calendaring modules,
but some options will diverge over time as features are added to each module.

An example calendar.conf might look like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[cal endar _j oe]

type = ical

url = https://exanple.conf hone/jdoe/ Cal endar
user = jdoe

secret = nysecret

refresh = 15

timeframe = 600

aut orem nder = 10

channel = SIP/joe

context = cal endar_event _notify
extension = s

waittime = 30

Module-independent settings

The settings related to calendar event notification are handled by the core calendaring API.
These settings are:

® autoreminder - This allows the overriding of any alarms that may or may not be set for a calendar event. It is specified in minutes.
* refresh - How often to refresh the calendar data; specified in minutes.

® timeframe - How far into the future each calendar refresh should look. This is the amount of data that will be visible to queries from the
dialplan. This setting should always be greater than or equal to the refresh setting or events may be missed. It is specified in minutes.

¢ channel - The channel that should be used for making the notification attempt.

® waittime - How long to wait, in seconds, for the channel to answer a notification attempt. There are two ways to specify how to handle a
notification. One option is providing a context and extension, while the other is providing an application and the arguments to that
application. One (and only one) of these options should be provided.

® context - The context of the extension to connect to the notification channel
® extension - The extension to connect to the notification. Note that the priority will always be 1.
® app - The dialplan application to execute upon the answer of a notification

® appdata - The data to pass to the notification dialplan application

Module-dependent settings

Connection-related options are specific to each module. Currently, all modules take a url, user,
and secret for configuration and no other module-specific settings have been implemented. At

this time, no support for HTTP redirects has been implemented, so it is important to specify the
correct URL-paying attention to any trailing slashes that may be necessary.

Calendaring Dialplan Functions

Read functions

The simplest dialplan query is the CALENDAR_BUSY query. It takes a single option, the name of
the calendar defined, and returns "1" for busy (including tentatively busy) and "0" for not busy.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

For more information about a calendar event, a combination of CALENDAR_QUERY and
CALENDAR_QUERY_RESULT is used. CALENDAR_QUERY takes the calendar name and
optionally a start and end time in "unix time" (seconds from unix epoch). It returns an id that can
be passed to CALENDAR_QUERY_RESULT along with a field name to return the data in that
field. If multiple events are returned in the query, the number of the event in the list can be
specified as well. The available fields to return are:

® summary - A short summary of the event

® description - The full description of the event

® organizer - Who organized the event

® location - Where the event is located

® calendar - The name of the calendar from calendar.conf
® uid - The unique identifier associated with the event

® start - The start of the event in seconds since Unix epoch
® end - The end of the event in seconds since Unix epoch
® busystate - The busy state O=Free, 1=Tentative, 2=Busy

® attendees - A comma separated list of attendees as stored in the event and may include prefixes such as "mailto:".

When an event notification is sent to the dial plan, the CALENDAR_EVENT function may be
used to return the information about the event that is causing the notification. The fields that can
be returned are the same as those from CALENDAR_QUERY_RESULT.

Write functions

To write an event to a calendar, the CALENDAR_WRITE function is used. This function takes a
calendar name and also uses the same fields as CALENDAR_QUERY_RESULT. As a write
function, it takes a set of comma-separated values that are in the same order as the specified
fields. For example:

CALENDAR_WRI TE(nycal endar, summary, organi zer, start, end, busystate) =
"My event","mailto:jdoe@xanpl e. cont, 228383580, 228383640, 1)

Calendaring Dialplan Examples

Office hours

A common business PBX scenario is would be executing dialplan logic based on when the
business is open and the phones staffed. If the business is closed for holidays, it is sometimes
desirable to play a message to the caller stating why the business is closed.

The standard way to do this in asterisk has been doing a series of GotolfTime statements or

time-based include statements. Either way can be tedious and requires someone with access to
edit asterisk config files.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

With calendaring, the adminstrator only needs to set up a calendar that contains the various
holidays or even recurring events specifying the office hours. A custom greeting filename could
even be contained in the description field for playback. For example:

[ncom ng]
exten => 5555551212, 1, Answer
exten =>

5555551212, n, Got ol f (${ CALENDAR_BUSY(of fi cehour s) } ?cl osed: at t endant, s, 1

exten =>
5555551212, n(cl osed), Set (i d=${ CALENDAR QUERY(of fi ce, ${ EPOCH} , ${ EPOCH})

exten =>

5555551212, n, Set (soundfi | e=${ CALENDAR_QUERY_RESULT(${i d}, descri ption)}
=> 5555551212, n, Pl ayback($[${| SNULL(soundfile)} ? generic-closed ::
${soundfile}])

exten => 5555551212, n, Hangup

Meeting reminders

One useful application of Asterisk Calendaring is the ability to execute dialplan logic based on an
event notification. Most calendaring technologies allow a user to set an alarm for an event. If
these alarms are set on a calendar that Asterisk is monitoring and the calendar is set up for
event notification via calendar.conf, then Asterisk will execute notify the specified channel at the
time of the alarm. If an overrided notification time is set with the autoreminder setting, then the
notification would happen at that time instead.

The following example demonstrates the set up for a simple event notification that plays back a
generic message followed by the time of the upcoming meeting. calendar.conf.

[cal endar _j oe]

type = ical

url = https://exanple.conf hone/jdoe/ Cal endar
user = jdoe

secret = nysecret

refresh = 15

timeframe = 600

aut orem nder = 10

channel = SIP/joe

cont ext cal endar _event _notify
extension = s

waittime = 30

extensions.conf :

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[cal endar _event _noti fy]

exten => s, 1, Answer

exten => s, n, Pl ayback(you- have- a- neeti ng-at)

exten => s, n, SayUni xTi me(${ CALENDAR_EVENT(start)})
exten => s, n, Hangup

Writing an event

Both CalDAV and Exchange calendar servers support creating new events. The following
example demonstrates writing a log of a call to a calendar.

[ncom ng]

exten => 6000, 1, Set (st art =${ EPOCH})

exten => 6000, n, Di al (SI P/j oe)

exten => h, 1, Set (end=${ EPCCH})

exten => h,n, Set (CALENDAR_WRI TE(cal endar _j oe, summary, start, end) =Cal |
from ${CALLERID(al 1)}, ${start}, ${end})

Asterisk Channel Drivers
All about Asterisk and its Channel Drivers

Inter-Asterisk eXchange protocol, version 2 (IAX2)

Why IAX2?

The first question most people are thinking at this point is "Why do you need another VolP
protocol? Why didn't you just use SIP or H.323?"

Well, the answer is a fairly complicated one, but in a nutshell it's like this... Asterisk is intended as
a very flexible and powerful communications tool. As such, the primary feature we need from a
VolIP protocol is the ability to meet our own goals with Asterisk, and one with enough flexibility
that we could use it as a kind of laboratory for inventing and implementing new concepts in the
field. Neither H.323 or SIP fit the roles we needed, so we developed our own protocol, which,
while not standards based, provides a number of advantages over both SIP and H.323, some of
which are:

® Interoperability with NAT/PAT/Masquerade firewalls

® |AX seamlessly interoperates through all sorts of NAT and PAT and other firewalls, including the ability to place and receive calls, and
transfer calls to other stations.

® High performance, low overhead protocol

When running on low-bandwidth connections, or when running large numbers of calls, optimized bandwidth utilization is imperative. IAX

uses only 4 bytes of overhead

Internationalization support

IAX transmits language information, so that remote PBX content can be delivered in the native language of the calling party.

Remote dialplan polling

IAX allows a PBX or IP phone to poll the availability of a number from a remote server. This allows PBX dialplans to be centralized.

Flexible authentication

IAX supports cleartext, md5, and RSA authentication, providing flexible security models for outgoing calls and registration services.

Multimedia protocol

IAX supports the transmission of voice, video, images, text, HTML, DTMF, and URL's. Voice menus can be presented in both audibly and

visually.

Call statistic gathering

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

IAX gathers statistics about network performance (including latency and jitter, as well as providing end-to-end latency measurement.
Call parameter communication

Caller*ID, requested extension, requested context, etc are all communicated through the call.

Single socket design

IAX's single socket design allows up to 32768 calls to be multiplexed.

While we value the importance of standards based (i.e. SIP) call handling, hopefully this will
provide a reasonable explanation of why we developed IAX rather than starting with SIP.

Introduction to IAX2

This section is intended as an introduction to the Inter-Asterisk eXchange v2 (or simply 1AX2)
protocol. It provides both a theoretical background and practical information on its use.

IAX2 Configuration

For examples of a configuration, please see the iax.conf.sample in the /configs directory of your
source code distribution.

IAX2 Jitterbuffer
The new jitterbuffer

You must add "jitterbuffer=yes" to either the [general] part of iax.conf, or to a peer or a user. (just
like the old jitterbuffer). Also, you can set "maxjitterbuffer=n", which puts a hard-limit on the size
of the jitterbuffer of "n milliseconds". It is not necessary to have the new jitterbuffer on both sides
of a call; it works on the receive side only.

PLC

The new jitterbuffer detects packet loss. PLC is done to try to recreate these lost packets in the
codec decoding stage, as the encoded audio is translated to slinear. PLC is also used to mask
jitterbuffer growth.

This facility is enabled by default in iLBC and speex, as it has no additional cost. This facility can
be enabled in adpcm, alaw, g726, gsm, Ipc10, and ulaw by setting genericplc = true in the [plc]
section of codecs.conf.

Trunktimestamps

To use this, both sides must be using Asterisk v1.2 or later. Setting "trunktimestamps=yes" in
iax.conf will cause your box to send 16-bit timestamps for each trunked frame inside of a trunk
frame. This will enable you to use jitterbuffer for an IAX2 trunk, something that was not possible
in the old architecture.

The other side must also support this functionality, or else, well, bad things will happen. If you
don't use trunktimestamps, there's lots of ways the jitterbuffer can get confused because
timestamps aren't necessarily sent through the trunk correctly.

Communication with Asterisk v1.0.x systems
You can set up communication with v1.0.x systems with the new jitterbuffer, but you can't use

trunks with trunktimestamps in this communication.
If you are connecting to an Asterisk server with earlier versions of the software (1.0.x), do not

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

enable both jitterbuffer and trunking for the involved peers/users in order to be able to
communicate. Earlier systems will not support trunktimestamps.

You may also compile chan_iax2.c without the new jitterbuffer, enabling the old backwards
compatible architecture. Look in the source code for instructions.

Testing and monitoring

You can test the effectiveness of PLC and the new jitterbuffer's detection of loss by using the
new CLI command "iax2 test losspct n". This will simulate n percent packet loss coming in to
chan_iax2. You should find that with PLC and the new JB, 10 percent packet loss should lead to
just a tiny amount of distortion, while without PLC, it would lead to silent gaps in your audio.

"lax2 show netstats" shows you statistics for each iax2 call you have up. The columns are "RTT"
which is the round-trip time for the last PING, and then a bunch of s tats for both the local side
(what you're receiving), and the remote side (what the other end is telling us they are seeing).
The remote stats may not be complete if the remote end isn't using the new jitterbuffer.

The stats shown are:

Jit: The jitter we have measured (milliseconds)

Del: The maximum delay imposed by the jitterbuffer (milliseconds)

Lost: The number of packets we've detected as lost.

%: The percentage of packets we've detected as lost recently.

Drop: The number of packets we've purposely dropped (to lower latency).
OO0O0: The number of packets we've received out-of-order

Kpkts: The number of packets we've received / 1000.

Reporting problems
There's a couple of things that can make calls sound bad using the jitterbuffer:

The JB and PLC can make your calls sound better, but they can't fix everything. If you lost 10
frames in a row, it can't possibly fix that. It really can't help much more than one or two
consecutive frames.

® Bad timestamps: If whatever is generating timestamps to be sent to you generates nonsensical timestamps, it can confuse the jitterbuffer.
In particular, discontinuities in timestamps will really upset it: Things like timestamps sequences which go 0, 20, 40, 60, 80, 34000,
34020, 34040, 34060... It's going to think you've got about 34 seconds of jitter in this case, etc.. The right solution to this is to find out
what's causing the sender to send us such nonsense, and fix that. But we should also figure out how to make the receiver more robust in
cases like this.
chan_iax2 will actually help fix this a bit if it's more than 3 seconds or so, but at some point we should try to think of a better way to detect
this kind of thing and resynchronize.

® Different clock rates are handled very gracefully though; it will actually deal with a sender sending 20% faster or slower than you expect
just fine.

® Really strange network delays: If your network "pauses” for like 5 seconds, and then when it restarts, you are sent some packets that are
5 seconds old, we are going to see that as a lot of jitter. We already throw away up to the worst 20 frames like this, though, and the
"maxjitterbuffer" parameter should put a limit on what we do in this case.

mISDN

Introduction to mISDN

This package contains the mISDN Channel Driver for the Asterisk PBX. It supports every mISDN
Hardware and provides an interface for Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

mISDN Features

NT and TE mode

PP and PMP mode

BRI and PRI (with BNE1 and BN2E1 Cards)
Hardware bridging

DTMF detection in HW+mISDNdsp

Display messages on phones (on those that support it)
app_SendText

HOLD/RETRIEVE/TRANSFER on ISDN phones :)
Allow/restrict user number presentation

Volume control

Crypting with mISDNdsp (Blowfish)

Data (HDLC) callthrough

Data calling (with app_ptyfork +pppd)

Echo cancellation

Call deflection

Some others

mISDN Fast Installation Guide
It is easy to install mMISDN and mISDNuser. This can be done by:

You can download latest stable releases from http://www.misdn.org/downloads/

Just fetch the newest head of the GIT (mISDN project moved from CVS) In details this process

described here: http://www.misdn.org/index.php/GIT
then compile and install both with:

cd m SDN ; make && nmake install

(you will need at least your kernel headers to compile mISDN).

cd ml SDNuser ; make && make install

Now you can compile chan_misdn, just by making Asterisk:

cd asterisk ; ./configure & make && nmake install

That's all!

Follow the instructions in the mISDN Package for how to load the Kernel Modules. Also install
process described in http://www.misdn.org/index.php/Installing_mISDN

mISDN Pre-Requisites
To compile and install this driver, you'll need at least one mISDN Driver and the mISDNuser
package. Chan_misdn works with both, the current release version and the development (svn

trunk) version of Asterisk.

You should use Kernels =2.6.9

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.misdn.org/downloads/
http://www.misdn.org/index.php/GIT
http://www.misdn.org/index.php/Installing_mISDN

mISDN Configuration

First of all you must configure the mISDN drivers, please follow the instructions in the mISDN
package to do that, the main config file and config script is:

fetc/init.d/ msdn-init and /etc/ m sdn-init.conf

Now you will want to configure the misdn.conf file which resides in the Asterisk config directory
(normally /etc/asterisk).

misdn.conf: [general] subsection

The misdn.conf file contains a "general” subsection, and user subsections which contain misdn
port settings and different Asterisk contexts.

In the general subsection you can set options that are not directly port related. There is for
example the very important debug variable which you can set from the Asterisk cli (command line
interface) or in this configuration file, bigger numbers will lead to more debug output. There's also
a trace file option, which takes a path+filename where debug output is written to.

misdn.conf: [default] subsection

The default subsection is another special subsection which can contain all the options available
in the user/port subsections. The user/port subsections inherit their parameters from the default
subsection.

misdn.conf: user/port subsections

The user subsections have names which are unequal to "general”. Those subsections contain
the ports variable which mean the mISDN Ports. Here you can add multiple ports, comma
separated.

Especially for TE-Mode Ports there is a msns option. This option tells the chan_misdn driver to
listen for incoming calls with the given msns, you can insert a " as single msn, which leads to
getting every incoming call. If you want to share on PMP TE SO with Asterisk and a phone or
ISDN card you should insert here the msns which you assign to Asterisk. Finally a context
variable resides in the user subsections, which tells chan_misdn where to send incoming calls to
in the Asterisk dial plan (extension.conf).*

Dial and Options String

The dial string of chan_misdn got more complex, because we added more features, so the
generic dial string looks like:

m SDN/ <port >[: bchannel]| g: <gr oup>/ <ext ensi on>[/ <OPTI ONSSTRI NG>]

The Optionsstring looks Like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

...

The ":" character is the delimiter. The available options are:

® a - Have Asterisk detect DTMF tones on called channel

® c - Make crypted outgoing call, optarg is keyindex

® d - Send display text to called phone, text is the optarg

® e - Perform echo cancelation on this channel, takes taps as optarg (32,64,128,256)

® ¢! - Disable echo cancelation on this channel

® f- Enable fax detection

® h - Make digital outgoing call

® hl - Make HDLC mode digital outgoing call

® j-Ignore detected DTMF tones, don't signal them to Asterisk, they will be transported inband.
® jb - Set jitter buffer length, optarg is length

® jt - Set jitter buffer upper threshold, optarg is threshold

® jn - Disable jitter buffer

® n - Disable mISDN DSP on channel. Disables: echo cancel, DTMF detection, and volume control.
® p - Caller ID presentation, optarg is either 'allowed' or 'restricted’

® s - Send Non-inband DTMF as inband

® vr - Rx gain control, optarg is gain

® vt - Tx gain control, optarg is gain

chan_misdn registers a new dial plan application "misdn_set_opt" when loaded. This application
takes the Optionsstring as argument. The Syntax is:

...

When you set options in the dialstring, the options are set in the external channel. When you set
options with misdn_set_opt, they are set in the current incoming channel. So if you like to use
static encryption, the scenario looks as follows:

Phonel --> * Box 1 --> PSTN.TE PSTN TE --> * Box 2 --> Phone2

The encryption must be done on the PSTN sides, so the dialplan on the boxes are:

...

...

exten => ${CRYPT_MSN}, 1, mi sdn_set _opt (:cl)
exten => ${ CRYPT_MBN}, 2, di al (${ PHONE2})

mISDN CLI Commands

At the Asterisk cli you can try to type in:

m sdn <tab> <tab>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Now you should see the misdn cli commands:

clean -> pid (cleans a broken call, use with care, leads often to a segmentation fault)
send -> display (sends a Text Message to a Asterisk channel, this channel must be an misdn channel)
set -> debug (sets debug level)
show ->
® config (shows the configuration options)
channels (shows the current active misdn channels)
channel (shows details about the given misdn channels)
stacks (shows the current ports, their protocols and states)
fullstacks (shows the current active and inactive misdn channels)
® restart -> port (restarts given port (L2 Restart)) - reload (reloads misdn.conf)

You can only use "misdn send display” when an Asterisk channel is created and isdn is in the
correct state. "correct state" means that you have established a call to another phone (must not
be isdn though).

Then you use it like this:

m sdn send display ml SDN 1/101 "Hello World!'"

where 1 is the Port of the Card where the phone is plugged in, and 101 is the msn (callerid) of
the Phone to send the text to.

mISDN Variables
mISDN Exports/Imports a few Variables:
®* MISDN_ADDRESS_COMPLETE : Is either set to 1 from the Provider, or you can set it to 1 to force a sending complete.*

mISDN Debugging and Bug Reports

If you encounter problems, you should set up the debugging flag, usually debug=2 should be
enough. The messages are divided into Asterisk and mISDN parts. mISDN Debug messages
begin with an 'l', Asterisk messages begin with an ", the rest is clear I think.*

Please take a trace of the problem and open a report in the Asterisk issue tracker at
https://issues.asterisk.org in the "channel drivers" project, "chan_misdn" category. Read the bug
guidelines to make sure you provide all the information needed.

mISDN Examples

Here are some examples of how to use chan_misdn in the dialplan (extensions.conf):

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://issues.asterisk.org

[gl obal s]
QUT_PORT=1 ; The physical Port of the Card
QUT_GROUP=ExternEl ; The G oup of Ports defined in m sdn.conf

[m sdnl n]

exten => X., 1, Dial (m SDN ${ OUT_PORT}/ ${ EXTEN})

exten => _0X.,1,Dial (m SDN g: ${ OUT_GROUP} / ${ EXTEN: 1})

exten => _1X., 1, Di al (m SDN g: ${ QUT_GROUP} / ${ EXTEN: 1}/ : dHel | 0)

exten => _1X.,1, Dial (m SDN g: ${ OUT_GROUP}/ ${ EXTEN: 1}/ : dHel | o Test: n)

On the last line, you will notice the last argument (Hello); this is sent as Display Message to the
Phone.

mISDN Known Problems

® Q: | cannot hear any tone after a successful CONNECT to the other end.
® A: You forgot to load mISDNdsp, which is now needed by chan_misdn for switching and DTMF tone detection.

Local Channel

Introduction to Local Channels

In Asterisk, Local channels are a method used to treat an extension in the dialplan as if it were
an external device. In essense, Asterisk will send the call back into the dialplan as the destination
of the call, versus sending the call to a device.

Two of the most common areas where Local channels are used include members configured for
gueues, and in use with callfiles. There are also other uses where you want to ring two
destinations, but with different information, such as different callerID for each outgoing request.

Local Channel Examples

Local channels are best demonstrated through the use of an example. Our first example isn't
terribly useful, but will demonstrate how Local channels can execute dialplan logic by dialing from
the Dial() application.

Trivial Local Channel Example

In our dialplan (extensions.conf), we can Dial() another part of the dialplan through the use Local
channels. To do this, we can use the following dialplan:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[devi ces]

exten => 201, 1, Verbose(2, Di al another part of the dialplan via the
Local chan)

exten => 201, n, Verbose(2, Qutsi de channel : ${CHANNEL})

exten => 201, n, Di al (Local / 201@xt ensi ons)

exten => 201, n, Hangup()

[ext ensi ons]

exten => 201, 1, Verbose(2,Made it to the Local channel)
exten => 201, n, Verbose(2, | nsi de channel : ${ CHANNEL})
exten => 201, n, Di al (SI P/ sone- named- ext ensi on, 30)

exten => 201, n, Hangup()

The output of the dialplan would look something like the following. The output has been broken
up with some commentary to explain what we're looking at.

— Executing [201@levi ces: 1] Verbose("SI P/ nmy_desk_phone-00000014",
"2,Dial another part of the dialplan via the

Local chan") in new stack
== Dial another part of the dialplan via the Local chan

We dial extension 201 from SIP/my_desk_phone which has entered the [devices] context. The
first line simply outputs some information via the Verbose() application.

— Executing [201@levi ces: 2] Verbose("SI P/ nmy_desk_phone-00000014",

"2, Qut si de channel: SI P/ nmy_desk phone-00000014") in
new st ack
== Qutside channel: SIP/ nmy_desk_phone-00000014

The next line is another Verbose() application statement that tells us our current channel name.
We can see that the channel executing the current dialplan is a desk phone (aptly named
'my_desk_phone’).

— Executing [201@levices: 3] Dial ("SIP/ ny_desk_phone-00000014",
"Local / 201@xt ensi ons") in new stack
— Cal l ed 201@xt ensi ons

Now the third step in our dialplan executes the Dial() application which calls extension 201 in the
[extensions] context of our dialplan. There is no requirement that we use the same extension
number - we could have just as easily used a named extension, or some other number.
Remember that we're dialing another channel, but instead of dialing a device, we're "dialing"
another part of the dialplan.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

— Executing [201@xtensions: 1]
Ver bose(" Local / 201@xt ensi ons-7cf4; 2", "2,Made it to the Local
channel ") in new stack == Made it to the Local channel

Now we've verified we've dialed another part of the dialplan. We can see the channel executing
the dialplan has changed to Local/201@extensions-7cf4;2. The part '-7cf4;2" is just the unique
identifier, and will be different for you.

— Executing [201@xt ensions: 2]

Ver bose(" Local / 201@xt ensi ons-7cf 4; 2", "2,1nside channel:
Local / 201 @xt ensi ons-7cf4;2") in new stack

== I nside channel: Local/201@xtensions-7cf4,;2

Here we use the Verbose() application to see what our current channel name is. As you can see
the current channel is a Local channel which we created from our SIP channel.

— Executing [201@xtensions: 3] Dial("Local/201@xtensions-7cf4;2",
" Sl P/ some- naned- ext ensi on, 30") in new stack

And from here, we're using another Dial() application to call a SIP device configured in sip.conf
as [some-named-extension].

Now that we understand a simple example of calling the Local channel, let's expand upon this
example by using Local channels to call two devices at the same time, but delay calling one of
the devices.

Delay Dialing Devices Example

Lets say when someone calls extension 201, we want to ring both the desk phone and their
cellphone at the same time, but we want to wait about 6 seconds to start dialing the cellphone.
This is useful in a situation when someone might be sitting at their desk, but don't want both
devices ringing at the same time, but also doesn't want to wait for the full ring cycle to execute on
their desk phone before rolling over to their cellphone.

The dialplan for this would look something like the following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[devi ces]

exten => 201, 1, Verbose(2, Call desk phone and cel | phone but wth

del ay)

exten =>

201, n, D al (Local / deskphone- 201@xt ensi ons&Local / cel | phone- 201@xt ensi ¢

exten => 201, n, Voi cenui | (201@lef aul t, ${ 1 F($[${ DI ALSTATUS} =
BUSY] ?b: u) })
exten => 201, n, Hangup()

[ext ensi ons]
; Dial the desk phone
exten => deskphone- 201, 1, Ver bose(2, Di al i ng desk phone of extension

201)
ext en => deskphone- 201, n, Di al (SI P/ 0004f 2040001) ; SIP device with
MAC addr ess

; of 0004f 2040001
; Dial the cell phone
exten => cel | phone- 201, 1, Verbose(2, Di al i ng cel | phone of extension

201)
exten => cel | phone- 201, n, Verbose(2,-- Waiting 6 seconds before
di al i nQ)

exten => cel | phone- 201, n, Wi t (6)
exten => cel | phone- 201, n, Di al (DAHDI / g0/ 14165551212)

When someone dials extension 201 in the [devices] context, it will execute the Dial() application,
and call two Local channels at the same time:

Local / deskphone- 201@xt ensi ons
Local / cel | phone- 201 @xt ensi ons

It will then ring both of those extensions for 30 seconds before rolling over to the Voicemail()
application and playing the appropriate voicemail recording depending on whether the
${DIALSTATUS} variable returned BUSY or not.

When reaching the deskphone-201 extension, we execute the Dial() application which calls the
SIP device configured as '0004f204001' (the MAC address of the device). When reaching the
cellphone-201 extension, we dial the cellphone via the DAHDI channel using group zero (g0) and
dialing phone number 1-416-555-1212.

Dialing Destinations with Different Information
With Asterisk, we can place a call to multiple destinations by separating the

technology/destination pair with an ampersand (&). For example, the following Dial() line would
ring two separate destinations for 30 seconds:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 201, 1, D al (SI P/ 0004f 2040001&DAHDI / g0/ 14165551212, 30)

That line would dial both the SIP/0004f2040001 device (likely a SIP device on the network) and
dial the phone number 1-416-555-1212 via a DAHDI interface. In our example though, we would
be sending the same callerID information to both end points, but perhaps we want to send a
different callerID to one of the destinations?

We can send different callerlDs to each of the destinations if we want by using the Local channel.
The following example shows how this is possible because we would Dial() two different Local
channels from our top level Dial(), and that would then execute some dialplan before sending the
call off to the final destinations.

[devi ces]

exten => 201, 1, NoOp()

exten => 201, n, D al (Local / 201@ nt er nal & .ocal / 201@xt er nal , 30)
exten => 201, n, Voi cemai | (201@lef aul t, ${1 F($[${ DI ALSTATUS} =
BUSY] ?b: u) })

exten => 201, n, Hangup()

[internal]

exten => 201, 1, Verbose(2, Placing internal call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Fr om Sal es)

exten => 201, n, Di al (SI P/ 0004f 2040001, 30)

[external]

exten => 201, 1, Verbose(2, Placing external call for extension 201)
exten => 201, n, Set (CALLERI D(nane) =Acne Cl eani ng)

exten => 201, n, D al (DAHDI / g0/ 14165551212)

With the dialplan above, we've sent two different callerlDs to the destinations:

®* "From Sales" was sent to the local device SIP/0004f2040001
® "Acme Cleaning" was sent to the remote number 1-416-555-1212 via DAHDI

Because each of the channels is independent from the other, you could perform any other call
manipulation you need. Perhaps the 1-416-555-1212 number is a cell phone and you know you
can only ring that device for 18 seconds before the voicemail would pick up. You could then limit
the length of time the external number is dialed, but still allow the internal device to be dialed for
a longer period of time.

Using Callfiles and Local Channels

Another example is to use callfiles and Local channels so that you can execute some dialplan
prior to performing a Dial(). We'll construct a callfile which will then utilize a Local channel to
lookup a bit of information in the AstDB and then place a call via the channel configured in the
AstDB.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

First, lets construct our callfile that will use the Local channel to do some lookups prior to placing
our call. More information on constructing callfiles is located in the doc/callfiles.txt file of your
Asterisk source.

Our callfile will simply look like the following:

Channel : Local / 201@levi ces
Application: Playback
Dat a: sil ence/ 1&t-weasel s

Add the callfile information to a file such as 'callfile.new' or some other appropriately named file.

Our dialplan will perform a lookup in the AstDB to determine which device to call, and will then
call the device, and upon answer, Playback() the silence/l1 (1 second of silence) and the
tt-weasels sound files.

Before looking at our dialplan, lets put some data into AstDB that we can then lookup from the
dialplan. From the Asterisk CLI, run the following command:

*CLI > dat abase put phones 201/ devi ce SI P/ 0004f 2040001

We've now put the device destination (SIP/0004f2040001) into the 201/device key within the
phones family. This will allow us to lookup the device location for extension 201 from the
database.

We can then verify our entry in the database using the 'database show' CLI command:

*CLI > dat abase show / phones/ 201/ devi ce : SI P/ 0004f 2040001

Now lets create the dialplan that will allow us to call SIP/0004f2040001 when we request
extension 201 from the [extensions] context via our Local channel.

[devi ces]
exten => 201, 1, NoOp()
exten => 201, n, Set (DEVI CE=${ DB(phones/ ${ EXTEN}/ devi ce) })
exten => 201, n, Gotol f ($[${| SNULL(${ DEVI CE}) }] ?hangup) ; if nothing
returned,
; then hangup
exten => 201, n, D al (${DEVI CE}, 30)
exten => 201, n(hangup(), Hangup()

Then, we can perform a call to our device using the callfile by moving it into the
/var/spool/asterisk/outgoing/ directory.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

nmv callfile.new /var/spool/asterisks/outgoing*

Then after a moment, you should see output on your console similar to the following, and your
device ringing. Information about what is going on during the output has also been added
throughout.

— Attenpting call on Local/201@levices for application
Pl ayback(sil ence/ 1&t t-weasels) (Retry 1)

You'll see the line above as soon as Asterisk gets the request from the callfile.

— Executing [201@levi ces: 1] NoOp("Local / 201@levi ces-ecf0; 2", "") in
new st ack

— Executing [201@levices: 2] Set("Local/201l@evices-ecf0; 2",

" DEVI CE=SI P/ 0004f 2040001") in new stack

This is where we performed our lookup in the AstDB. The value of SIP/0004f2040001 was then
returned and saved to the DEVICE channel variable.

— Executing [201@levi ces: 3] Gotolf("Local/201@levi ces-ecfO; 2",
"0?hangup”) in new stack

We perform a check to make sure ${DEVICE} isn't NULL. If it is, we'll just hangup here.

— Executing [201@levi ces: 4] D al ("Local/201@evi ces-ecfO; 2",
"SI P/ 0004f 2040001, 30") in new stack

— Cal l ed 000f 2040001

— SI P/ 0004f 2040001- 00000022 is ringing

Now we call our device SIP/0004f2040001 from the Local channel.

S| P/ 0004f 2040001- 00000022 answer ed Local / 201@ilevi ces- ecf 0; 2*

We answer the call.

> Channel Local/201@levi ces-ecf0;1 was answer ed.
> Launchi ng Pl ayback(sil ence/ 1&t-weasel s) on
Local / 201@levi ces-ecf0; 1

We then start playing back the files.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

— <Local / 201 @levi ces-ecf0; 1> Playing 'silence/1.slin" (language
‘en')

== Spawn extension (devices, 201, 4) exited non-zero on

"Local / 201@levi ces- ecf0; 2

At this point we now see the Local channel has been optimized out of the call path. This is
important as we'll see in examples later. By default, the Local channel will try to optimize itself
out of the call path as soon as it can. Now that the call has been established and audio is flowing,
it gets out of the way.

— <SI P/ 0004f 2040001- 00000022> Pl aying 'tt-weasel s.ul aw (Il anguage

1 er1I)

[Mar 1 13:35:23] NOTI CE[16814]: pbx_spool.c: 349 attenpt _thread: Call
conpl eted to Local/201@levi ces

We can now see the tt-weasels file is played directly to the destination (instead of through the
Local channel which was optimized out of the call path) and then a NOTICE stating the call was
completed.

Understanding when to use (slash)n

Lets take a look at an example that demonstrates when the use of the /n directive is necessary. If
we spawn a Local channel which does a Dial() to a SIP channel, but we use the L() option (which
is used to limit the amount of time a call can be active, along with warning tones when the time is
nearly up), it will be associated with the Local channel, which is then optimized out of the call
path, and thus won't perform as expected.

This following dialplan will not perform as expected.

[servi ces]
exten => 2,1, Dial (SI P/ PHONE_B, , L(60000: 45000: 15000))

[internal]
exten => 4,1,D al (Local / 2@ervi ces)

By default, the Local channel will try to optimize itself out of the call path. This means that once
the Local channel has established the call between the destination and Asterisk, the Local
channel will get out of the way and let Asterisk and the end point talk directly, instead of flowing
through the Local channel.

This can have some adverse effects when you're expecting information to be available during the
call that gets associated with the Local channel. When the Local channel is optimized out of the
call path, any Dial() flags, or channel variables associated with the Local channel are also
destroyed and are no longer available to Asterisk.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

We can force the Local channel to remain in the call path by utilizing the /n directive. By adding
/n to the end of the channel definition, we can keep the Local channel in the call path, along with
any channel variables, or other channel specific information.

In order to make this behave as we expect (limiting the call), we would change:

[internal]
exten => 4,1,D al (Local / 2@er vi ces)

...into the following:

[internal]
exten => 4,1, D al (Local / 2@ervi ces/ n)

By adding /n to the end, our Local channel will now stay in the call path and not go away.

Why does adding the /n option all of a suddon make the 'L' option work? First we need to show
an overview of the call flow that doesn't work properly, and discuss the information associated
with the channels:

. SIP device PHONE_A calls Asterisk via a SIP INVITE

. Asterisk accepts the INVITE and then starts processing dialplan logic in the [internal] context

. Our dialplan calls Dial(Local/2@services) - notice no /n

The Local channel then executes dialplan at extension 2 within the [services] context

. Extension 2 within [services] then performs Dial() to PHONE_B with the line: Dial(SIP/PHONE_B,,L(60000:45000:15000))

. SIP/PHONE_B then answers the call

. Even though the L option was given when dialing the SIP device, the L information is stored in the channel that is doing the Dial() which
is the Local channel, and not the endpoint SIP channel.

. The Local channel in the middle, containing the information for tracking the time allowance of the call, is then optimized out of the call
path, losing all information about when to terminate the call.

9. SIP/PHONE_A and SIP/PHONE_B then continue talking indefinitely.

NoO A WN R

[e¢]

Now, if we were to add /n to our dialplan at step three (3) then we would force the Local channel
to stay in the call path, and the L() option associated with the Dial() from the Local channel would
remain, and our warning sounds and timing would work as expected.

There are two workarounds for the above described scenario:

1. Use what we just described, Dial(Local/2@services/n) to cause the Local channel to remain in the call path so that the L() option used
inside the Local channel is not discarded when optimization is performed.

2. Place the L() option at the outermost part of the path so that when the middle is optimized out of the call path, the information required to
make L() work is associated with the outside channel. The L information will then be stored on the calling channel, which is PHONE_A.
For example:

[servi ces]
exten => 2,1, D al (SI P/ PHONE_B)

[internal]
exten => 4,1,D al (Local / 2@ervi ces,, L(60000: 45000: 15000)) ;

Local Channel Modifiers

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

There are additional modifiers for the Local channel as well. They include:

® 'n'- Adding "/n" at the end of the string will make the Local channel not do a native transfer (the "n" stands for "n"o release) upon the
remote end answering the line. This is an esoteric, but important feature if you expect the Local channel to handle calls exactly like a
normal channel. If you do not have the "no release" feature set, then as soon as the destination (inside of the Local channel) answers the
line and one audio frame passes, the variables and dial plan will revert back to that of the original call, and the Local channel will become
a zombie and be removed from the active channels list. This is desirable in some circumstances, but can result in unexpected dialplan
behavior if you are doing fancy things with variables in your call handling.

® 'j'- Adding "/j" at the end of the string allows you to use the generic jitterbuffer on incoming calls going to Asterisk applications. For
example, this would allow you to use a jitterbuffer for an incoming SIP call to Voicemail by putting a Local channel in the middle. The '
option must be used in conjunction with the 'n' option to make sure that the Local channel does not get optimized out of the call.
This option is available starting in the Asterisk 1.6.0 branch.

® 'm'- Using the "/m" option will cause the Local channel to forward music on hold (MoH) start and stop requests. Normally the Local
channel acts on them and it is started or stopped on the Local channel itself. This options allows those requests to be forwarded through
the Local channel.
This option is available starting in the Asterisk 1.4 branch.

® 'b'- The "/b" option causes the Local channel to return the actual channel that is behind it when queried. This is useful for transfer
scenarios as the actual channel will be transferred, not the Local channel.

This option is available starting in the Asterisk 1.6.0 branch.
Mobile Channel

chan_mobile pages

Introduction to the Mobile Channel

Asterisk Channel Driver to allow Bluetooth Cell/Mobile Phones to be used as FXO devices, and
Headsets as FXS devices.

Mobile Channel Features

Multiple Bluetooth Adapters supported.

Multiple phones can be connected.

Multiple headsets can be connected.

Asterisk automatically connects to each configured mobile phone / headset when it comes in range.
CLI command to discover bluetooth devices.

Inbound calls on the mobile network to the mobile phones are handled by Asterisk, just like inbound calls on a Zap channel.
CLI passed through on inbound calls.

Dial outbound on a mobile phone using Dial(Mobile/device/nnnnnnn) in the dialplan.

Dial a headset using Dial(Mobile/device) in the dialplan.

Application MobileStatus can be used in the dialplan to see if a mobile phone / headset is connected.
Supports devicestate for dialplan hinting.

Supports Inbound and Outbound SMS.

Supports ‘channel' groups for implementing '‘GSM Gateways'

Mobile Channel Requirements

In order to use chan_mobile, you must have a working bluetooth subsystem on your Asterisk
box. This means one or more working bluetooth adapters, and the BlueZ packages.

Any bluetooth adapter supported by the Linux kernel will do, including usb bluetooth dongles.
The BlueZ package you need is bluez-utils. If you are using a GUI then you might want to install

bluez-pin also. You also need libbluetooth, and libbluetooth-dev if you are compiling Asterisk
from source.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

You need to get bluetooth working with your phone before attempting to use chan_mobile. This
means 'pairing’ your phone or headset with your Asterisk box. | dont describe how to do this here
as the process differs from distro to distro. You only need to pair once per adapter.

See http://www.bluez.org for details about setting up Bluetooth under Linux.

Mobile Channel Concepts

chan_maobile deals with both bluetooth adapters and bluetooth devices. This means you need to
tell chan_mobile about the bluetooth adapters installed in your server as well as the devices
(phones / headsets) you wish to use.

chan_mobile currently only allows one device (phone or headset) to be connected to an adapter
at a time. This means you need one adapter for each device you wish to use simultaneously.
Much effort has gone into trying to make multiple devices per adapter work, but in short it doesnt.

Periodically chan_mobile looks at each configured adapter, and if it is not in use (i.e. no device
connected) will initiate a search for devices configured to use this adapater that may be in range.
If it finds one it will connect the device and it will be available for Asterisk to use. When the
device goes out of range, chan_mobile will disconnect the device and the adapter will become
available for other devices.

Configuring chan_mobile

The configuration file for chan_mobile is /etc/asterisk/mobile.conf. It is a normal Asterisk config
file consisting of sections and key=value pairs.

See configs/mobile.conf.sample for an example and an explanation of the configuration.

Using chan_mobile

chan_mobile.so must be loaded either by loading it using the Asterisk CLI, or by adding it to
/etc/asterisk/modules.conf

Search for your bluetooth devices using the CLI command 'mobile search'. Be patient with this
command as it will take 8 - 10 seconds to do the discovery. This requires a free adapter.
Headsets will generally have to be put into ‘pairing' mode before they will show up here.

This will return something like the following :-

*CLI > nobi | e search

Address Name Usabl e Type Port

00: 12:56: 90: 6E: 00 LG TUS00 Yes Phone 4

00: 80: C8: 35: 52: 78 Toaster No Headset O
00:0B: 9E: 11: 74: A5 Hello Il Plus Yes Headset 1
00: OF: 86: OE: AE: 42 Daves Bl ackberry Yes Phone 7

This is a list of all bluetooth devices seen and whether or not they are usable with chan_mobile.
The Address field contains the 'bd address' of the device. This is like an ethernet mac address.
The Name field is whatever is configured into the device as its name. The Usable field tells you

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.bluez.org

whether or not the device supports the Bluetooth Handsfree Profile or Headset profile. The Type
field tells you whether the device is usable as a Phone line (FXO) or a headset (FXS) The Port
field is the number to put in the configuration file.

Choose which device(s) you want to use and edit /etc/asterisk/mobile.conf. There is a sample
included with the Asterisk-addons source under configs/mobile.conf.sample.

Be sure to configure the right bd address and port number from the search. If you want inbound
calls on a device to go to a specific context, add a context= line, otherwise the default will be
used. The 'id' of the device [bitinbrackets] can be anything you like, just make it unique.

If you are configuring a Headset be sure to include the type=headset line, if left out it defaults to
phone.

The CLI command 'mobile show devices' can be used at any time to show the status of
configured devices, and whether or not the device is capable of sending / receiving SMS via
bluetooth.

*CLI > nobi |l e show devi ces

I D Address Group Adapter Connected State SMS
headset 00:0B: 9E: 11: AE: C6 O blue No Init No
LGTU550 00: EO: 91: 7F: 46:44 1 dlink No Init No

As each phone is connected you will see a message on the Asterisk console :-

Loaded chan_nobile.so => (Bl uetooth Mbile Device Channel Driver)
— Bl uetooth Device bl ackberry has connect ed.
— Bl uetooth Device dave has connect ed.

To make outbound calls, add something to you Dialplan like the following :- (modify to suit)

; Calls via LGTU5500
exten => 9X. , 1, Di al (Mbil e/ LGTU550/ ${ EXTEN: 1}, 45)
exten => _9X. , n, Hangup

To use channel groups, add an entry to each phones definition in mobile.conf like group=n where
nis a number.

Then if you do something like Dial(Mobile/g1/123456) Asterisk will dial 123456 on the first
connected free phone in group 1.

Phones which do not have a specific 'group=n’ will be in group 0.

To dial out on a headset, you need to use some other mechanism, because the headset is not
likely to have all the needed buttons on it. res_clioriginate is good for this :-

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

*CLI > originate Mbil e/ headset extensi on NNNNN@ont ext

This will call your headset, once you answer, Asterisk will call NNNNN at context context

Mobile Channel Dialplan Hints

chan_mobile supports 'device status' so you can do somthing like

exten => 1234, hint, SI P/ 30&Wobi | e/ dave&\bbi | e/ bl ackberry

MobileStatus Application

chan_mobile also registers an application named MobileStatus. You can use this in your Dialplan
to determine the 'state’ of a device.

For example, suppose you wanted to call dave's extension, but only if he was in the office. You
could test to see if his mobile phone was attached to Asterisk, if it is dial his extension, otherwise
dial his mobile phone.

exten => 40, 1, Mobi | eSt at us(dave, DAVECELL)

exten => 40, 2, Gotol f ($["${ DAVECELL}" = "1"] ?3:5)
exten => 40, 3, Di al (ZAP/ g1/ 0427466412, 45,tT)
exten => 40, 4, Hangup

exten => 40,5, Dial (SIP/40,45,tT)

exten => 40, 6, Hangup

MobileStatus sets the value of the given variable to :-

® 1 = Disconnected. i.e. Device not in range of Asterisk, or turned off etc etc
® 2 =Connected and Not on a call. i.e. Free
® 3 =Connected and on a call. i.e. Busy

Mobile Channel DTMF Debouncing

DTMF detection varies from phone to phone. There is a configuration variable that allows you to
tune this to your needs. e.g. in mobile.conf

[LGTU550]

addr ess=00: 12: 56: 90: 6E: 00
port=4

cont ext =i ncom ng- nobi | e
dt nf ski p=50

change dtmfskip to suit your phone. The default is 200. The larger the number, the more chance
of missed DTMF. The smaller the number the more chance of multiple digits being detected.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Mobile Channel SMS Sending and Receiving

If Asterisk has detected your mobile phone is capable of SMS via bluetooth, you will be able to
send and receive SMS.

Incoming SMS's cause Asterisk to create an inbound call to the context you defined in
mobile.conf or the default context if you did not define one. The call will start at extension 'sms'.
Two channel variables will be available, SMSSRC = the number of the originator of the SMS and
SMSTXT which is the text of the SMS. This is not a voice call, so grab the values of the variables
and hang the call up.
So, to handle incoming SMS's, do something like the following in your dialplan

[i ncom ng- nobi | e]

exten => sns, 1, Verbose(l ncom ng SMS from ${ SMSSRC} ${ SMSTXT})

exten => sns, n, Hangup()
The above will just print the message on the console.
If you use res_jabber, you could do something like this :-

[1 ncom ng- nobi | e]

exten => sns, 1, Jabber Send(transport, user @ abber. sonewher e. com SM5

from ${ SMBRC} ${ SMSTXT})
exten => sms, 2, Hangup()

To send an SMS, use the application MobileSendSMS like the following :-

exten => 99, 1, Mobi | eSendSM5(dave, 0427123456, Hel | o Wor | d)

This will send 'Hello World' via device 'dave' to '0427123456'

Mobile Channel Debugging

Different phone manufacturers have different interpretations of the Bluetooth Handsfree Profile
Spec. This means that not all phones work the same way, particularly in the connection setup /
initialisation sequence. I've tried to make chan_mobile as general as possible, but it may need
modification to support some phone i've never tested.

Some phones, most notably Sony Ericsson 'T' series, dont quite conform to the Bluetooth HFP
spec. chan_mobile will detect these and adapt accordingly. The T-610 and T-630 have been
tested and work fine.

If your phone doesnt behave has expected, turn on Asterisk debugging with ‘core set debug 1.

This will log a bunch of debug messages indicating what the phone is doing, importantly the

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

rfcomm conversation between Asterisk and the phone. This can be used to sort out what your
phone is doing and make chan_mobile support it.

Be aware also, that just about all mobile phones behave differently. For example my LG TU500
wont dial unless the phone is a the 'idle' screen. i.e. if the phone is showing a 'menu’ on the

display, when you dial via Asterisk, the call will not work. chan_mobile handles this, but there
may be other phones that do other things too...

Important: Watch what your mobile phone is doing the first few times. Asterisk wont make

random calls but if chan_mobile fails to hangup for some reason and you get a huge bill from
your telco, dont blame me

Asterisk Configuration
The top-level page for all things related to Asterisk configuration
General Configuration Information

The top-level page for general (typical) Asterisk configuration information.

Configuration Parser

Introduction

The Asterisk configuration parser in the 1.2 version and beyond series has been improved in a
number of ways. In addition to the realtime architecture, we now have the ability to create
templates in configuration files, and use these as templates when we configure phones,
voicemail accounts and queues.

These changes are general to the configuration parser, and works in all configuration files.

General syntax

Asterisk configuration files are defined as follows:

[secti on]
| abel = val ue
| abel 2 = val ue

In some files, (e.g. mgcp.conf, dahdi.conf and agents.conf), the syntax is a bit different. In these
files the syntax is as follows:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[secti on]

| abel 1 = val uel

| abel 2 = val ue2

obj ect => nane

| abel 3 val ue3

| abel 2 val ue4

obj ect2 => nane2

In this syntax, we create objects with the settings defined above the object creation. Note that
settings are inherited from the top, so in the example above object2 has inherited the setting for
"labell” from the first object.

For template configurations, the syntax for defining a section is changed to:

[section] (options)
| abel = val ue

The options field is used to define templates, refer to templates and hide templates. Any object
can be used as a template.
No whitespace is allowed between the closing "]" and the parenthesis "(".

Comments
All lines that starts with semi-colon ";" is treated as comments and is not parsed.

The ";is-a-rarkerfor-a-mult-ine-comment—Everything i be

commentuntiHthe-enrgmarker—;" is found. Parsing begins directly after the end-marker.

;This is a comment

| abel = val ue

;-- This is

a comment -;

;- Comment --; exten=> 1000, 1,dial (SIP/lisa)

Including other files
In all of the configuration files, you may include the content of another file with the #include

statement. The content of the other file will be included at the row that the #include statement
occurred.

#i ncl ude nyusers. conf

You may also include the output of a program with the #exec directive, if you enable it in
asterisk.conf

In asterisk.conf, add the execincludes = yes statement in the options section:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[opti ons]
execi ncl udes=yes

The exec directive is used like this:

#exec /usr/l ocal/bi n/ nyasteriskconfigurator.sh

Adding to an existing section

[secti on]
| abel = val ue

[section] (+)
| abel 2 = val ue2

In this case, the plus sign indicates that the second section (with the same name) is an addition
to the first section. The second section can be in another file (by using the #include statement). If
the section name referred to before the plus is missing, the configuration will fail to load.

Defining a template-only section

[section](!)
| abel = val ue

The exclamation mark indicates to the config parser that this is a only a template and should not
itself be used by the Asterisk module for configuration. The section can be inherited by other
sections (see section "Using templates” below) but is not used by itself.

Using templates (or other configuration sections)

[section] (nane[, name])
| abel = val ue

The name within the parenthesis refers to other sections, either templates or standard sections.
The referred sections are included before the configuration engine parses the local settings
within the section as though their entire contents (and anything they were previously based upon)
were included in the new section. For example consider the following:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[foo]

di sal | ow=al |
al | ow=ul aw
al | on=al aw

[bar]
al | on=gsm
al | ow=g729

perm t=192.168.2.1

[baz] (f oo, bar)

type=friend

perm t=192.168.3.1

cont ext =i ncom ng host =bnm

The [baz] section will be processed as though it had been written in the following way:

[baz]

di sal | own=al |

al I ow=ul aw

al | ow=al aw

al | on=gsm

al | ow=g729
permt=192.168.2.1
type=friend

perm t=192. 168. 3. 1

cont ext =i ncom ng host =bnm

It should also be noted that there are no guaranteed overriding semantics, meaning that if you
define something in one template, you should not expect to be able to override it by defining it
again in another template.

Additional Examples
(in top-level sip.conf)

[defaul ts]

type=friend

nat =yes

qual i fy=on

dt nf node=r f c2833

di sal | ow=al |

al | ow=al aw

#i ncl ude accounts/*/sip.conf

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

(in accounts/customerl/sip.conf)

[def -custonerl1] (!, defaul ts)
secret=this is not secret
cont ext =f rom cust oner 1

cal l eri d=Custoner 1 <300>
account code=0001

[phonel] (def - cust oner 1)
mai | box=phonel@ust oner 1

[phone?2] (def - cust omer 1)
mai | box=phone2@ust oner 1

This example defines two phones - phonel and phone2 with settings inherited from
"def-customerl”. The "def-customerl” is a template that inherits from "defaults", which also is a
template.

The asterisk.conf file

Asterisk Main Configuration File

Below is a sample of the main Asterisk configuration file, asterisk.conf. Note that this file is not
provided in sample form, because the Makefile creates it when needed and does not touch it
when it already exists.

[directories]
; Make sure these directories have the right permssions if not
; running Asterisk as root

; Where the configuration files (except for this one) are | ocated
astetcdir => /etc/asterisk

. Where the Asterisk | oadabl e nodul es are | ocated
astnoddir => /usr/lib/asterisk/nodul es

; Where additional 'library' elements (scripts, etc.) are |ocated
astvarlibdir => /var/lib/asterisk

; Where AG scripts/prograns are | ocated
astagidir => /var/lib/asterisk/agi-bin

; Where spool directories are |ocated

; Voicemail, nonitor, dictation and other apps will create files
here

; and outgoing call files (used with pbx_spool) nust be placed here

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

ast spool dir => /var/spool /asterisk

; Where the Asterisk process ID (pid) file should be created
astrundir => /var/run/asterisk

; Where the Asterisk log files should be created
astlogdir => /var/log/asterisk

[opti ons]

; Under "options" you can enter configuration options
;that you al so can set with command |ine options

; Verbosity level for logging (-v) verbose =0

; Debug: "No" or value (1-4)

debug = 3

; Background execution disabled (-f)
nof ork=yes | no

; Always background, even with -v or -d (-F)
al waysfork=yes | no

; Consol e node (-c¢)
consol e= yes | no

; Execute with high priority (-p)
hi ghpriority = yes | no

; Initialize crypto at startup (-i)
initcrypto = yes | no

; Disable ANSI colors (-n)
nocol or = yes | no

; Dunp core on failure (-Q)
dunpcore = yes | no

; Run quietly (-Q)
quiet = yes | no

; Force tinmestanping in CLI verbose output (-T)
timestanp = yes | no

; User to run asterisk as (-U NOTE: will require changes to

; directory and device perm ssions
runuser = asterisk

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

; Goup to run asterisk as (-G
rungroup = asterisk

; Enable internal timng support (-1)
internal _timng = yes | no

; Language Options
docunentation_|l anguage = en | es | ru

; These options have no conmand |ine equival ent

; Cache record() files in another directory until conpletion
cache_record_files = yes | no
record _cache dir = <dir>

; Build transcode paths via SLI NEAR
transcode_via_sln = yes | no

; send SLI NEAR sil ence while channel is being recorded
transmt_silence_during_record = yes | no

; The maxi mum | oad average we accept calls for
maxload = 1.0

; The maxi mum nunber of concurrent calls you want to all ow
maxcal | s = 255

; Stop accepting calls when free nenory falls bel ow this anmount
specified in MB
m nmenfree = 256

; All ow #exec entries in configuration files
execi ncludes = yes | no

; Don't over-informthe Asterisk sysadm he's a guru
dontwarn = yes | no

; System nane. Used to prefix CDR uniqueid and to fill
\ ${ SYSTEMNAMVE}
systemane = <a_string>

; Shoul d | anguage code be | ast conponent of sound file nane or
first?

; when off, sound files are searched as <path>/<lang>/<file>

; when on, sound files are search as <l ang>/<path>/<file>

; (only affects relative paths for sound files)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

| anguageprefix = yes | no

; Locki ng node for voicensil

; - lockfile: default, for normal use

; - flock: for where the | ockfile |ocking nethod doesn't work
; eh. on SMB/CIFS nounts

| ocknode = lockfile | flock

; Entity ID. This is in the formof a MAC address. It should be
uni versal ly
; unique. It nust be unique between servers comunicating with a

pr ot ocol

; that uses this value. The only thing that uses this currently is
DUNDI ,

; but other things will use it in the future.

; entityid=00:11: 22: 33: 44:55

[files]

; Changing the following |ines may conprom se your security

; Asterisk.ctl is the pipe that is used to connect the renote CLI
; (asterisk -r) to Asterisk. Changing these settings change the

; perm ssions and ownership of this file.

; The file is created when Asterisk starts, in the "astrundir"
above.

;astctl perm ssions = 0660

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

;astctl owner = root
;astctlgroup asteri sk
;astctl = asterisk.ctl

CLI Prompt
Changing the CLI Prompt

The CLI prompt is set with the ASTERISK_PROMPT UNIX environment variable that you set
from the Unix shell before starting Asterisk

You may include the following variables, that will be replaced by the current value by Asterisk:

%d - Date (year-month-date)

%s - Asterisk system name (from asterisk.conf)
%h - Full hostname

%H - Short hosthame

%t - Time

%u - Username
%g - Groupname
%% - Percent sign

® Ob# - '#'if Asterisk is run in console mode, " if running as remote console
® 9%Cn[;n] - Change terminal foreground (and optional background) color to specified A full list of colors may be found in
include/asterisk/term.h

On systems which implement getloadavg(3), you may also use:

® %1 - Load average over past minute
® %l2 - Load average over past 5 minutes
® %I3 - Load average over past 15 minutes

The Asterisk Dialplan

The Asterisk dialplan

The Asterisk dialplan is divided into contexts. A context is simply a group of extensions. For each
“line" that should be able to be called, an extension must be added to a context. Then, you
configure the calling "line" to have access to this context.

If you change the dialplan, you can use the Asterisk CLI command "dialplan reload" to load the
new dialplan without disrupting service in your PBX.

Extensions are routed according to priority and may be based on any set of characters (a-z),
digits, #, and *. Please note that when matching a pattern, "N", "X", and "Z" are interpreted as
classes of digits.

For each extension, several actions may be listed and must be given a unique priority. When
each action completes, the call continues at the next priority (except for some modules which use
explicitly GOTQO's).

Extensions frequently have data they pass to the executing application (most frequently a string).
You can see the available dialplan applications by entering the "core show applications"

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

command in the CLI.

In this version of Asterisk, dialplan functions are added. These can be used as arguments to any
application. For a list of the installed functions in your Asterisk, use the "core show functions"
command.

Example dialplan

The example dial plan, in the configs/extensions.conf.sample file is installed as extensions.conf if
you run "make samples" after installation of Asterisk. This file includes many more instructions
and examples than this file, so it's worthwhile to read it.

Special extensions

There are some extensions with important meanings:

® s - What to do when an extension context is entered (unless overridden by the low level channel interface) This is used in macros, and

some special cases. "s" is not a generic catch-all wildcard extension.

i - What to do if an invalid extension is entered

h - The hangup extension, executed at hangup

t - What to do if nothing is entered in the requisite amount of time.

T - This is the extension that is executed when the 'absolute’ timeout is reached. See "core show function TIMEOUT" for more information

on setting timeouts.

® e - This extension will substitute as a catchall for any of the 'I", 't', or 'T* extensions, if any of them do not exist and catching the error in a
single routine is desired. The function EXCEPTION may be used to query the type of exception or the location where it occurred.

And finally, the extension context "default" is used when either a) an extension context is deleted
while an extension is in use, or b) a specific starting extension handler has not been defined
(unless overridden by the low level channel interface).

IP Quality of Service

Introduction

Asterisk supports different QoS settings at the application level for various protocols on both
signaling and media. The Type of Service (TOS) byte can be set on outgoing IP packets for
various protocols. The TOS byte is used by the network to provide some level of Quality of
Service (QoS) even if the network is congested with other traffic.

Asterisk running on Linux can also set 802.1p CoS marks in VLAN packets for the VolP protocols

it uses. This is useful when working in a switched environment. In fact Asterisk only set priority
for Linux socket. For mapping this priority and VLAN CoS mark you need to use this command:

vconfig set_egress_map [Vl an-device] [skb-priority] [vlan-qos]

The table below shows all VoIP channel drivers and other Asterisk modules that support QoS
settings for network traffic. It also shows the type(s) of traffic for which each module can support
setting QoS settings.

Table 2.1: Channel Driver QoS Settings

Signaling Audio Video Text

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

chan_sip + + + +

chan_skinny =+ + +
chan_mgecp + +
chan_unistm + +
chan_h323 +

chan_iax2 +

Table 2.2: Other ToS Settings

Signaling Audio Video Text
dundi.conf | + (tos setting)

iaxprov.conf =+ (tos setting)

IP TOS values

The allowable values for any of the tos parameters are: CS0, CS1, CS2, CS3, CS4, CS5, CS6,
CS7, AF11, AF12, AF13, AF21, AF22, AF23, AF31, AF32, AF33, AF41, AF42, AF43 and ef
(expedited forwarding),*

The tos parameters also take numeric values.*

Note that on a Linux system, Asterisk must be compiled with libcap in order to use the ef tos
setting if Asterisk is not run as root.

The lowdelay, throughput, reliability, mincost, and none values have been removed in current
releases.

802.1p CoS values

Because 802.1p uses 3 bits of the VLAN header, this parameter can take integer values from 0
to 7.

Recommended values
The recommended values shown below are also included in sample configuration files:

Table 2.3: Recommended QoS Settings

tos cos
Signaling ¢cs3 3
Audio ef 5

Video afdl 4

Text af4l 3
Other ef
IAX?2

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In iax.conf, there is a "tos" parameter that sets the global default TOS for IAX packets generated
by chan_iax2. Since IAX connections combine signalling, audio, and video into one UDP stream,
it is not possible to set the TOS separately for the different types of traffic.

In iaxprov.conf, there is a "tos" parameter that tells the IAXy what TOS to set on packets it
generates. As with the parameter in iax.conf, IAX packets generated by an IAXy cannot have
different TOS settings based upon the type of packet. However different IAXy devices can have
different TOS settings.

SIP

In sip.conf, there are four parameters that control the TOS settings: "tos_sip", "tos_audio",
"tos_video" and "tos_text". tos_sip controls what TOS SIP call signaling packets are set to.
tos_audio, tos_video and tos_text control what TOS values are used for RTP audio, video, and
text packets, respectively.

There are four parameters to control 802.1p CoS: "cos_sip", "cos_audio", "cos_video" and
"cos_text". The behavior of these parameters is the same as for the SIP TOS settings described
above.

Other RTP channels

chan_mgcp, chan_h323, chan_skinny and chan_unistim also support TOS and CoS via setting
tos and cos parameters in their corresponding configuration files. Naming style and behavior are
the same as for chan_sip.

Reference

IEEE 802.1Q Standard: http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated
protocols: IEEE 802.3, 802.2, 802.1D, 802.1Q

RFC 2474 - "Definition of the Differentiated Services Field (DS field) in the IPv4 and IPv6
Headers", Nichols, K., et al, December 1998.

IANA Assignments, DSCP registry Differentiated Services Field Codepoints
http://www.iana.org/assignments/dscp-registry

To get the most out of setting the TOS on packets generated by Asterisk, you will need to ensure
that your network handles packets with a TOS properly. For Cisco devices, see the previously
mentioned "Enterprise QoS Solution Reference Network Design Guide". For Linux systems see
the "Linux Advanced Routing & Traffic Control HOWTQO" at http://www.lartc.org/.

For more information on Quality of Service for VolP networks see the "Enterprise QoS Solution
Reference Network Design Guide" version 3.3 from Cisco at:
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049k

MP3 Support

MP3 Music On Hold

Use of the mpg123 for your music on hold is no longer recommended and is now officially
deprecated. You should now use one of the native formats for your music on hold selections.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://standards.ieee.org/getieee802/download/802.1Q-1998.pdfRelated
http://www.iana.org/assignments/dscp-registry
http://www.lartc.org/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf

However, if you still need to use mp3 as your music on hold format, a format driver for reading
MP3 audio files is available in the asterisk-addons SVN repository on svn.digium.com or in the
asterisk-addons release at http://downloads.asterisk.org/pub/telephony/asterisk/.

ICES

The advent of icecast into Asterisk allows you to do neat things like have a caller stream right
into an ice-cast stream as well as using chan_local to place things like conferences, music on
hold, etc. into the stream.

You'll need to specify a config file for the ices encoder. An example is included in
contrib/asterisk-ices.xml.

Database Support Configuration

Top-level page for information about Database support.

Realtime Database Configuration

Introduction
The Asterisk Realtime Architecture is a new set of drivers and functions implemented in Asterisk.

The benefits of this architecture are many, both from a code management standpoint and from
an installation perspective.

The ARA is designed to be independent of storage. Currently, most drivers are based on SQL,
but the architecture should be able to handle other storage methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some functions supported
MySQL database, some PostgreSQL and other ODBC. With the ARA, we have a unified
database interface internally in Asterisk, so if one function supports database integration, all
databases that has a realtime driver will be supported in that function.

Currently there are three realtime database drivers:

1. ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC subsystem supports many different databases, please check
www.unixodbc.org for more information.

2. MySQL: Native support for MySQL, integrated into Asterisk

3. PostgreSQL: Native support for Postgres, integrated into Asterisk

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects. This mode is used in
the SIP and IAX2 channels, as well as in the voicemail system. For SIP and IAX2 this is similar to
the v1.0 MYSQL_FRIENDS functionality. With the ARA, we now support many more databases
for dynamic configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk modules that read
configurations, there's no difference between a static file in the file system, like extensions.conf,
and a configuration loaded from a database.

You just have to always make sure the var_metric values are properly set and ordered as you
expect in your database server if you're using the static mode with ARA (either sequentially or
with the same var_metric value for everybody).

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://downloads.asterisk.org/pub/telephony/asterisk/

If you have an option that depends on another one in a given configuration file (i.e, 'musiconhold’
depending on 'agent' from agents.conf) but their var_metric are not sequential you'll probably get
default values being assigned for those options instead of the desired ones. You can still use the
same var_metric for all entries in your DB, just make sure the entries are recorded in an order
that does not break the option dependency.

That doesn't happen when you use a static file in the file system. Although this might be
interpreted as a bug or limitation, it is not.

Realtime SIP friends

The SIP realtime objects are users and peers that are loaded in memory when needed, then
deleted. This means that Asterisk currently can't handle voicemail notification and NAT
keepalives for these peers. Other than that, most of the functionality works the same way for
realtime friends as for the ones in static configuration.

With caching, the device stays in memory for a specified time. More information about this is to
be found in the sip.conf sample file.

If you specify a separate family called "sipregs" SIP registration data will be stored in that table
and not in the "sippeers" table.

Realtime H.323 friends

Like SIP realtime friends, H.323 friends also can be configured using dynamic realtime objects.
New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new architecture, this is a
new feature of Asterisk based on the ARA. The realtime switch lets your Asterisk server do
database lookups of extensions in realtime from your dial plan. You can have many Asterisk
servers sharing a dynamically updated dial plan in real time with this solution.

Note that this switch does NOT support Caller ID matching, only extension name or pattern
matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases and reload it

whenever you want. You can force a reload over the AMI, Asterisk Manager Interface or by
calling Asterisk from a shell script with

asterisk -rx "rel oad"

You may also dynamically add SIP and IAX devices and extensions and making them available
without a reload, by using the realtime objects and the realtime switch.

Configuration in extconfig.conf

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

You configure the ARA in extconfig.conf (yes, it's a strange name, but is was defined in the early
days of the realtime architecture and kind of stuck).

The part of Asterisk that connects to the ARA use a well defined family name to find the proper
database driver. The syntax is easy:

<fam |ly> => <realtinme driver>, <db nanme>[, <t abl e>]

The options following the realtime driver identified depends on the driver.

Defined well-known family names are:

sippeers, sipusers - SIP peers and users
sipregs - SIP registrations

iaxpeers, iaxusers - IAX2 peers and users
voicemail - Voicemail accounts
extensions - Realtime extensions (switch)
meetme - MeetMe conference rooms
queues - Queues

queue_members - Queue members
musiconhold - Music On Hold classes
queue_log - Queue logging

Voicemail storage with the support of ODBC described in ODBC Voicemail Storage.
Limitations

Currently, realtime extensions do not support realtime hints. There is a workaround available by
using func_odbc. See the sample func_odbc.conf for more information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn connection pooling on
in res_odbc.conf. This is due to a limitation within the FreeTDS protocol itself. Please note that
this includes databases such as MS SQL Server and Sybase. This support is new in the current
release.

You may notice a performance issue under high load using UnixODBC. The UnixODBC driver

supports threading but you must specifically enable threading within the UnixODBC configuration
file like below for each engine:

Threading = 2

This will enable the driver to service many requests at a time, rather than serially.
FreeTDS
The cdr_tds module now works with most modern release versions of FreeTDS (from at least

0.60 through 0.82). Although versions of FreeTDS prior to 0.82 will work, we recommend using
the latest available version for performance and stability reasons.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The latest release of FreeTDS is available from http://www.freetds.org/

SIP Realtime, MySQL table structure

Here is the table structure used by MySQL for Realtime SIP friends

#
Tabl e structure for table “sipfriends’
#

CREATE TABLE I F NOT EXI STS "sipfriends (

“id int(11) NOT NULL AUTO | NCREMENT,

“name’ varchar (10) NOT NULL,

“ipaddr” varchar(15) DEFAULT NULL,

“port” int(5) DEFAULT NULL,

"regseconds” int(11) DEFAULT NULL,

“defaul tuser” varchar(10) DEFAULT NULL,

“fullcontact™ varchar(35) DEFAULT NULL,

“regserver” varchar (20) DEFAULT NULL,

“useragent® varchar (20) DEFAULT NULL,

“lastns” int(11) DEFAULT NULL,

“host ™ varchar (40) DEFAULT NULL,

“type’ enun('friend','user','peer') DEFAULT NULL,

“context” varchar(40) DEFAULT NULL,

“permit’ varchar (40) DEFAULT NULL,

“deny” varchar (40) DEFAULT NULL,

"secret’ varchar (40) DEFAULT NULL,

“md5secret” varchar (40) DEFAULT NULL,

“renot esecret” varchar(40) DEFAULT NULL,

“transport” enun{'udp','tcp','udp,tcp','tcp,udp') DEFAULT
NULL,

“dt nf rode” enun('rfc2833','info',"'shortinfo',"'inband ,'auto')
DEFAULT NULL,

“directnmedia’ enun{'yes','no','nonat','update') DEFAULT NULL,

“nat” enun('yes','no','never','route') DEFAULT NULL,

“cal l group™ varchar (40) DEFAULT NULL,

" pi ckupgroup™ varchar (40) DEFAULT NULL,

"l anguage” varchar (40) DEFAULT NULL,

“allow varchar(40) DEFAULT NULL,

“disallow varchar(40) DEFAULT NULL,

“insecure’ varchar(40) DEFAULT NULL,

“trustrpid enun('yes','no') DEFAULT NULL,

" progressinband” enum('yes','no', ' never') DEFAULT NULL,

“prom scredir’ enum('yes','no') DEFAULT NULL,

“useclientcode” enun('yes','no') DEFAULT NULL,

“account code” varchar (40) DEFAULT NULL,

"setvar® varchar(40) DEFAULT NULL,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.freetds.org/*

“callerid varchar(40) DEFAULT NULL,
“amafl ags’ varchar (40) DEFAULT NULL,
“callcounter”™ enun('yes','no') DEFAULT NULL,
“busyl evel © int(11) DEFAULT NULL,
“al l owoverlap™ enum('yes','no') DEFAULT NULL,
“al l owsubscri be” enunm('yes','no") DEFAULT NULL,
“videosupport® enum('yes','no') DEFAULT NULL,
"maxcal | bitrate int(11) DEFAULT NULL,
“rfc2833conpensate’ enun('yes','no') DEFAULT NULL,
“mai | box™ varchar (40) DEFAULT NULL,
"session-tinmers enun('accept','refuse','originate') DEFAULT
NULL,
"session-expires int(11) DEFAULT NULL,
“session-mnse’ int(11) DEFAULT NULL,
"session-refresher” enun('uac','uas') DEFAULT NULL,
"t 38pt _usert psource varchar(40) DEFAULT NULL,
“regexten varchar (40) DEFAULT NULL,
“fromdomai n® varchar (40) DEFAULT NULL,
“fromuser” varchar (40) DEFAULT NULL,
“qualify varchar(40) DEFAULT NULL,
“defaultip® varchar(40) DEFAULT NULL,
“rtptinmeout” int(11) DEFAULT NULL,
“rtphol dtimeout”™ int(11) DEFAULT NULL,
"sendrpid enun('yes','no') DEFAULT NULL,
“out boundproxy™ varchar (40) DEFAULT NULL,
“cal | backext ensi on” varchar (40) DEFAULT NULL,
“registertrying’ enunm('yes','no') DEFAULT NULL,
“timertl int(11) DEFAULT NULL,
“timerb® int(11) DEFAULT NULL,
“qualifyfreq int(11) DEFAULT NULL,
“constantssrc’ enum('yes','no') DEFAULT NULL,
“contactpermt® varchar (40) DEFAULT NULL,
“contactdeny” varchar (40) DEFAULT NULL,
“usereqphone’ enun('yes','no') DEFAULT NULL,
“textsupport® enun('yes','no') DEFAULT NULL,
“faxdetect”™ enun('yes','no') DEFAULT NULL,
“buggymm © enun('yes','no') DEFAULT NULL,
“auth’ varchar (40) DEFAULT NULL,
“full name” varchar (40) DEFAULT NULL,
“trunkname’ varchar (40) DEFAULT NULL,
“cid_nunber” varchar (40) DEFAULT NULL,
“cal l'i ngpres’
enun(' al | oned_not _screened', ' al |l owed_passed_screen','all owed fail ed_sc
DEFAULT NULL,
“nmohi nterpret” varchar(40) DEFAULT NULL,
“mohsuggest © varchar (40) DEFAULT NULL,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

“par ki ngl ot ™ varchar (40) DEFAULT NULL,

“hasvoi cemai |l © enum('yes','no') DEFAULT NULL,
“subscri bemmi T enum('yes','no') DEFAULT NULL,
“vmexten® varchar (40) DEFAULT NULL,

“autofram ng’ enun('yes','no') DEFAULT NULL,
“rtpkeepalive int(11) DEFAULT NULL,
“call-limt® int(11) DEFAULT NULL,

“g726nonst andard’ enun('yes','no') DEFAULT NULL,
“ignoresdpversion enun('yes','no') DEFAULT NULL,
“allowtransfer” enun('yes',' ' no') DEFAULT NULL,
“dynami ¢’ enun('yes','no") DEFAULT NULL,

PRI MARY KEY ("id"),

UNI QUE KEY "name’ (nane’),

KEY “ipaddr”™ (ipaddr’, "port’),

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

KEY "host™ (host™, port’)
) ENG NE=MyI SAM

Privacy Configuration

So, you want to avoid talking to pesky telemarketers/charity seekers/poll takers/magazine
renewers/etc?

FTC Don't Call List

The FTC "Don't call" database, this alone will reduce your telemarketing call volume
considerably. (see: https://www.donotcall.gov/default.aspx) But, this list won't protect from the
Charities, previous business relationships, etc.

Fighting Autodialers

Zapateller detects if callerid is present, and if not, plays the da-da-da tones that immediately
precede messages like, "I'm sorry, the number you have called is no longer in service."

Most humans, even those with unlisted/callerid-blocked numbers, will not immediately slam the
handset down on the hook the moment they hear the three tones. But autodialers seem pretty
quick to do this.

| just counted 40 hangups in Zapateller over the last year in my CDR's. So, that is possibly 40
different telemarketers/charities that have hopefully slashed my back-waters, out-of-the-way,
humble home phone number from their lists.

| highly advise Zapateller for those seeking the nirvana of "privacy"”.

Fighting Empty Caller ID

A considerable percentage of the calls you don't want, come from sites that do not provide
CallerID.

Null callerid's are a fact of life, and could be a friend with an unlisted number, or some charity
looking for a handout. The PrivacyManager application can help here. It will ask the caller to
enter a 10-digit phone number. They get 3 tries(configurable), and this is configurable, with
control being passed to next priority where you can check the channelvariable
PRIVACYMGRSTATUS. If the callerid was valid this variable will have the value SUCCESS,
otherwise it will have the value FAILED.

PrivacyManager can't guarantee that the number they supply is any good, tho, as there is no way
to find out, short of hanging up and calling them back. But some answers are obviously wrong.
For instance, it seems a common practice for telemarketers to use your own number instead of
giving you theirs. A simple test can detect this. More advanced tests would be to look for 555
numbers, numbers that count up or down, numbers of all the same digit, etc.

PrivacyManager can be told about a context where you can have patterns that describe valid

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://www.donotcall.gov/default.aspx

phone numbers. If none of the patterns match the input, it will be considered a non-valid
phonenumber and the user can try again until the retry counter is reached. This helps in
resolving the issues stated in the previous paragraph.

My logs show that 39 have hung up in the PrivacyManager script over the last year.

(Note: Demanding all unlisted incoming callers to enter their CID may not always be appropriate
for all users. Another option might be to use call screening. See below.)

Using Welcome Menus for Privacy

Experience has shown that simply presenting incoming callers with a set of options, no matter
how simple, will deter them from calling you. In the vast majority of situations, a telemarketer will
simply hang up rather than make a choice and press a key.

This will also immediately foil all autodialers that simply belch a message in your ear and hang
up.

Example usage of Zapateller and PrivacyManager

[honel i ne]

exten => s, 1, Answer

exten => s, 2, Set Var, r epeat count =0

exten => s, 3, Zapatel | er,nocal l erid

exten => s, 4, PrivacyManager

;; do this if they don't enter a nunber to Privacy Manager

exten => 5,5, Gotol f($["${ PRI VACYMCRSTATUS}" = "FAI LED']?s, 105)
exten => s,6,Gotol f ($["${CALLERI D(num) }" = "7773334444" &
"${CALLERI D(nane)}" : "Privacy Manager"]?callerid-liar,s,1:s,7)

exten => s, 7, D al (SI P/yourphone)

exten => s, 105, Background(tt-all busy)

exten => s, 106, Background(tt-somnet hi ngw ong)
exten => s, 107, Background(tt-nonkeysintro)
exten => s, 108, Background(tt-nonkeys)

exten => s, 109, Background(tt-weasel s)

exten => s, 110, Hangup

| suggest using Zapateller at the beginning of the context, before anything else, on incoming
calls.This can be followed by the PrivacyManager App.

Make sure, if you do the PrivacyManager app, that you take care of the error condition! or their
non-compliance will be rewarded with access to the system. In the above, if they can't enter a
10-digit number in 3 tries, they get the humorous "I'm sorry, but all household members are
currently helping other telemarketers...", "something is terribly wrong", "monkeys have carried
them away...", various loud monkey screechings, "weasels have...", and a hangup. There are

plenty of other paths to my torture scripts, | wanted to have some fun.

In nearly all cases now, the telemarketers/charity-seekers that usually get thru to my main intro,

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

hang up. | guess they can see it's pointless, or the average telemarketer/charity-seeker is
instructed not to enter options when encountering such systems. Don't know.

Making life difficult for telemarketers
| have developed an elaborate script to torture Telemarketers, and entertain friends.

While mostly those that call in and traverse my teletorture scripts are those we know, and are
doing so out of curiosity, there have been these others from Jan 1st,2004 thru June 1st, 2004:
(the numbers may or may not be correct.)

® 603890zzzz - hung up telemarket options.

"Integrated Sale" - called a couple times. hung up in telemarket options

"UNITED STATES GOV" - maybe a military recruiter, trying to lure one of my sons.

800349zzzz - hung up in charity intro

800349zzzz - hung up in charity choices, intro, about the only one who actually travelled to the bitter bottom of the scripts!
216377zzzz - hung up the magazine section

626757zzzz = "LIR " (pronounced "Liar"?) hung up in telemarket intro, then choices

757821zzzz - hung up in new magazine subscription options.

That averages out to maybe 1 a month. That puts into question whether the ratio of the amount
of labor it took to make the scripts versus the benefits of lower call volumes was worth it, but,
well, I had fun, so what the heck.

But, that's about it. Not a whole lot. But | haven't had to say "NO" or "GO AWAY" to any of these
folks for about a year now ...!

Using Call Screening

Another option is to use call screening in the Dial command. It has two main privacy modes, one
that remembers the CID of the caller, and how the callee wants the call handled, and the other,
which does not have a "memory".

Turning on these modes in the dial command results in this sequence of events, when someone
calls you at an extension:

The caller calls the Asterisk system, and at some point, selects an option or enters an extension
number that would dial your extension.

Before ringing your extension, the caller is asked to supply an introduction. The application asks
them: "After the tone, say your name". They are allowed 4 seconds of introduction.

After that, they are told "Hang on, we will attempt to connect you to your party. Depending on
your dial options, they will hear ringing indications, or get music on hold. | suggest music on hold.

Your extension is then dialed. When (and if) you pick up, you are told that a caller presenting
themselves as their recorded intro is played is calling, and you have options, like being
connected, sending them to voicemail, torture, etc.

You make your selection, and the call is handled as you chose.

There are some variations, and these will be explained in due course.

To use these options, set your Dial to something like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t mPA(beep))

or:

exten => 3, 3, Di al (DAHDI / 5r 3&DAHDI / 6r 3, 35, t mP(somnet hi ng) A(beep))

or:

exten => 3, 3, D al (DAHDI / 5r 3&DAHDI / 61 3, 35, t npA(beep))

The 't" allows the dialed party to transfer the call using #'. It's optional.

The 'm"is for music on hold. | suggest it. Otherwise, the calling party gets to hear all the ringing,
and lack thereof. It is generally better to use Music On Hold. Lots of folks hang up after the 3rd or
4th ring, and you might lose the call before you can enter an option!

The 'P' option alone will database everything using the extension as a default 'tree'. To get
multiple extensions sharing the same database, use P(some-shared-key). Also, if the same
person has multiple extensions, use P(unique-id) on all their dial commands.

Use little 'p' for screening. Every incoming call will include a prompt for the callee's choice.

The A(beep), will generate a 'beep’ that the callee will hear if they choose to talk to the caller. It's
kind of a prompt to let the callee know that he has to say 'hi'. It's not required, but | find it helpful.

When there is no CallerID, P and p options will always record an intro for the incoming caller.
This intro will be stored temporarily in the /var/lib/asterisk/sounds/priv-callerintros dir, under
the name NOCALLERID_extension channelname and will be erased after the callee decides
what to do with the call.

Of course, NOCALLERID is not stored in the database. All those with no CALLERID will be
considered "Unknown".

Call Screening Options

Two other options exist, that act as modifiers to the privacy options 'P' and 'p'. They are 'N' and
'n'. You can enter them as dialing options, but they only affect things if P or p are also in the
options.

'N' says, "Only screen the call if no CallerID is present”. So, if a callerID were supplied, it will
come straight thru to your extension.

'n' says, "Don't save any introductions”. Folks will be asked to supply an introduction ("At the
tone, say your name") every time they call. Their introductions will be removed after the callee
makes a choice on how to handle the call. Whether the P option or the p option is used, the
incoming caller will have to supply their intro every time they call.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Screening Calls with Recorded Introductions

Philosophical Side Note

The 'P’' option stores the CALLERID in the database, along with the callee's choice of actions, as
a convenience to the CALLEE, whereas introductions are stored and re-used for the
convenience of the CALLER.

Introductions

Unless instructed to not save introductions (see the 'n' option above), the screening modes will
save the recordings of the caller's names in the directory /var/lib/asterisk/sounds/priv-callerintros,
if they have a CallerID. Just the 10-digit callerid numbers are used as filenames, with a ".gsm" at
the end.

Having these recordings around can be very useful, however...

First of all, if a callerid is supplied, and a recorded intro for that number is already present, the
caller is spared the inconvenience of having to supply their name, which shortens their call a bit.

Next of all, these intros can be used in voicemail, played over loudspeakers, and perhaps other
nifty things. For instance:

exten => s, 6, Set (PATH=/var/|i b/ asterisk/sounds/priv-callerintros)
exten => s, 7, Systen(/usr/bin/play ${PATH}/ ${ CALLERI D(nun) }. gsng, 0)

When a call comes in at the house, the above priority gets executed, and the callers intro is
played over the phone systems speakers. This gives us a hint who is calling.

(Note: the ,0 option at the end of the System command above, is a local mod | made to the
System command. It forces a 0 result code to be returned, whether the play command
successfully completed or not. Therefore, | don't have to ensure that the file exists or not. While
I've turned this mod into the developers, it hasn't been incorporated yet. You might want to write
an AGI or shell script to handle it a little more intelligently)

And one other thing. You can easily supply your callers with an option to listen to, and re-record
their introductions. Here's what | did in the home system's extensions.conf. (assume that a
Goto(home-introduction,s,1) exists somewhere in your main menu as an option):

[hore-i ntroducti on]

exten => s, 1, Background(intro-options) ;; Script:

;; To hear your Introduction, dial 1.

;; torecord a new introduction, dial 2.

;; toreturn to the main nenu, dial 3.

;; to hear what this is all about, dial 4.

exten => 1,1, Pl ayback, priv-call erintros/${CALLERI D(num }

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => 1,2, Goto(s, 1)

exten => 2,1, Got o(home-introduction-record, s, 1)

exten => 3,1, Goto(honeline,s,7)

exten => 4,1, Pl ayback(intro-intro) ;; Script:

;; This may seema little strange, but it really is a neat

;; thing, both for you and for us. |'ve taped a short introduction
;; for many of the folks who normally call us. Using the Caller ID
;; fromeach incomng call, the system plays the introduction

LN}

for that phone nunmber over a speaker, just as the call cones in.
Thi s hel ps the folks

here in the house nore quickly determ ne who is calling.

and gets the right ones to gravitate to the phone.

You can listen to, and record a new intro for your phone nunber
using this menu.

exten => 4,2, Goto(s, 1)
exten => 1,1, CGoto(s, 1)

exten =>
exten =>

, 1, Background(i nval i d)
, 2, Goto(s, 1)

[
[
exten => o, 1, Goto(s, 1)

[honme-i ntroduction-record]
exten => s, 1, Background(intro-record-choices) ;; Script:

I f you want sone advi ce about recording your

i ntroduction, dial 1.

ot herwi se, dial 2, and introduce yourself after
t he beep.

exten => 1,1, Pl ayback(i ntro-record)

Your introduction should be short and sweet and cri sp.
Your introduction will be limted to 4 seconds.

This is NOT neant to be a voice nail nessage, so

pl ease, don't say anything about why you are calling.
After we are done neking the recording, your introduction
wi |l be saved for playback.

If you are the only person that would call fromthis nunber,
pl ease state your nanme. Qtherw se, state your business

or residence nane instead. For instance, if you are
friend of the famly, say, Aie MPherson, and both

you and your kids mght call here a |ot, you m ght

say: "This is the distinguished Aie MPherson Residence!"
If you are the only person calling, you mght say this:
"This is the illustrious Kermt MFrog! Pick up the Phone,

soneone!

;7 If you are calling froma business, you m ght pronounce a nore
sedate introduction, |ike,

7, "Fritz from MDonalds calling.”, or perhaps the nore origina

i ntroducti on:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

L}

"John, fromthe Park County Modrgue. You stab 'em we slab 'em".
Just one caution: the kids will hear what you record every tine
you call. So watch your | anguage!

I will begin recording after the tone.

When you are done, hit the # key. Gather your thoughts and get
ready. Renenber, the # key will end the recording, and play back
your intro. Good Luck, and Thank you!"

exten => 1,2, 6Goto(2,1)
exten => 2,1, Background(intro-start)

K, here we go! After the beep, please give your introduction

exten => 2,2, Background(beep)

exten => 2,3, Record(priv-callerintros/${CALLERI D(num}: gsm 4)
exten => 2,4, Background(priv-callerintros/${CALLER D(num})
exten => 2,5, Got o(hone-introduction,s,1)

exten =>t, 1, CGoto(s,1)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

exten => i, 1, Background(invali d)
exten => i,2,CGoto(s, 1)
exten => 0,1, Goto(s, 1)

In the above, you'd most likely reword the messages to your liking, and maybe do more
advanced things with the 'error' conditions (i,0,t priorities), but | hope it conveys the idea.

Asterisk Extension Language (AEL)
Top-level page for all things AEL
Introduction to AEL

AEL is a specialized language intended purely for describing Asterisk dial plans.
The current version was written by Steve Murphy, and is a rewrite of the original version.

This new version further extends AEL, and provides more flexible syntax, better error messages,
and some missing functionality.

AEL is really the merger of 4 different 'languages’, or syntaxes:

1. The first and most obvious is the AEL syntax itself. A BNF is provided near the end of this document.

2. The second syntax is the Expression Syntax, which is normally handled by Asterisk extension engine, as expressions enclosed in $[...].
The right hand side of assignments are wrapped in $[...] by AEL, and so are the if and while expressions, among others.

3. The third syntax is the Variable Reference Syntax, the stuff enclosed in ${..} curly braces. It's a bit more involved than just putting a
variable name in there. You can include one of dozens of ‘functions’, and their arguments, and there are even some string manipulation
notation in there.

4. The last syntax that underlies AEL, and is not used directly in AEL, is the Extension Language Syntax. The extension language is what
you see in extensions.conf, and AEL compiles the higher level AEL language into extensions and priorities, and passes them via function
calls into Asterisk.

Embedded in this language is the Application/AGI commands, of which one application call per step, or priority can be made. You can
think of this as a "macro assembler" language, that AEL will compile into.

Any programmer of AEL should be familiar with its syntax, of course, as well as the Expression
syntax, and the Variable syntax.

AEL and Asterisk in a Nutshell

Asterisk acts as a server. Devices involved in telephony, like DAHDI cards, or Voip phones, all
indicate some context that should be activated in their behalf. See the config file formats for I1AX,
SIP, dahdi.conf, etc. They all help describe a device, and they all specify a context to activate
when somebody picks up a phone, or a call comes in from the phone company, or a voip phone,
etc.

AEL about Contexts
Contexts are a grouping of extensions.

Contexts can also include other contexts. Think of it as a sort of merge operation at runtime,
whereby the included context's extensions are added to the contexts making the inclusion.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AEL about Extensions and priorities

A Context contains zero or more Extensions. There are several predefined extensions. The "s"
extension is the "start" extension, and when a device activates a context the "s" extension is the
one that is going to be run. Other extensions are the timeout "t" extension, the invalid response,
or "i" extension, and there's a "fax" extension. For instance, a normal call will activate the "s"
extension, but an incoming FAX call will come into the "fax" extension, if it exists. (BTW, asterisk
can tell it's a fax call by the little "beep" that the calling fax machine emits every so many
seconds.).

Extensions contain several priorities, which are individual instructions to perform. Some are as
simple as setting a variable to a value. Others are as complex as initiating the Voicemail
application, for instance. Priorities are executed in order.

When the 's" extension completes, asterisk waits until the timeout for a response. If the response
matches an extension's pattern in the context, then control is transferred to that extension.
Usually the responses are tones emitted when a user presses a button on their phone. For
instance, a context associated with a desk phone might not have any "s" extension. It just plays a
dialtone until someone starts hitting numbers on the keypad, gather the number, find a matching
extension, and begin executing it. That extension might Dial out over a connected telephone line
for the user, and then connect the two lines together.

The extensions can also contain "goto” or "jump” commands to skip to extensions in other
contexts. Conditionals provide the ability to react to different stimuli, and there you have it.

AEL about Macros

Think of a macro as a combination of a context with one nameless extension, and a subroutine. It
has arguments like a subroutine might. A macro call can be made within an extension, and the
individual statements there are executed until it ends. At this point, execution returns to the next
statement after the macro call. Macros can call other macros. And they work just like function
calls.

AEL about Applications

Application calls, like "Dial()", or "Hangup()", or "Answer()", are available for users to use to
accomplish the work of the dialplan. There are over 145 of them at the moment this was written,
and the list grows as new needs and wants are uncovered. Some applications do fairly simple
things, some provide amazingly complex services.

Hopefully, the above objects will allow you do anything you need to in the Asterisk environment!

Getting Started with AEL

The AEL parser (res_ael.so) is completely separate from the module that parses extensions.conf
(pbx_config.so). To use AEL, the only thing that has to be done is the module res_ael.so must be
loaded by Asterisk. This will be done automatically if using ‘autoload=yes" in
/etc/asterisk/modules.conf. When the module is loaded, it will look for 'extensions.ael’ in

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

letc/asterisk/. extensions.conf and extensions.ael can be used in conjunction with each other if
that is what is desired. Some users may want to keep extensions.conf for the features that are
configured in the 'general’ section of extensions.conf.

To reload extensions.ael, the following command can be issued at the CLI:
*CLI ael reload

AEL Debugging

Right at this moment, the following commands are available, but do nothing:
® Enable AEL contexts debug

*CLI > ael debug contexts

® Enable AEL macros debug

*CLI > ael debug macros

® Enable AEL read debug

*CLI > ael debug read

® Enable AEL tokens debug

*CLI > ael debug tokens

® Disable AEL debug messages

*CLlI > ael no debug

@ If things are going wrong in your dialplan, you can use the following facilities to debug your file:

1. The messages log in /var/log/asterisk. (from the checks done at load time).
2. The "show dialplan" command in asterisk
3. The standalone executable, "aelparse" built in the utils/ dir in the source.

About "aelparse"

You can use the "aelparse" program to check your extensions.ael file before feeding it to
asterisk. Wouldn't it be nice to eliminate most errors before giving the file to asterisk?

aelparse is compiled in the utils directory of the asterisk release. It isn't installed anywhere (yet).
You can copy it to your favorite spot in your PATH.

aelparse has two optional arguments:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

1. -d - Override the normal location of the config file dir, (usually /etc/asterisk), and use the current directory instead as the config file dir.
Aelparse will then expect to find the file "./extensions.ael" in the current directory, and any included files in the current directory as well.

2. -n - Don't show all the function calls to set priorities and contexts within asterisk. It will just show the errors and warnings from the parsing
and semantic checking phases.

General Notes about AEL Syntax

Note that the syntax and style are now a little more free-form. The opening " (curly-braces) do
not have to be on the same line as the keyword that precedes them. Statements can be split
across lines, as long as tokens are not broken by doing so. More than one statement can be
included on a single line. Whatever you think is best!

You can just as easily say,

if(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto
s,12; }

as you can say:

i f(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto

s,12; }

or:
i f(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto
s,12; }

or:
if (${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(CGoodhye!); goto
s,12; }

AEL Keywords

The AEL keywords are case-sensitive. If an application name and a keyword overlap, there is
probably good reason, and you should consider replacing the application call with an AEL
statement. If you do not wish to do so, you can still use the application, by using a capitalized
letter somewhere in its name. In the Asterisk extension language, application names are NOT
case-sensitive.

The following are keywords in the AEL language:

abstract
context
macro
globals
ignorepat
switch

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

if

ifTime
else
random
goto
jump
local
return
break
continue
regexten
hint

for

while
case
pattern
default NOTE: the "default" keyword can be used as a context name, for those who would like to do so.
catch
switches
eswitches
includes

AEL Procedural Interface and Internals

AEL first parses the extensions.ael file into a memory structure representing the file. The entire
file is represented by a tree of "pval” structures linked together.

This tree is then handed to the semantic check routine.
Then the tree is handed to the compiler.
After that, it is freed from memory.

A program could be written that could build a tree of pval structures, and a pretty printing function
is provided, that would dump the data to a file, or the tree could be handed to the compiler to
merge the data into the asterisk dialplan. The modularity of the design offers several
opportunities for developers to simplify apps to generate dialplan data.

AEL version 2 BNF
(hopefully, something close to bnf).

First, some basic objects

<word> a | exical token consisting of characters matching this
pattern:
[-a-zA-Z0-9" /. \N<\S*\+I $#\[\]][-a-zA-Z0-9" /. I\ *\HNAS\{\}SHA[\]]*
<word3-1ist> a concatenation of up to 3 <word>s.
<col | ected-word> all characters encountered until the character
that follows the <collected-word> in the granmmar.

<file> :== <objects>

<obj ect s> : == <obj ect>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

| <objects> <object>

<obj ect > : == <cont ext >
| <macr o>
| <gl obal s>
<context> :== 'context' <word> '{' <elenents> '}’

context' <word> '{' '}’

context' 'default' '{' <elenents> '}’

context' 'default® "{" '}’

abstract' 'context' <word> '{' <elenents> '}’
abstract' 'context' <word>"'{' '}’

abstract' 'context' 'default' '{' <elenments> '}’
abstract' 'context' 'default' '{' '}’

<macro> :== 'macro’ <word> ' (' <arglist>"')'" '{' <nmacro_statenents>
l}l

| 'macro' <word> ' (' <arglist>"')" "{" '}’

| "macro' <word> "'(' ")' '{' <macro_statenents> '}’

| Irracrol <V\Drd> l(l l)l l{l l}l

<gl obal s> :== "globals' '{' <global _statenments> '}’
|] gl Obal SI] {I] }I
<gl obal _st atement s> : == <gl obal _st at enent >

| <gl obal _statenents> <gl obal _st at enent >

<gl obal _statenent> :== <word> '=' <collected-word> ";"
<arglist> :== <word>

| <arglist>"'," <word>
<el ement s> : == <el enent >

| <el ements> <el enent >

<el enent > : == <ext ensi on>

<i ncl udes>

<swi t ches>

<eswi t ches>

<i gnor epat >

<word> '=' <collected-word> ';'

"l ocal' <word> '=" <collected-word> ";"'

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<i gnorepat> : == 'ignorepat' '=> <word> "';'

<extension> : == <word> '=>" <statenent>
| 'regexten’ <word> '=>' <statenent>
| "hint' '"(' <word3-list>")"'" <word> '=>" <statenent>
| 'regexten’ '"hint' '(' <word3-list>")" <word> '=>
<st at enent >

<statenment s> : == <statenent>
| <statenents> <statenent>

<if _head> :=="if" '(' <collected-word> ")’

<random head> : == 'random ' (' <collected-word> ")’

<ifTime_head> :=="ifTime' '(' <word3-list>":" <word3-list>":"'

<word3-list>"|" <word3-list>"|'" <word3-list>"|"'" <word3-list> ")’
| "ifTime' " (' <word> "'|' <word3-list>"|"

<word3-list>"'|"' <word3-list> ")’

<wor d3-1ist> : == <word>

| <word> <word>
| <word> <word> <word>

<switch_head> :== "switch' '(' <collected-word> ")" '{'
<statenent> :== '{' <statenments> '}’

<word> '='" <coll ected-word> "';'

"local' <word> '=' <collected-word> ';"'

I
I
| 'goto' <target> ';
| "junp' <junptarget> ';
| <word> ':'
| "for' '"('" <collected-word> "';' <collected-word> ";"
<coll ected-word> ')"' <statenent>
| "while'" '"(' <collected-word> "')' <statenent>
| <switch_head> '}’
| <switch_head> <case_statenents> '}’
| '& macro_call ';'
| <application_call>";"
| <application_call>"=" <collected-word>";"
| 'break' ;'
| 'return' ;'
| 'continue ;'
| <random head> <st at enent >
| <random head> <statenent> 'el se' <statenent>
| <if_head> <stat enent >
| <if_head> <statenent> 'else' <statenent>
|

<i f Ti me_head> <statenent>

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<i fTi me_head> <statenment> 'el se' <statenent>

I
I
<target> :== <word>

| <word> '|' <word>
| <word>"'|' <word>"'|' <word>
| 'default’ "|' <word> "|' <word>
| <word>"',' <word>
| <word>"',' <word>"',' <word>
| 'default' "," <word>"',"' <word>
<j unpt arget > : == <wor d>
| <word>"',' <word>
| <word>"',' <word>"'@ <word>
<word> '@ <word>
<word>"',"' <word>"'@ 'default’

|
I
| <word> '@ 'default’
<macro_call> :== <word> ' (' <eval arglist>")"
| <word> (" ")’

<application_call _head> :== <word> ' ('
<application_call> :== <application_call head> <eval arglist> ")’
| <application_call_head> ")’

<eval _arglist> :== <coll ect ed-word>
| <eval _arglist>"'," <coll ected-word>
| /* nothing */
| <eval _arglist>"," /* nothing */
<case_statenents> : == <case_st at ement >

| <case_st atenent s> <case_st at enent >

<case_statenent> :== 'case' <word> ':' <statenents>
| 'default' ':' <statenents>
| 'pattern’ <word> ':' <statenents>
| 'case' <word> ':'
| 'default' ':'
| 'pattern’ <word> ':'
<macr o_statement s> : == <macro_st at enent >

| <nmacr o_st at enent s> <macr o_st at enent >

<macro_statenment > : == <statenent>
| 'catch' <word> '{' <statenents> '}’
<swi tches> :== 'switches' '{' <switchlist>"}"
| 'switches' '{' '}’
<eswitches> :== "eswitches' '{' <switchlist> "}"
| 'eswitches' "{' '}’

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<switchlist> :== <word> ";"'
| <switchlist> <word> ";"'

<i ncl udeslist> : == <includednane> ';'
| <includedname> '|' <word3-list>"':"' <word3-list>":"
<word3-list>"|" <word3-list>"|" <word3-list>"|"'" <word3-list>";"
| <includednane> '|"' <word> '|' <word3-list>"]|"
<word3-list>"|"' <word3-list>";"
| <includeslist> <includednanme> ';"
| <includeslist> <includednanme> '|' <word3-list>"':"'
<word3-list>":" <word3-list>"'"|'" <word3-list>"|"'" <word3-list>"]|"
<word3-list> "'
| <includeslist> <includedname> "|' <word> "|' <word3-list>
| <word3-list>"'|' <word3-list>";"
<i ncl udedname> : == <wor d>
| 'default’

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

<includes> :== "includes' '{' <includeslist>"}"'
| '"includes' '"{' "}’

AEL Example Usages

Example usages of AEL

AEL Comments

Comments begin with // and end with the end of the line.

Comments are removed by the lexical scanner, and will not be recognized in places where it is
busy gathering expressions to wrap in $[] , or inside application call argument lists. The safest
place to put comments is after terminating semicolons, or on otherwise empty lines.

AEL Context

Contexts in AEL represent a set of extensions in the same way that they do in extensions.conf.

context default {

}

A context can be declared to be "abstract", in which case, this declaration expresses the intent of
the writer, that this context will only be included by another context, and not "stand on its own".
The current effect of this keyword is to prevent "goto " statements from being checked.

abstract context |ongdist {
_INXXNXXXXXX => NoOp(generic long distance dialing actions in
t he US);

}

AEL Extensions

To specify an extension in a context, the following syntax is used. If more than one application is
be called in an extension, they can be listed in order inside of a block.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

context default {
1234 => Pl| ayback(tt-nonkeys);

8000 => {
NoOp(one) ;
NoOp('t wo) ;
NoQp(t hree);
}:

_5XXX => NoOp(it's a pattern!);

Two optional items have been added to the AEL syntax, that allow the specification of hints, and
a keyword, regexten, that will force the numbering of priorities to start at 2.

The ability to make extensions match by CID is preserved in AEL; just use /' and the CID number
in the specification. See below.

context default {
regexten 5XXX => NoQp(it's a pattern!);
}

context default {
hint(Sip/1l) _5XXX => NoOp(it's a pattern!);
}

context default {
regexten hint(Sip/1) 5XXX => NoOp(it's a pattern!);
}

The regexten must come before the hint if they are both present.

CID matching is done as with the extensions.conf file. Follow the extension name/number with a
slash and the number to match against the Caller ID:

cont ext zoonbo {
819/ 7079953345 => { NoOp(hell o, 3345); }

}

In the above, the 819/7079953345 extension will only be matched if the CallerID is 7079953345,
and the dialed number is 819. Hopefully you have another 819 extension defined for all those
who wish 819, that are not so lucky as to have 7079953345 as their CallerID!

AEL Includes

Contexts can be included in other contexts. All included contexts are listed within a single block.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

context default {
i ncludes {
| ocal ;
| ongdi st ance;
i nternational

Time-limited inclusions can be specified, as in extensions.conf format, with the fields described in
the wiki page Asterisk cmd GotolfTime.

context default {
i ncludes {
| ocal ;
| ongdi st ance| 16: 00- 23: 59| non-fri || ;
i nternational

AEL including other files

You can include other files with the #include "filepath" construct.

#include "/etc/asterisk/testfor. ael"

An interesting property of the #include, is that you can use it almost anywhere in the .ael file. It is
possible to include the contents of a file in a macro, context, or even extension. The #include
does not have to occur at the beginning of a line. Included files can include other files, up to 50
levels deep. If the path provided in quotes is a relative path, the parser looks in the config file
directory for the file (usually /etc/asterisk).

AEL Dialplan Switches

Switches are listed in their own block within a context. For clues as to what these are used for,
see Asterisk - dual servers, and Asterisk config extensions.conf.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

...

~context default {
' swi tches {
DUNDI / e164;
| AX2/ box5;
b
eswi tches {
| AX2/ cont ext @{ CURSERVER} ;

AEL Ignorepat

ignorepat can be used to instruct channel drivers to not cancel dialtone upon receipt of a
particular pattern. The most commonly used example is '9'".

- context outgoing {
' i gnorepat => 9;

AEL Variables

Variables in Asterisk do not have a type, so to define a variable, it just has to be specified with a
value.

Global variables are set in their own block.

...

gl obal s {
’ CONSQOLE=Consol e/ dsp;
TRUNK=DAHDI / g2;

...

~context foo {
555 => {
X=5;
y=bl ah;
di vexanpl e=10/ 2
NoOp(x is ${x} and y is ${y} !);

NOTE: AEL wraps the right hand side of an assignment with $[] to allow expressions to be used

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

If this is unwanted, you can protect the right hand side from being wrapped by using the Set()
application. Read the README.variables about the requirements and behavior of $[]

expressions.
NOTE: These things are wrapped up in a $[| expression: The while() test; the if() test; the middle

expression in the for(x; y; z) statement (the y expression); Assignments - the right hand side, so
a=b - Set(a=%[b])

Writing to a dialplan function is treated the same as writing to a variable.

context blah {
s => {
CALLERI D(nane) =Chi ckenMan;
NoOp(My name is ${CALLERI D(nane)} !);

You can declare variables in Macros, as so:

Macro nyroutine(firstarg, secondarg) {
Myvar =1;
NoOp(Myvar is set to ${nyvar});

AEL Local Variables

In 1.2, and 1.4, ALL VARIABLES are CHANNEL variables, including the function arguments and

associated ARG1, ARGZ2, etc variables. Sorry.
In trunk (1.6 and higher), we have made all arguments local variables to a macro call. They will

not affect channel variables of the same name. This includes the ARG1, ARG2, etc variables.

Users can declare their own local variables by using the keyword 'local’ before setting them to a
value;

Macro nyroutine(firstarg, secondarg) {
| ocal Myvar=1;
NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and

secondarg is ${secondarg});

}

In the above example, Myvar, firstarg, and secondarg are all local variables, and will not be
visible to the calling code, be it an extension, or another Macro.

If you need to make a local variable within the Set() application, you can do it this way:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Macro nyroutine(firstarg, secondarg) {

Set (LOCAL(Myvar) =1) ;

NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and
secondarg i s ${secondarg});

}
AEL Conditionals
AEL supports if and switch statements, like AEL, but adds ifTime, and random. Unlike the original
AEL, though, you do NOT need to put curly braces around a single statement in the "true" branch

of an if(), the random(), or an ifTime() statement. The if(), ifTime(), and random() statements
allow optional else clause.

context conditional ({

_8XXX => {
Di al (SI P/ ${ EXTEN}) ;
if ("${DI ALSTATUS}" = "BUSY")
{
NoQp(yessir);
Voi cenmai | (${ EXTEN}, b);
}
el se

Voi cemai | (${ EXTEN}, u) ;

i fTime (14:00-25:00, sat-sun,,)
Voi cenmai | (${ EXTEN}, b) ;

el se

{
Voi cemai | (${ EXTEN}, u) ;
NoOp(hi, there!);

}
randonm(51) NoOp(This shoul d appear 51% of the tine);
random(60)
{
NoQp(This shoul d appear 60% of the tine);
}
el se
{
randon(75)
{
NoQp(This shoul d appear 30% of the tine!);
}
el se
{

NoQp(This shoul d appear 10% of the tine!);

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

}
}
777X => {
switch (${EXTEN}) ({
case 7771
NoQp(You called 7771!);
br eak;
case 7772:
NoOp(You called 7772!);
br eak;
case 7773:
NoOp(You called 7773!);
/] fall thru-

pattern 777[4-9]:
NoOp(You cal l ed 777 sonething!);
default: NoOp(In the default clause!);

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

v, The conditional expression in if() statements (the "${DIALSTATUS}" = "BUSY" above) is wrapped by the compiler in $[] for
evaluation.

', Neither the switch nor case values are wrapped in $[]; they can be constants, or ${var} type references only.

1. AEL generates each case as a separate extension. case clauses with no terminating 'break’, or 'goto’, have a goto inserted, to
the next clause, which creates a 'fall thru' effect.

1. AEL introduces the ifTime keyword/statement, which works just like the if() statement, but the expression is a time value, exactly
like that used by the application GotolfTime(). See Asterisk cmd GotolfTime

1. The pattern statement makes sure the new extension that is created has an'_' preceding it to make sure asterisk recognizes the
extension name as a pattern.

v Every character enclosed by the switch expression's parenthesis are included verbatim in the labels generated. So watch out for
spaces!

1. NEW: Previous to version 0.13, the random statement used the "Random()" application, which has been deprecated. It now
uses the RAND() function instead, in the Gotolf application.

AEL goto, jump, and labels

This is an example of how to do a goto in AEL.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

cont ext got oexanpl e {

s => {
begi n:
NoOp(Infinite Loop! yay!);
Wait(1);
goto begin; // go to label in sane extension
}
3 =>{
goto s,
begin; // go to label in different extension
}
4 => {
got o got oexanpl e, s, begin; // overkill go to | abel in same
cont ext
}
}
cont ext got oexanpl e2 {
s => {
end:
got o got oexanpl e, s, begin; // go to label in different
cont ext
}

You can use the special label of "1" in the goto and jump statements. It means the "first"
statement in the extension. | would not advise trying to use numeric labels other than "1" in goto's
or jumps, nor would | advise declaring a "1" label anywhere! As a matter of fact, it would be bad
form to declare a numeric label, and it might conflict with the priority numbers used internally by
asterisk.

The syntax of the jump statement is: jump extension[,priority][@context] If priority is absent, it

defaults to "1". If context is not present, it is assumed to be the same as that which contains the
lljumpll.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

cont ext got oexanpl e {

s => {
begi n:
NoOp(Infinite Loop! yay!);
Vit (1);
jump s; // go to first extension in sane extension
3 => {
junmp s, begin; // go to label in different extension
4 => {
junp s, begi n@ot oexanple; // overkill go to |abel in sane
context }
cont ext got oexanpl e2 {
s => {
end:
junp s@otoexanple; // go to label in different context
' Goto labels follow the same requirements as the Goto() application, except the last value has to be a label. If the label does not
exist, you will have run-time errors. If the label exists, but in a different extension, you have to specify both the extension name
and label in the goto, as in: goto s,z; if the label is in a different context, you specify context,extension,label. There is a note
about using goto's in a switch statement below...
! AEL introduces the special label "1", which is the beginning context number for most extensions.
AEL Macros

A macro is defined in its own block like this. The arguments to the macro are specified with the
name of the macro. They are then referred to by that same name. A catch block can be specified
to catch special extensions.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

...
H

- macro std-exten(ext , dev) {
Di al (${dev}/ ${ext}, 20);
swi t ch(${ DI ALSTATUS}) {
case BUSY:
Voi cemai | (${ext}, b);

br eak;
defaul t:
Voi cemai | (${ext}, u);
}
catch a {
Voi ceMai | Mai n(${ext});
return;
}

i
..

A macro is then called by preceding the macro name with an ampersand. Empty arguments can
be passed simply with nothing between commas.

...
v

- context exanple {

' _BXXX => &std-exten(${EXTEN}, "1AX2");
_BXXX => &std-exten(, "IAX2");

_TXXX => &std-exten(${EXTEN},);

_8XXX => &std-exten(,);

AEL Loops

AEL has implementations of ‘for' and 'while' loops.
context | oops {
1 =>{
for (x=0; ${x} < 3; x=${x} + 1) {
Verbose(x is ${x} !);

}

}

i 2 =>{

E y=10;

while (${y} >= 0) {
Verbose(y is ${y} !);
y=${y}-1;

}

}

}

i
..

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

NOTE: The conditional expression (the "${y} = 0" above) is wrapped in $[] so it can be
evaluated. NOTE: The for loop test expression (the "$x 3" above) is wrapped in $[] so it can be
evaluated.

AEL Break, Continue, and Return

Three keywords:

1. break
2. continue
3. return

are included in the syntax to provide flow of control to loops, and switches.

The break can be used in switches and loops, to jump to the end of the loop or switch.

The continue can be used in loops (while and for) to immediately jump to the end of the loop. In
the case of a for loop, the increment and test will then be performed. In the case of the while

loop, the continue will jump to the test at the top of the loop.

The return keyword will cause an immediate jump to the end of the context, or macro, and can be
used anywhere.

AEL Examples

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

context deno {
s => {
Wait(1);
Answer () ;
TI MEQUT(di gi t) =5;
TI MEQUT(r esponse) =10;
restart:
Backgr ound(deno- congrats);
instructions:
for (x=0; ${x} < 3; x=${x} + 1) {
Backgr ound(deno-instruct);

Wai t Exten();
}
}
2 =>{
Backgr ound(deno- nor ei nf o) ;
goto s,instructions;
}
3 =>{
LANGUACGE() =f r
goto s,restart;
}
500 => {
Pl ayback(deno- abouttotry);
Di al (1 AX2/ guest @n sery. di gi um com ;
Pl ayback(deno- nogo) ;
goto s,instructions;
}
600 => {
Pl ayback(denp- echot est) ;
Echo() ;
Pl ayback(deno- echodone) ;
goto s,instructions;
}
=>{
hangup:
Pl ayback(deno-t hanks);
Hangup() ;
}

t => goto #, hangup
i => Playback(invalid);

AEL Semantic Checks

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

AEL,

after parsing, but before compiling, traverses the dialplan tree, and makes several checks:

Macro calls to non-existent macros.

Macro calls to contexts.

Macro calls with argument count not matching the definition.

application call to macro. (missing the '&)

application calls to "Gotolf", "GotolfTime", "while", "endwhile", "Random", and "execlf", will generate a message to consider converting
the call to AEL goto, while, etc. constructs.

goto a label in an empty extension.

goto a non-existent label, either a within-extension, within-context, or in a different context, or in any included contexts. Will even check
"sister" context references.

All the checks done on the time values in the dial plan, are done on the time values in the ifTime() and includes times: o the time range
has to have two times separated by a dash; o the times have to be in range of 0 to 24 hours. o The weekdays have to match the internal
list, if they are provided; o the day of the month, if provided, must be in range of 1 to 31; o the month name or names have to match those
in the internal list.

(0.5) If an expression is wrapped in $[...], and the compiler will wrap it again, a warning is issued.

(0.5) If an expression had operators (you know, +,-,,/,issued. Maybe someone forgot to wrap a variable name?*

(0.12) check for duplicate context names.

(0.12) check for abstract contexts that are not included by any context.

(0.13) Issue a warning if a label is a numeric value.

There are a subset of checks that have been removed until the proposed AAL (Asterisk
Argument Language) is developed and incorporated into Asterisk. These checks will be:

(if the application argument analyzer is working: the presence of the 'j' option is reported as error.

if options are specified, that are not available in an application.

if you specify too many arguments to an application.

a required argument is not present in an application call.

Switch-case using "known" variables that applications set, that does not cover all the possible values. (a "default” case will solve this
problem. Each "unhandled" value is listed.

a Switch construct is used, which is uses a known variable, and the application that would set that variable is not called in the same
extension. This is a warning only...

Calls to applications not in the "applist" database (installed in /var/lib/asterisk/applist" on most systems).

In an assignment statement, if the assignment is to a function, the function name used is checked to see if it one of the currently known
functions. A warning is issued if it is not.

Differences with the original version of AEL

© 0~

10.
11.
12.
13.
14.

15.

16.

18.

. The $[...] expressions have been enhanced to include the ==, , and && operators. These operators are exactly equivalent to the =, , and

& operators, respectively. Why? So the C, Java, C++ hackers feel at home here.

. Itis more free-form. The newline character means very little, and is pulled out of the white-space only for line numbers in error messages.
. It generates more error messages - by this | mean that any difference between the input and the grammar are reported, by file, line

number, and column.

. It checks the contents of $[] expressions (or what will end up being $[] expressions!) for syntax errors. It also does matching

paren/bracket counts.

. It runs several semantic checks after the parsing is over, but before the compiling begins, see the list above.
. It handles #include “filepath" directives. - ALMOST anywhere, in fact. You could easily include a file in a context, in an extension, or at the

root level. Files can be included in files that are included in files, down to 50 levels of hierarchy...

. Local Goto's inside Switch statements automatically have the extension of the location of the switch statement appended to them.
. A pretty printer function is available within pbx_ael.so.
. In the utils directory, two standalone programs are supplied for debugging AEL files. One is called "aelparse”, and it reads in the

letc/asterisk/extensions.ael file, and shows the results of syntax and semantic checking on stdout, and also shows the results of
compilation to stdout. The other is "aelparsel”, which uses the original ael compiler to do the same work, reading in
"letc/asterisk/extensions.ael", using the original 'pbx_ael.so' instead.

AEL supports the "jump" statement, and the "pattern” statement in switch constructs. Hopefully these will be documented in the AEL
README.

Added the "return" keyword, which will jump to the end of an extension/Macro.

Added the ifTime (time rangedays of weekdays of monthmonths) [else] construct, which executes much like an if () statement, but the
decision is based on the current time, and the time spec provided in the ifTime. See the example above. (Note: all the other
time-dependent Applications can be used via ifTime)

Added the optional time spec to the contexts in the includes construct. See examples above.

You don't have to wrap a single "true" statement in curly braces, as in the original AEL. An "else" is attached to the closest if. As usual, be
careful about nested if statements! When in doubt, use curlies!

Added the syntax [regexten] [hint(channel)] to precede an extension declaration. See examples above, under "Extension". The regexten
keyword will cause the priorities in the extension to begin with 2 instead of 1. The hint keyword will cause its arguments to be inserted in
the extension under the hint priority. They are both optional, of course, but the order is fixed at the moment- the regexten must come
before the hint, if they are both present.

Empty case/default/pattern statements will “fall thru" as expected. (0.6)

. Atrailing label in an extension, will automatically have a NoOp() added, to make sure the label exists in the extension on Asterisk. (0.6)

(0.9) the semicolon is no longer required after a closing brace! (i.e. "];" ==="}". You can have them there if you like, but they are not

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

necessary. Someday they may be rejected as a syntax error, maybe.

19. (0.9) the // comments are not recognized and removed in the spots where expressions are gathered, nor in application call arguments.
You may have to move a comment if you get errors in existing files.

20. (0.10) the random statement has been added. Syntax: random (expr) lucky-statement [else unlucky-statement]. The probability of the
lucky-statement getting executed is expr, which should evaluate to an integer between 0 and 100. If the lucky-statement isn't so lucky this
time around, then the unlucky-statement gets executed, if it is present.

AEL Hints and Bugs

The safest way to check for a null strings is to say $["${x}" = "™] The old way would do as shell
scripts often do, and append something on both sides, like this: $[${x}foo = foo]. The trouble
with the old way, is that, if X contains any spaces, then problems occur, usually syntax errors. It is
better practice and safer wrap all such tests with double quotes! Also, there are now some
functions that can be used in a variable reference, ISNULL(), and LEN(), that can be used to test
for an empty string: ${ISNULL(${x})} or $[${LEN(${x})} =0].

Assignment vs. Set(). Keep in mind that setting a variable to value can be done two different
ways. If you choose say 'x=y;', keep in mind that AEL will wrap the right-hand-side with $[]. So,
when compiled into extension language format, the end result will be 'Set(x=$[y])". If you don't
want this effect, then say "Set(x=y);" instead.

The Full Power of AEL

A newcomer to Asterisk will look at the above constructs and descriptions, and ask, "Where's the
string manipulation functions?", "Where's all the cool operators that other languages have to
offer?", etc.

The answer is that the rich capabilities of Asterisk are made available through AEL, via:

® Applications: See Asterisk - documentation of application commands

® Functions: Functions were implemented inside ${ .. } variable references, and supply many useful capabilities.

® Expressions: An expression evaluation engine handles items wrapped inside $[...]. This includes some string manipulation facilities,
arithmetic expressions, etc.

® Application Gateway Interface: Asterisk can fork external processes that communicate via pipe. AGI applications can be written in any
language. Very powerful applications can be added this way.

® Variables: Channels of communication have variables associated with them, and asterisk provides some global variables. These can be
manipulated and/or consulted by the above mechanisms.

Asterisk Manager Interface (AMI)

What is the Asterisk Manager Interface, or AMI? Read on...

The Asterisk Manager TCP IP API

The manager is a client/server model over TCP. With the manager interface, you'll be able to
control the PBX, originate calls, check mailbox status, monitor channels and queues as well as

execute Asterisk commands.

AMI is the standard management interface into your Asterisk server. You configure AMI in
manager.conf. By default, AMI is available on TCP port 5038 if you enable it in manager.conf.

AMI receive commands, called "actions". These generate a "response" from Asterisk. Asterisk

will also send "Events" containing various information messages about changes within Asterisk.
Some actions generate an initial response and data in the form list of events. This format is

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

created to make sure that extensive reports do not block the manager interface fully.
Management users are configured in the configuration file manager.conf and are given
permissions for read and write, where write represents their ability to perform this class of
"action”, and read represents their ability to receive this class of "event".

If you develop AMI applications, treat the headers in Actions, Events and Responses as local to
that particular message. There is no cross-message standardization of headers.

If you develop applications, please try to reuse existing manager headers and their interpretation.
If you are unsure, discuss on the asterisk-dev mailing list.

Manager subscribes to extension status reports from all channels, to be able to generate events
when an extension or device changes state. The level of details in these events may depend on
the channel and device configuration. Please check each channel configuration file for more
information. (in sip.conf, check the section on subscriptions and call limits)

AMI Command Syntax

Management communication consists of tags of the form "header: value", terminated with an
empty newline (\r\n) in the style of SMTP, HTTP, and other headers.

The first tag MUST be one of the following:

® Action: An action requested by the CLIENT to the Asterisk SERVER. Only one "Action" may be outstanding at any time.
® Response: A response to an action from the Asterisk SERVER to the CLIENT.
® Event: An event reported by the Asterisk SERVER to the CLIENT

AMI Manager Commands

To see all of the available manager commands, use the "manager show commands" CLI
command.

You can get more information about a manager command with the "manager show command
command" CLI command in Asterisk.

AMI Examples

® Login - Log a user into the manager interface.
Action: Login Usernane: testuser Secret: testsecret
® CQOriginate - Originate a call from a channel to an extension.
Action: Oiginate Channel: sip/12345 Exten: 1234 Context: default

® Originate - Originate a call from a channel to an extension without waiting for call to complete.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Action: Oiginate Channel: sip/12345 Exten: 1234 Context: default
Async: yes

® Redirect with ExtraChannel:
Attempted goal: Have a ‘robot' program Redirect both ends of an already-connected call to a meetme room using the ExtraChannel
feature through the management interface.

*Action: Redirect Channel: DAHDI/1-1 ExtraChannel : S|P/ 3064-7e00
(varies) Exten: 680 Priority: 1

*Where 680 is an extension that sends you to a MeetMe room.

There are a number of GUI tools that use the manager interface, please search the mailing list
archives and the documentation page on the http://www.asterisk.org web site for more
information.

Ensuring all modules are loaded with AMI

It is possible to connect to the manager interface before all Asterisk modules are loaded. To
ensure that an application does not send AMI actions that might require a module that has not
yet loaded, the application can listen for the FullyBooted manager event. It will be sent upon
connection if all modules have been loaded, or as soon as loading is complete. The event:

Event: Ful | yBoot ed
Privilege: systemall
Status: Fully Booted

Device Status Reports with AMI
blank

Some Standard AMI Headers

Account: — Account Code (Status)

AccountCode: — Account Code (cdr_manager)

ACL: <Y | N> — Does ACL exist for object ?

Action: <action> — Request or notification of a particular action

Address-IP: — IPaddress

Address-Port: — IP port number

Agent: <string> — Agent name

AMAflags: — AMA flag (cdr_manager, sippeers)

AnswerTime: — Time of answer (cdr_manager)

Append: <bool> — CDR userfield Append flag

Application: — Application to use

Async: — Whether or not to use fast setup

AuthType: — Authentication type (for login or challenge) "md5"

BillableSeconds: — Billable seconds for call (cdr_manager)

CallerID: — Caller id (name and number in Originate & cdr_manager)

CallerID: — CallerlD number Number or "<unknown>" or "unknown" (should change to "<unknown>" in app_queue)
CallerID1: — Channel 1 CallerID (Link event)

CallerlD2: — Channel 2 CallerID (Link event)

CallerIDName: — CallerID name Name or "<unknown>" or "unknown" (should change to "<unknown>" in app_gqueue)
Callgroup: — Call group for peer/user

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://www.asterisk.org

CallsTaken: <num> — Queue status variable

Cause: <value> — Event change cause - "Expired"

Cause: <value> — Hangupcause (channel.c)

CID-CallingPres: — Caller ID calling presentation

Channel: <channel> — Channel specifier

Channel: <dialstring> — Dialstring in Originate

Channel: <tech/[peer/username]> — Channel in Registry events (SIP, IAX2)
Channel: <tech> — Technology (SIP/IAX2 etc) in Registry events
ChannelType: — Tech: SIP, IAX2, DAHDI, MGCP etc

Channell: — Link channel 1

Channel2: — Link channel 2

ChanObjectType: — "peer”, "user"”

Codecs: — Codec list

CodecOrder: — Codec order, separated with comma ","
Command: — Cli command to run

Context: — Context

Count: <num> — Number of callers in queue

Data: — Application data

Default-addr-IP: — IP address to use before registration
Default-Username: — Username part of URI to use before registration
Destination: — Destination for call (Dialstring) (dial, cdr_manager)
DestinationContext: — Destination context (cdr_manager)
DestinationChannel: — Destination channel (cdr_manager)
DestUniguelD: — UniquelD of destination (dial event)

Direction: <type> — Audio to mute (read | write | both)

Disposition: — Call disposition (CDR manager)

Domain: <domain>— DNS domain

Duration: <secs> — Duration of call (cdr_manager)

Dynamic: <Y | N> — Device registration supported?

Endtime: — End time stamp of call (cdr_manager)

EventList: <flag> — Flag being "Start", "End", "Cancelled" or "ListObject"
Events: <eventmask> — Eventmask filter (“on", "off", "system", "
Exten: — Extension (Redirect command)

Extension: — Extension (Status)

Family: <string> — ASTdb key family

File: <filename> — Filename (monitor)

Format: <format> — Format of sound file (monitor)

From: <time> — Parking time (ParkedCall event)

Hint: — Extension hint

Incominglimit: — SIP Peer incoming limit

Key: Key: — ASTdb Database key

LastApplication: — Last application executed (cdr_manager)
LastCall: <num> — Last call in queue

LastData: — Data for last application (cdr_manager)

Link: — (Status)

Listltems: <number> — Number of items in Eventlist (Optionally sent in "end" packet)

Location: — Interface (whatever that is -maybe tech/name in app_queue)

Loginchan: — Login channel for agent

Logintime: <number> — Login time for agent

Mailbox: — VM Mailbox (id@vmcontext) (mailboxstatus, mailboxcount)

MD5SecretExist: <Y | N> — Whether secret exists in MD5 format

Membership: <string> — "Dynamic" or "static" member in queue

Message: <text> — Text message in ACKs, errors (explanation)

Mix: <bool> — Boolean parameter (monitor)

MOHSuggest: — Suggested music on hold class for peer (mohsuggest)

NewMessages: <count> — Count of new Mailbox messages (mailboxcount)

Newname:

ObjectName: — Name of object in list

OldName: — Something in Rename (channel.c)

OldMessages: <count> — Count of old mailbox messages (mailboxcount)

Outgoinglimit: — SIP Peer outgoing limit

Paused: <num> — Queue member paused status

Peer: <tech/name> — "channel" specifier

PeerStatus: <tech/name> — Peer status code "Unregistered”, "Registered”, "Lagged", "Reachable"
Penalty: <num> — Queue penalty

Priority: — Extension priority

Privilege: <privilege> — AMI authorization class (system, call, log, verbose, command, agent, user)
Pickupgroup: — Pickup group for peer

Position: <num> — Position in Queue

Queue: — Queue name

Reason: — "Autologoff"

Reason: — "Chanunavail”

Response: <response> — response code, like "200 OK" "Success", "Error", "Follows"

Restart: — "True", "False"

RegExpire: — SIP registry expire

call", "log")

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

RegExpiry: — SIP registry expiry

Reason: — Originate reason code

Seconds: — Seconds (Status)

Secret: <password> — Authentication secret (for login)
SecretExist: <Y | N> — Whether secret exists
Shutdown: — "Uncleanly”, "Cleanly"
SIP-Authlnsecure:

SIP-FromDomain: — Peer FromDomain
SIP-FromUser: — Peer FromUser

SIP-NatSupport:

SIPLastMsg:

Source: — Source of call (dial event, cdr_manager)
SrcUniquelD: — UniquelD of source (dial event)
StartTime: — Start time of call (cdr_manager)

State: — Channel state

State: <1 | 0> — Mute flag

Status: — Registration status (Registry events SIP)
Status: — Extension status (Extensionstate)

Status: — Peer status (if monitored) ** Will change name ** "unknown", "lagged", "ok"
Status: <num> — Queue Status

Status: — DND status (DNDState)

Time: <sec> — Roundtrip time (latency)

Timeout: — Parking timeout time

Timeout: — Timeout for call setup (Originate)

Timeout: <seconds> — Timeout for call

Uniqueid: — Channel Unique ID

Uniqueidl: — Channel 1 Unique ID (Link event)
Uniqueid2: — Channel 2 Unique ID (Link event)

User: — Username (SIP registry)

UserField: — CDR userfield (cdr_manager)

Val: — Value to set/read in ASTdb

Variable: — Variable AND value to set (multiple separated with | in Originate)
Variable: <name> — For channel variables

Value: <value> — Value to set

VoiceMailbox: — VM Mailbox in SIPpeers

Waiting: — Count of mailbox messages (mailboxstatus)

", Please try to re-use existing headers to simplify manager message parsing in clients.*

Read the CODING-GUIDELINES if you develop hew manager commands or events.
Asynchronous Javascript Asterisk Manger (AJAM)

AJAM is a new technology which allows web browsers or other HTTP enabled applications and
web pages to directly access the Asterisk Manger Interface (AMI) via HTTP. Setting up your
server to process AJAM involves a few steps:

Setting up the Asterisk HTTP server

Uncomment the line "enabled=yes" in /etc/asterisk/http.conf to enable Asterisk's builtin micro HTTP server.

If you want Asterisk to actually deliver simple HTML pages, CSS, javascript, etc. you should uncomment "enablestatic=yes"

. Adjust your "bindaddr" and "bindport" settings as appropriate for your desired accessibility

. Adjust your "prefix" if appropriate, which must be the beginning of any URI on the server to match. The default is "asterisk" and the rest of
these instructions assume that value.

N

Allow Manager Access via HTTP

1. Make sure you have both "enabled = yes" and "webenabled = yes" setup in /etc/asterisk/manager.conf
2. You may also use "httptimeout" to set a default timeout for HTTP connections.
3. Make sure you have a manager username/secret

Once those configurations are complete you can reload or restart Asterisk and you should be
able to point your web browser to specific URI's which will allow you to access various web

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

functions. A complete list can be found by typing "http show status” at the Asterisk CLI.
examples:

® http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar

This logs you into the manager interface's "HTML" view. Once you're logged in, Asterisk stores a
cookie on your browser (valid for the length of httptimeout) which is used to connect to the same
session.

® http://localhost:8088/asterisk/rawman?action=status

Assuming you've already logged into manager, this URI will give you a "raw" manager output for
the "status" command.

® http://localhost:8088/asterisk/mxml?action=status

This will give you the same status view but represented as AJAX data, theoretically compatible
with RICO (http://www.openrico.org).

® http://localhost:8088/asterisk/static/ajamdemo.html
If you have enabled static content support and have done a make install, Asterisk will serve up a
demo page which presents a live, but very basic, "astman” like interface. You can login with your
username/secret for manager and have a basic view of channels as well as transfer and hangup
calls. It's only tested in Firefox, but could probably be made to run in other browsers as well.

A sample library (astman.js) is included to help ease the creation of manager HTML interfaces.

s For the demo, there is no need for any external web server.

Integration with other web servers

Asterisk’'s micro HTTP server is not designed to replace a general purpose web server and it
is intentionally created to provide only the minimal interfaces required. Even without the addition
of an external web server, one can use Asterisk's interfaces to implement screen pops and
similar tools pulling data from other web servers using iframes, div's etc. If you want to integrate
CGl's, databases, PHP, etc. you will likely need to use a more traditional web server like Apache
and link in your Asterisk micro HTTP server with something like this:

ProxyPass /asterisk http://localhost:8088/asterisk

Asterisk Queues

Pardon, but the dialplan in this tutorial will be expressed in AEL, the new Asterisk Extension
Language. If you are not used to its syntax, we hope you will find it to some degree intuitive. If
not, there are documents explaining its syntax and constructs.

Configuring Call Queues

Top-level for configuring call queues

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar
http://localhost:8088/asterisk/rawman?action=status
http://localhost:8088/asterisk/mxml?action=status
http://www.openrico.org
http://localhost:8088/asterisk/static/ajamdemo.html
http://localhost:8088/asterisk

Using queues.conf

First of all, set up call queues in queue.conf
Here is an example:

gueues.conf

; Cool Digium Queues
[general]
persi stent nenbers = yes

; Ceneral sal es queue
[sal es-general]

nmusi c=def aul t
cont ext =sal es

strat egy=ri ngal

j oi nenpty=strict

| eavewhenenpt y=stri ct

; Custoner service queue
[cust oner servi ce]

nusi c=def aul t

cont ext =cust oner servi ce
strat egy=ri ngal

j Oi nenpty=strict

| eavewhenenpt y=stri ct

; Support dispatch queue
[di spat ch]

nmusi c=def aul t

cont ext =di spat ch
strategy=ri ngal

j oi nenpty=strict

| eavewhenenpt y=stri ct

In the above, we have defined 3 separate calling queues: sales-general, customerservice, and
dispatch.

Please note that the sales-general queue specifies a context of "sales”, and that customerservice
specifies the context of "customerservice", and the dispatch queue specifies the context
"dispatch”. These three contexts must be defined somewhere in your dialplan. We will show
them after the main menu below.

In the [general] section, specifying the persistentmembers=yes, will cause the agent lists to be
stored in astdb, and recalled on startup.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

The strategy=ringall will cause all agents to be dialed together, the first to answer is then
assigned the incoming call.

"joinempty" set to "strict" will keep incoming callers from being placed in queues where there are
no agents to take calls. The Queue() application will return, and the dial plan can determine what
to do next.

If there are calls queued, and the last agent logs out, the remaining incoming callers will
immediately be removed from the queue, and the Queue() call will return, IF the
"leavewhenempty" is set to "strict".

Routing Incoming Calls to Queues
Then in extensions.ael, you can do these things:

The Main Menu
At Digium, incoming callers are sent to the "mainmenu” context, where they are greeted, and
directed to the numbers they choose...

cont ext mai nmenu {
i ncl udes {
di gi um
gueues- | ogi nout ;

}
0 => goto dispatch,s,1;
goto sales,s, 1;
got o custonerservice,s,1;
4 => goto dispatch,s,1;
s => {
Ri ngi ng();
Wait(1);
Set (at t enpt s=0) ;
Answer () ;
Wait(1);
Backgr ound(di gi unf ThankYouFor Cal | i ngDi gi um ;
Backgr ound(di gi unf Your OpenSour ceTel econmuni cati onsSupplier);

w N
I
vV Vv

Wi t Ext en(0. 3);
repeat :
Set (attenpts=$[${attenpts} + 1]);

Backgr ound(di gi unt | f YouKnowYour Part ysExt ensi onYouMayDi al | t At AnyTi ne) ;
Wai t Exten(0. 1);

Backgr ound(di gi uni O herw se) ;
Wai t Exten(0. 1);

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Backgr ound(di gi unf For Sal esPl easePress?2);

Wai t Ext en(0. 2);

Backgr ound(di gi unf For Cust oner Ser vi cePl easePress3) ;

Wai t Exten(0. 2);

Backgr ound(di gi unf For Al | O her Depart nent sPl easePress4) ;
Wai t Ext en(0. 2);

Backgr ound(di gi uni ToSpeakW t hAnOper at or Pl easePr essOAt AnyTi ne) ;
if(${attenpts} < 2) {
Wai t Ext en(0. 3);
Backgr ound(di gi uni ToHear TheseOpt i onsRepeat edPl easeHol d) ;
}
Wai t Ext en(5);
if(${attenpts} < 2) goto repeat;
Backgr ound(di gi unf YouHaveMadeNoSel ecti on);
Backgr ound(di gi uni Thi sCal | W1 | BeEnded) ;
Backgr ound(goodbye) ;

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Hangup() ;

The Contexts referenced from the queues.conf file

context sales {
0 => goto dispatch,s,1;
8 => Voi cemai | (${ SALESVM) ;
s => {
Ri ngi ng() ;
Wit (2);

Backgr ound(di gi umi ThankYouFor Cont acti ngTheDi gi unSal esDepart nent) ;
Wai t Exten(0. 3) ;

Backgr ound(di gi unf Pl easeHol dAndYour Cal | W I | BeAnswer edByQur Next Avai | abl
Wai t Ext en(0. 3);

Backgr ound(di gi unf At AnyTi meYouMayPr essOToSpeakW t hAnQper at or Or 8ToLeave
Set (CALLERI D(nane) =Sal es) ;
Queue(sal es-general , t);
Set (CALLERI D(nane) =Enpt ySal Q ;
goto dispatch, s, 1;

Pl ayback(goodbye) ;
Hangup() ;

Please note that there is only one attempt to queue a call in the sales queue. All sales agents
that are logged in will be rung.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

cont ext custonerservice {
0 => {
Set Cl DNane(CSVTr ans) ;
got o di spatch|s]|1;

}
8 => Voi cenui | (${ CUSTSERWM}) ;
s => {

Ri ngi ng();

Vit (2);

Backgr ound(di gi unf ThankYouFor Cal | i ngDi gi unCust oner Ser vi ce) ;
Wai t Exten(0. 3);
not r acki ng:
Backgr ound(di gi unf Pl easeWai t For TheNext Avai | abl eCust omer Ser vi ceRepr eser

Wai t Exten(0. 3);
Backgr ound(di gi unf At AnyTi meYouMayPr essOToSpeakW t hAnQper at or Or 8ToLeave

Set (CALLERI D(nane) =Cust Svc);
Set (QUEUE_MAX_PENALTY=10) ;
Queue(custonerservice,t);

Set (QUEUE_MAX_PENALTY=0) ;
Queue(custonerservice,t);

Set (CALLERI D nane) =Enpt yCSVQ) ;
goto di spatch,s, 1;

Backgr ound(di gi unf NoCust omer Ser vi ceRepr esent ati vesAr eAvai | abl eAt Thi sTi

Backgr ound(di gi unf Pl easeLeaveAMessagel nTheCust oner Ser vi ceVoi ceMai | Box)
Voi cemai | (${ CUSTSERWM) ;

Pl ayback(goodbye);
Hangup() ;

Note that calls coming into customerservice will first be try to queue calls to those agents with a
QUEUE_MAX_PENALTY of 10, and if none are available, then all agents are rung.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

context dispatch {
s => {
Ri ngi ng() ;
Wait(2);
Backgr ound(di gi um® ThankYouFor Cal | i ngDi gi um ;
Wai t Ext en(0. 3);

Backgr ound(di gi unf Your Cal | W1 | BeAnswer edByQur Next Avai | abl eOper at or) ;

Backgr ound(di gi unf Pl easeHol d) ;

Set (QUEUE_MAX_PENALTY=10) ;

Queue(di spatch|t);

Set (QUEUE_MAX_PENALTY=20) ;

Queue(di spatch|t);

Set (QUEUE_MAX_PENALTY=0) ;

Queue(di spatch|t);

Backgr ound(di gi uni NoOnel sAvai | abl eToTakeYour Cal |) ;

Backgr ound(di gi unf Pl easeLeaveAMessagel nCQur Gener al Voi ceMai | Box) ;
Voi cemnai | (${ Dl SPATCHVM) ;
Pl ayback(goodbye) ;
Hangup() ;

And in the dispatch context, first agents of priority 10 are tried, then 20, and if none are available,
all agents are tried.

Notice that a common pattern is followed in each of the three queue contexts:

First, you set QUEUE_MAX_PENALTY to a value, then you call Queue(queue-name,option,...)
(see the Queue application documetation for details)

In the above, note that the "t" option is specified, and this allows the agent picking up the
incoming call the luxury of transferring the call to other parties.

The purpose of specifying the QUEUE_MAX_PENALTY is to develop a set of priorities amongst
agents. By the above usage, agents with lower number priorities will be given the calls first, and
then, if no-one picks up the call, the QUEUE_MAX_PENALTY will be incremented, and the
gueue tried

again. Hopefully, along the line, someone will pick up the call, and the Queue application will end
with a hangup.

The final attempt to queue in most of our examples sets the QUEUE_MAX_PENALTY to zero,
which means to try all available agents.

Assigning Agents to Queues

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

In this example dialplan, we want to be able to add and remove agents to handle incoming calls,
as they feel they are available. As they log in, they are added to the queue's agent list, and as
they log out, they are removed. If no agents are available, the queue command will terminate,
and it is the duty of the dialplan to do something appropriate, be it sending the incoming caller to
voicemail, or trying the queue again with a higher QUEUE_MAX_PENALTY.

Because a single agent can make themselves available to more than one queue, the process of
joining multiple queues can be handled automatically by the dialplan.

Agents Log In and Out

cont ext queues-| ogi nout ({
6092 => {
Answer () ;
Read(AGENT_NUMBER, agent - ent er num ;
VMAut hent i cat e(${ AGENT_NUMBER} @lef aul t, s) ;
Set (queue- announce- success=1);
got o queues-nmani p, | ${ AGENT_NUMBER}, 1;

}
6093 => {
Answer () ;
Read(AGENT_NUMBER, agent - ent er num ;
Set (queue- announce- success=1);
got o queues- mani p, O8{ AGENT_NUMBER}, 1;
}

In the above contexts, the agents dial 6092 to log into their queues, and they dial 6093 to log out
of their queues. The agent is prompted for their agent number, and if they are logging in, their
passcode, and then they are transferred to the proper extension in the queues-manip context.
The queues-manip context does all the actual work:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

cont ext queues-nmani p {

/'l Raquel Squel ch

_[1g6121 => {
&gueue- addr enove(di spat ch, 10, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Brittanica Spears

_[1g 6165 => {
&queue- addr enove(di spat ch, 20, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Rock Hudson

[1096170 => {
&queue- addr enove(sal es- general , 10, ${ EXTEN}) ;
&queue- addr enove(cust omer servi ce, 20, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

}

/1 Saline Dye-on

_[1g 6070 => {
&queue- addr enove(sal es- general , 20, ${ EXTEN}) ;
&queue- addr enove(cust omer servi ce, 30, ${ EXTEN}) ;
&queue- addr enove(di spat ch, 30, ${ EXTEN}) ;
&queue- success(${ EXTEN}) ;

In the above extensions, note that the queue-addremove macro is used to actually add or
remove the agent from the applicable queue, with the applicable priority level. Note that agents
with a priority level of 10 will be called before agents with levels of 20 or 30.

In the above example, Raquel will be dialed first in the dispatch queue, if she has logged in. If
she is not, then the second call of Queue() with priority of 20 will dial Brittanica if she is present,
otherwise the third call of Queue() with MAX_PENALTY of O will dial Rock and Saline
simultaneously.

Also note that Rock will be among the first to be called in the sales-general queue, and among
the last in the dispatch queue. As you can see in main menu, the callerID is set in the main menu
so they can tell which queue incoming calls are coming from.

The call to queue-success() gives some feedback to the agent as they log in and out, that the
process has completed.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

macr o queue-success(exten) {
i f(${queue-announce-success} > 0) {
switch(${exten:0:1}) {

case |I:
Pl ayback(agent -1 ogi nok) ;
Hangup() ;
br eak;

case O
Pl ayback(agent - | oggedof) ;
Hangup() ;
br eak;

The queue-addremove macro is defined in this manner:

macr o queue- addr enove(queuenane, penal ty, exten) {
switch(${exten:0:1}) {
case |: // Login

AddQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s, ${ penal ty});
br eak;
case O // Logout
RenoveQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s) ;

br eak;

case P: // Pause
PauseQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s) ;
br eak;

case U // Unpause

UnpauseQueueMenber (${ queuenane}, Local / ${ ext en: 1} @gent s) ;
br eak;
default: // Invalid
Pl ayback(i nval i d);
br eak;

Basically, it uses the first character of the exten variable, to determine the proper actions to take.
In the above dial plan code, only the cases | or O are used, which correspond to the Login and
Logout actions.

Controlling the way Queues Call Agents

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Notice in the above, that the commands to manipulate agents in queues have "@agents" in their
arguments. This is a reference to the agents context:

context agents {
/'l Ceneral sal es queue
8010 => {
Set (QUEUE_MAX _PENALTY=10) ;
Queue(sal es-general , t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(sal es-general ,t);
Set (CALLERI D(nane) =EnptySal Q) ;
got o di spatch, s, 1;
}
/1 Customer Service queue
8011 => {
Set (QUEUE_MAX_PENALTY=10) :
Queue(custonerservice,t);
Set (QUEUE_MAX_PENALTY=0) ;
Queue(custonerservice,t);
Set (CALLERI D(nane) =EMpt yCSVQ) ;
goto di spatch, s, 1;
}
8013 => {
D al (i ax2/ sweat shop/ 9456@ r om ecst acy) ;
Set (CALLERI D(nane) =Enpt ySupQ) ;
Set (QUEUE_MAX_PENALTY=10) ;
Queue(support-dispatch,t);
Set (QUEUE_NMAX_PENALTY=20) ;
Queue(support-dispatch,t);
Set (QUEUE_MAX PENALTY=0); // neans no max
Queue(support-dispatch,t);
goto di spatch, s, 1;
}
6121 => &cal | agent (${ RAQUEL}, ${ EXTEN});
6165 => &cal | agent (${ SPEARS}, ${ EXTEN}) ;
6170 => &cal | agent (${ ROCK}, ${ EXTEN}) ;
6070 => &cal | agent (${ SALI NE}, ${ EXTEN}) ;

In the above, the variables ${RAQUEL}, etc stand for actual devices to ring that person's phone
(like DAHDI/37).

The 8010, 8011, and 8013 extensions are purely for transferring incoming callers to queues. For

instance, a customer service agent might want to transfer the caller to talk to sales. The agent
only has to transfer to extension 8010, in this case.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Here is the callagent macro, note that if a person in the queue is called, but does not answer,
then they are automatically removed from the queue.

macr o cal | agent (devi ce, exten) {
i f(${GROUP_COUNT(${exten} @gents)}=0) {
Set (OUTBOUND_GROUP_ONCE=%{ ext en} @gent s) ;
Di al (${devi ce}, 300,1t);
swi t ch(${ Dl ALSTATUS}) {
case BUSY:
Busy() ;
br eak;
case NOANSVER
Set (queue- announce- success=0) ;
got o queues- mani p, GB{ ext en}, 1;

def aul t:
Hangup() ;
br eak;

}
}
el se {
Busy() ;
}

In the callagent macro above, the ${exten} will be 6121, or 6165, etc, which is the extension of
the agent.

The use of the GROUP_COUNT, and OUTBOUND_GROUP follow this line of thinking. Incoming
calls can be queued to ring all agents in the current priority. If some of those agents are already
talking, they would get bothersome call-waiting tones. To avoid this inconvenience, when an
agent gets a call, the OUTBOUND_GROUP assigns that conversation to the group specified, for
instance 6171@agents. The ${GROUP_COUNT()} variable on a subsequent call should return
"1" for that group. If GROUP_COUNT returns 1, then the busy() is returned without actually trying
to dial the agent.

Queue Pre-Acknowledgement Messages

If you would like to have a pre acknowledge message with option to reject the message you can
use the following dialplan Macro as a base with the 'M' dial argument.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Queu

[macro- screen]

exten=>s, 1, Wi t(.25)

ext en=>s, 2, Read(ACCEPT, screen-cal | ee-options, 1)
ext en=>s, 3, Got oi f ($[${ ACCEPT} = 1] 7?50)

ext en=>s, 4, Cot oi f ($[${ ACCEPT} = 2] ?30)
ext en=>s, 5, Got oi f ($[${ ACCEPT} = 3] ?40)
ext en=>s, 6, Cot oi f ($[${ ACCEPT} = 4] ?30: 30)

ext en=>s, 30, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 40, Read(TEXTEN, cust oni scr een- ext en,)

ext en=>s, 41, Gotoi f (B[S{LEN(${ TEXTEN})} = 3] ?42: 45)

ext en=>s, 42, Set (MACRO_RESULT=GOTQG from i nt er nal "${ TEXTEN} *1)
ext en=>s, 45, Cot oi f ($[${ TEXTEN} = 0] ?46: 4)

ext en=>s, 46, Set (MACRO_RESULT=CONTI NUE)

ext en=>s, 50, Pl ayback(after-the-tone)

ext en=>s, 51, Pl ayback(connect ed)

ext en=>s, 52, Pl ayback(beep)

e Caveats

In the above examples, some of the possible error checking has been omitted, to reduce clutter
and make the examples clearer.

Queue Logs

In order to properly manage ACD queues, it is important to be able to keep track of details of call
setups and teardowns in much greater detail than traditional call detail records provide. In order
to support this, extensive and detailed tracing of every queued call is stored in the queue log,
located (by default) in /var/log/asterisk/queue_log.

These are the events (and associated information) in the queue log:

Content is

ABANDON(positionorigpositionwaittime) - The caller abandoned their position in the queue. The position is the caller's position in the
queue when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is
how long the call had been waiting in the queue at the time of disconnect.

AGENTDUMP - The agent dumped the caller while listening to the queue announcement.

AGENTLOGIN(channel) - The agent logged in. The channel is recorded.

AGENTCALLBACKLOGIN(exten@context) - The callback agent logged in. The login extension and context is recorded.
AGENTLOGOFF(channellogintime) - The agent logged off. The channel is recorded, along with the total time the agent was logged in.

AGENTCALLBACKLOGOFF(exten@contextlogintimereason) - The callback agent logged off. The last login extension and context is
recorded, along with the total time the agent was logged in, and the reason for the logoff if it was not a normal logoff (e.g., Autologoff,
Chanunavail)

COMPLETEAGENT (holdtimecalltimeorigposition) - The caller was connected to an agent, and the call was terminated normally by the
agent. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in
origposition.

COMPLETECALLER((holdtimecalltimeorigposition) - The caller was connected to an agent, and the call was terminated normally by the

licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

caller. The caller's hold time and the length of the call are both recorded. The caller's original position in the queue is recorded in
origposition.

® CONFIGRELOAD - The configuration has been reloaded (e.g. with asterisk -rx reload)

® CONNECT(holdtimebridgedchanneluniqueidringtime) - The caller was connected to an agent. Hold time represents the amount of time
the caller was on hold. The bridged channel unique ID contains the unique ID of the queue member channel that is taking the call. This is
useful when trying to link recording filenames to a particular call in the queue. Ringtime represents the time the queue members phone
was ringing prior to being answered.

* ENTERQUEUE(urlcallerid) - A call has entered the queue. URL (if specified) and Caller*ID are placed in the log.

* EXITEMPTY (positionorigpositionwaittime) - The caller was exited from the queue forcefully because the queue had no reachable
members and it's configured to do that to callers when there are no reachable members. The position is the caller's position in the queue
when they hungup, the origposition is the original position the caller was when they first entered the queue, and the waittime is how long
the call had been waiting in the queue at the time of disconnect.

* EXITWITHKEY (keypositionorigpositionwaittime) - The caller elected to use a menu key to exit the queue. The key and the caller's
position in the queue are recorded. The caller's entry position and amoutn of time waited is also recorded.

* EXITWITHTIMEOUT (positionorigpositionwaittime) - The caller was on hold too long and the timeout expired. The position in the queue
when the timeout occurred, the entry position, and the amount of time waited are logged.

® QUEUESTART - The queueing system has been started for the first time this session.

* RINGNOANSWER(ringtime) - After trying for ringtime ms to connect to the available queue member, the attempt ended without the
member picking up the call. Bad queue member!

® SYSCOMPAT - A call was answered by an agent, but the call was dropped because the channels were not compatible.

®* TRANSFER(extensioncontextholdtimecalltimeorigposition) - Caller was transferred to a different extension. Context and extension are
recorded. The caller's hold time and the length of the call are both recorded, as is the caller's entry position at the time of the transfer.
PLEASE remember that transfers performed by SIP UA's by way of a reinvite may not always be caught by Asterisk and trigger off this
event. The only way to be 100% sure that you will get this event when a transfer is performed by a queue member is to use the built-in
transfer functionality of Asterisk.

Asterisk Security Framework

Attacks on Voice over IP networks are becoming increasingly more common. It has become
clear that we must do something within Asterisk to help mitigate these attacks.

Through a number of discussions with groups of developers in the Asterisk community, the
general consensus is that the best thing that we can do within Asterisk is to build a framework
which recognizes and reports events that could potentially have security implications. Each
channel driver has a different concept of what is an "event", and then each administrator has
different thresholds of what is a "bad" event and what is a restorative event. The process of
acting upon this information is left to an external program to correlate and then take action - block
traffic, modify dialing rules, etc. It was decided that embedding actions inside of Asterisk was
inappropriate, as the complexity of construction of such rule sets is difficult and there was no
agreement on where rules should be enabled or how they should be processed. The addition of
a major section of code to handle rule expiration and severity interpretation was significant. As a
final determining factor, there are external programs and services which already parse log files
and act in concert with packet filters or external devices to protect or alter network security
models for IP connected hosts.

Security Framework Overview

This section discusses the architecture of the Asterisk modifications being proposed.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

There are two main components that we propose for the initial implementation of the security
framework:

® Security Event Generation
® Security Event Logger

Security Event Generation

The ast_event APl is used for the generation of security events. That way, the events are in an
easily interpretable format within Asterisk to make it easy to write modules that do things with
them. There are also some helper data structures and functions to aid Asterisk modules in
reporting these security events with the proper contents.

The next section of this document contains the current list of security events being proposed.
Each security event type has some required pieces of information and some other optional
pieces of information.

Subscribing to security events from within Asterisk can be done by subscribing to events of type
AST_EVENT_SECURITY. These events have an information element,

AST_EVENT _IE_SECURITY_EVENT, which identifies the security event sub-type (from the list
described in the next section). The result of the information elements in the events contain the
required and optional meta data associated with the event sub-type.

Asterisk Security Event Logger

In addition to the infrastructure for generating the events, one module that is a consumer of these
events has been implemented.

Asterisk trunk was recently updated to include support for dynamic logger levels. This
module takes advantage of this functionality to create a custom "security" logger level.
Then, when this module is in use, logger.conf can be configured to put security events
into a file

security_log => security

The content of this file is a well defined and easily interpretable format for external scripts to read
and act upon. The definition for the format of the log file is described later in this chapter.

Security Events to Log

(-) required
(+) optional

Invalid Account ID
(-) Local address fam|y/|P address/port/transport
(-) Renote address famly/|IP address/port/transport
(-) Service (SIP, AM, |AX2, ...)
(-) System Nane
(+) Modul e

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

(+) Account |ID (usernane, etc)
(+) Session ID (CalllD, etc)
(+) Session timestanp (required if Session ID present)
(-) Event timestanp (sub-second precision)
Fail ed ACL match
-> everything frominvalid account 1D
(+) Name of ACL (when we have naned ACLS)

I nval i d Chal | enge/ Response
-> everything frominvalid account ID
(-) Challenge
(-) Response
(-) Expected Response
I nval i d Password
-> everything frominvalid account ID

Successful Authentication
-> informational event
-> everything frominvalid account ID

Invalid formatting of Request
-> everything frominvalid account ID
-> account | D optiona
(-) Request Type
(+) Request paraneters
Session Limt Reached (such as a call limt)
-> everything frominvalid account 1D

Menory Limt Reached

-> everything frominvalid account 1D
Maxi mum Load Average Reached

-> everything frominvalid account ID

Request Not Al |l owed
-> everything frominvalid account ID
(-) Request Type
(+) Request paraneters

Request Not Supported
-> everything frominvalid account ID
(-) Request Type

Aut henti cation Method Not All owed
-> everything frominvalid account ID
(-) Authentication Method attenpted
In dial og message from unexpected host

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

-> everything frominvalid account ID
(-) expected host

Security Log File Format

The beginning of each line in the log file is the same as it is for other logger levels within Asterisk.

[Feb 11 07:57:03] SECURITY[23736] res_security log.c: <...>

The part of the log entry identified by \<...\> is where the security event content resides. The
security event content is a comma separated list of key value pairs. The key is the information
element type, and the value is a quoted string that contains the associated meta data for that
information element. Any embedded quotes within the content are escaped with a backslash.

INFORMATION_ELEMENT_1="IE1 content",INFORMATION_ELEMENT_2="IE2 content"

The following table includes potential information elements and what the associated content
looks like:

® |E: SecurityEvent
Content: This is the security event sub-type.
Values: FailedACL, InvalidAccountID, SessionLimit, MemoryLimit, LoadAverageLimit, RequestNotSupported, RequestNotAllowed,
AuthMethodNotAllowed, ReqBadFormat, UnexpectedAddress, ChallengeResponseFailed, InvalidPassword

® |E: EventVersion
Content: This is a numeric value that indicates when updates are made to the content of the event.
Values: Monotonically increasing integer, starting at 1

® |E: Service
Content: This is the Asterisk service that generated the event.
Values: TEST, SIP, AMI

® |E: Module
Content: This is the Asterisk module that generated the event.
Values: chan_sip

¢ |E: AccountID
Content: This is a string used to identify the account associated with the event. In most cases, this would be a username.

® |E: SessionID
Content: This is a string used to identify the session associated with the event. The format of the session identifier is specific to the
service. In the case of SIP, this would be the Call-ID.

® |E: SessionTV
Content: The time that the session associated with the SessionID started.
Values: <seconds><microseconds> since epoch

® |E: ACLName
Content: This is a string that identifies which named ACL is associated with this event.

® |E: LocalAddress
Content: This is the local address that was contacted for the related event.
Values: <Address Family>/<Transport>/<Address>/<Port>
Examples: -> IPV4/UDP/192.168.1.1/5060 -> IPV4/TCP/192.168.1.1/5038

® |E: RemoteAddress
Content: This is the remote address associated with the event.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

® |E: ExpectedAddress
Content: This is the address that was expected to be the remote address.
Examples: -> IPV4/UDP/192.168.1.2/5060 -> IPV4/TCP/192.168.1.2/5038

* |E: EventTV
Content: This is the timestamp of when the event occurred.
Values: <seconds><microseconds> since epoch

® |E: RequestType
Content: This is a service specific string that represents the invalid request

® |E: RequestParams
Content: This is a service specific string that represents relevant parameters given with a request that was considered invalid.

® |E: AuthMethod
Content: This is a service specific string that represents an authentication method that was used or requested.

® |E: Challenge
Content: This is a service specific string that represents the challenge provided to a user attempting challenge/response authentication.

® |E: Response
Content: This is a service specific string that represents the response received from a user attempting challenge/response authentication.

® |E: ExpectedResponse
Content: This is a service specific string that represents the response that was expected to be received from a user attempting
challenge/response authentication.

Asterisk Sounds Packages

Asterisk utilizes a variety of sound prompts that are available in several file formats and
languages. Multiple languages and formats can be installed on the same system, and Asterisk
will utilize prompts from languages installed, and will automatically pick the least CPU intensive
format that is available on the system (based on codecs in use, in additional to the codec and
format modules installed and available).

In addition to the prompts available with Asterisk, you can create your own sets of prompts and
utilize them as well. This document will tell you how the prompts available for Asterisk are
created so that the prompts you create can be as close and consistent in the quality and volume
levels as those shipped with Asterisk.

Getting the Sounds Tools

The sounds tools are available in the publicly accessible repotools repository. You can check
these tools out with Subversion via the following command:

svn co http://svn.asterisk.org/svn/repotools

The sound tools are available in the subdirectory sound_tools/ which contains the following
directories:

® audiofilter
® makeg722
® scripts

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

About the Sounds Tools

The following sections will describe the sound tools in more detail and explain what they are
used for in the sounds package creation process.

audiofilter

The audiofilter application is used to "tune" the sound files in such a way that they sound good
when being used while in a compressed format. The values in the scripts for creating the sound
files supplied in repotools is essentially a high-pass filter that drops out audio below 100Hz (or
S0).

(There is an ITU specification that states for 8KHz audio that is being compressed frequencies
below a certain threshold should be removed because they make the resulting compressed
audio sound worse than it should.)

The audiofilter application is used by the ‘converter' script located in the scripts subdirectory of
repotools/sound_tools. The values being passed to the audiofilter application is as follows:

audiofilter -n 0.86916 -1.73829 0.86916 -d 1.00000 -1.74152 0.77536

The two options -n and -d are 'numerator' and ‘denominator’. Per the author, Jean-Marc Valin,
"These values are filter coefficients (-n means numerator, -d is denominator) expressed in the
z-transform domain. There represent an elliptic filter that | designed with Octave such that 'the

result sounds good'.

makeg722

The makeg722 application is used by the ‘converters’ script to generate the G.722 sound files
that are shipped with Asterisk. It starts with the RAW sound files and then converts them to
G.722.

scripts

The scripts folder is where all the magic happens. These are the scripts that the Asterisk open
source team use to build the packaged audio files for the various formats that are distributed with
Asterisk.

chkcore - used to check that the contents of core-sounds-lang.txt are in sync
chkextra - same as above, but checks the extra sound files

mkcore - script used to generate the core sounds packages

mkextra - script used to generate the extra sounds packages

mkmoh - script used to generate the music on hold packages

converters - script used to convert the master files to various formats

Call Completion Supplementary Services (CCSS)

Introduction

A new feature for Asterisk 1.8 is Call Completion Supplementary Services. This document aims
to explain the system and how to use it. In addition, this document examines some potential

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

troublesome points which administrators may come across during their deployment of the
feature.

What is CCSS?

Call Completion Supplementary Services (often abbreviated "CCSS" or simply "CC") allow for a
caller to let Asterisk automatically alert him when a called party has become available, given that
a previous call to that party failed for some reason. The two services offered are Call Completion
on Busy Subscriber (CCBS) and Call Completion on No Response (CCNR). To illustrate, let's
say that Alice attempts to call Bob. Bob is currently on a phone call with Carol, though, so Alice
hears a busy signal. In this situation, assuming that Asterisk has been configured to allow for
such activity, Alice would be able to request CCBS. Once Bob has finished his phone call, Alice
will be alerted. Alice can then attempt to call Bob again.

CCSS Glossary

In this document, we will use some terms which may require clarification. Most of these terms are
specific to Asterisk, and are by no means standard.

® CCBS: Call Completion on Busy Subscriber. When a call fails because the recipient's phone is busy, the caller will have the opportunity
to request CCBS. When the recipient's phone is no longer busy, the caller will be alerted. The means by which the caller is alerted is
dependent upon the type of agent used by the caller.

® CCNR: Call Completion on No Response. When a call fails because the recipient does not answer the phone, the caller will have the
opportun- ity to request CCNR. When the recipient's phone becomes busy and then is no longer busy, the caller will be alerted. The
means by which the caller is alerted is dependent upon the type of the agent used by the caller.

® Agent: The agent is the entity within Asterisk that communicates with and acts on behalf of the calling party.
® Monitor: The monitor is the entity within Asterisk that communicates with and monitors the status of the called party.

® Generic Agent: A generic agent is an agent that uses protocol-agnostic methods to communicate with the caller. Generic agents should
only be used for phones, and never should be used for "trunks."

® Generic Monitor: A generic monitor is a monitor that uses protocol- agnostic methods to monitor the status of the called party. Like with
generic agents, generic monitors should only be used for phones.

® Native Agent: The opposite of a generic agent. A native agent uses protocol-specific messages to communicate with the calling party.
Native agents may be used for both phones and trunks, but it must be known ahead of time that the device with which Asterisk is
communica- ting supports the necessary signaling.

* Native Monitor: The opposite of a generic monitor. A native monitor uses protocol-specific messages to subscribe to and receive notifica-
tion of the status of the called party. Native monitors may be used for both phones and trunks, but it must be known ahead of time that
the device with which Asterisk is communicating supports the necessary signaling.

® Offer: An offer of CC refers to the notification received by the caller that he may request CC.

® Request: When the caller decides that he would like to subscribe to CC, he will make a request for CC. Furthermore, the term may refer
to any outstanding requests made by callers.

® Recall: When the caller attempts to call the recipient after being alerted that the recipient is available, this action is referred to as a
"recall.”

The Call Completion Process

The Initial Call

The only requirement for the use of CC is to configure an agent for the caller and a monitor for at

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

least one recipient of the call. This is controlled using the cc_agent_policy for the caller and the
cc_monitor_policy for the recipient. For more information about these configuration settings, see
configs/samples/ccss.conf.sample. If the agent for the caller is set to something other than
"never" and at least one recipient has his monitor set to something other than "never," then CC
will be offered to the caller at the end of the call.

Once the initial call has been hung up, the configured cc_offer_timer for the caller will be started.
If the caller wishes to request CC for the previous call, he must do so before the timer expires.

Requesting CC
Requesting CC is done differently depending on the type of agent the caller is using.

With generic agents, the CallCompletionRequest application must be called in order to request
CC. There are two different ways in which this may be called. It may either be called before the
caller hangs up during the initial call, or the caller may hang up from the initial call and dial an
extension which calls the CallCompletionRequest application. If the second method is used, then
the caller will have until the cc_offer_timer expires to request CC.

With native agents, the method for requesting CC is dependent upon the technology being used,
coupled with the make of equipment. It may be possible to request CC using a programmable
key on a phone or by clicking a button on a console. If you are using equipment which can
natively support CC but do not know the means by which to request it, then contact the
equipment manufacturer for more information.

Cancelling CC

CC may be canceled after it has been requested. The method by which this is accomplished
differs based on the type of agent the calling party uses.

When using a generic agent, the dialplan application CallRequestCancel is used to cancel CC.
When using a native monitor, the method by which CC is cancelled depends on the protocol
used. Likely, this will be done using a button on a phone.

Keep in mind that if CC is cancelled, it cannot be un-cancelled.

Monitoring the Called Party

Once the caller has requested CC, then Asterisk’s job is to monitor the progress of the called
parties. It is at this point that Asterisk allocates the necessary resources to monitor the called
parties.

A generic monitor uses Asterisk's device state subsystem in order to determine when the called
party has become available. For both CCBS and CCNR, Asterisk simply waits for the phone's
state to change to a "not in use" state from a different state. Once this happens, then Asterisk will
consider the called party to be available and will alert the caller.

A native monitor relies on the network to send a protocol-specific message when the called party

has become available. When Asterisk receives such a message, it will consider the called party
to be available and will alert the caller.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Note that since a single caller may dial multiple parties, a monitor is used for each called party. It
is within reason that different called parties will use different types of monitors for the same CC
request.

Alerting the Caller

Once Asterisk has determined that the called party has become available the time comes for
Asterisk to alert the caller that the called party has become available. The method by which this
is done differs based on the type of agent in use.

If a generic agent is used, then Asterisk will originate a call to the calling party. Upon answering
the call, if a callback macro has been configured, then that macro will be executed on the calling
party's channel. After the macro has completed, an outbound call will be issued to the parties
involved in the original call.

If a native agent is used, then Asterisk will send an appropriate notification message to the
calling party to alert it that it may now attempt its recall. How this is presented to the caller is
dependent upon the protocol and equipment that the caller is using. It is possible that the calling
party's phone will ring and a recall will be triggered upon answering the phone, or it may be that
the user has a specific button that he may press to initiate a recall.

If the Caller is unavailable

When the called party has become available, it is possible that when Asterisk attempts to alert
the calling party of the called party's availability, the calling party itself will have become
unavailable. If this is the case, then Asterisk will suspend monitoring of the called party and will
instead monitor the availability of the calling party. The monitoring procedure for the calling party
is the same as is used in the section "Monitoring the Called Party." In other words, the method by
which the calling party is monitored is dependent upon the type of agent used by the caller.

Once Asterisk has determined that the calling party has become available again, Asterisk will
then move back to the process used in the section "Monitoring the Called Party."

The CC recall

The calling party will make its recall to the same extension that was dialed. Asterisk will provide a
channel variable, CC_INTERFACES, to be used as an argument to the Dial application for CC
recalls. It is strongly recommended that you use this channel variable during a CC recall. Listed
are two reasons:

1. The dialplan may be written in such a way that the dialed destintations are dynamically generated. With such a dialplan, it cannot be
guaranteed that the same interfaces will be recalled.

2. For calling destinations with native CC monitors, it may be necessary to dial a special string in order to notify the channel driver that the
number being dialed is actually part of a CC recall.

1 Even if your call gets routed through local channels, the CC_INTERFACES variable will be populated with the appropriate
values for that specific extension.

When the called parties are dialed, it is expected that a called party will answer, since Asterisk
had previously determined that the party was available. However, it is possible that the called
party may choose not to respond to the call, or he could have become busy again. In such a

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

situation, the calling party must re-request CC if he wishes to still be alerted when the calling
party has become available.

Call Completion Info and Tips

® Be aware when using a generic agent that the max_cc_agents configuration parameter is ignored. The main driving reason for this is that
the mechanism for cancelling CC when using a generic agent would become much more potentially confusing to execute. By limiting a
calling party to having a single request, there is only ever a single request to be cancelled, making the process simple.

® Keep in mind that no matter what CC agent type is being used, a CC request can only be made for the latest call issued.

® |f available timers are running on multiple called parties, it is possible that one of the timers may expire before the others do. If such a
situation occurs, then the interface on which the timer expired will cease to be monitored. If, though, one of the other called parties
becomes available before his available timer expires, the called party whose available timer had previously expired will still be included in
the CC_INTERFACES channel variable on the recall.

® |tis strongly recommended that lots of thought is placed into the settings of the CC timers. Our general recommendation is that timers for
phones should be set shorter than those for trunks. The reason for this is that it makes it less likely for a link in the middle of a network to
cause CC to fail.

® CC can potentially be a memory hog if used irresponsibly. The following are recommendations to help curb the amount of resources
required by the CC engine. First, limit the maximum number of CC requests in the system using the cc_max_requests option in
ccss.conf. Second, set the cc_offer_timer low for your callers. Since it is likely that most calls will not result in a CC request, it is a good
idea to set this value to something low so that information for calls does not stick around in memory for long. The final thing that can be
done is to conditionally set the cc_agent_policy to "never" using the CALLCOMPLETION dialplan function. By doing this, no CC
information will be kept around after the call completes.

® ltis possible to request CCNR on answered calls. The reason for this is that it is impossible to know whether a call that is answered has
actually been answered by a person or by something such as voicemail or some other IVR.

® Not all channel drivers have had the ability to set CC config parameters in their configuration files added yet. At the time of this writing
(2009 Oct), only chan_sip has had this ability added, with short-term plans to add this to chan_dahdi as well. It is possible to set CC
configuration parameters for other channel types, though. For these channel types, the setting of the parameters can only be
accomplished using the CALLCOMPLETION dialplan function.

® |tis documented in many places that generic agents and monitors can only be used for phones. In most cases, however, Asterisk has no
way of distinguishing between a phone and a trunk itself. The result is that Asterisk will happily let you violate the advice given and allow
you to set up a trunk with a generic monitor or agent. While this will not cause anything catastrophic to occur, the behavior will most
definitely not be what you want.

® At the time of this writing (2009 Oct), Asterisk is the only known SIP stack to write an implementation of draft-ietf-bliss-call-completion-04.
As a result, it is recommended that for your SIP phones, use a generic agent and monitor. For SIP trunks, you will only be able to use CC
if the other end is terminated by another Asterisk server running version 1.8 or later.

® Native SIP CC will only work if the xml2 development library is installed. This is because we use libxmlI2 in order to parse PIDF bodies of
PUBLISH messages received. If, at configure time, Asterisk cannot detect that the necessary library is installed, then native CC in SIP will
be disabled. Attempts to set a channel or SIP peer to use native CC will be changed to having CC being disabled instead.

® |f the Dial application is called multiple times by a single extension, CC will only be offered to the caller for the parties called by the first
instantiation of Dial.

® |f a phone forwards a call, then CC may only be requested for the phone that executed the call forward. CC may not be requested for the
phone to which the call was forwarded.

® CCis currently only supported by the Dial application. Queue, Followme, and Page do not support CC because it is not particularly useful
for those applications.

® Generic CC relies heavily on accurate device state reporting. In particular, when using SIP phones it is vital to be sure
that device state is updated properly when using them. In order to facilitate proper device state handling, be sure to set

callcounter=yes for all peers and to set limitonpeers=yes in the general section of sip.conf

® When using SIP CC (i.e. native CC over SIP), it is important that your minexpiry and maxexpiry values allow for available timers to run as
little or as long as they are configured. When an Asterisk server requests call completion over SIP, it sends a SUBSCRIBE message with
an Expires header set to the number of seconds that the available timer should run. If the Asterisk server that receives this SUBSCRIBE
has a maxexpiry set lower than what is in the received Expires header, then the available timer will only run for maxexpiry seconds.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

® CC support for ETSI PTP and Q.SIG requires CallerID information to match CC requests with CC offers. For Q.SIG, depending upon the
options negotiated when CC is requested, the CallerID information needs to be callable as well.

® As with all Asterisk components, CC is not perfect. If you should find a bug or wish to enhance the feature, please open an issue on
https://issues.asterisk.org. If writing an enhancement, please be sure to include a patch for the enhancement, or else the issue will be
closed.

Generic Call Completion Example

The following is an incredibly bare-bones example sip.conf and dialplan to show basic usage of
generic call completion. It is likely that if you have a more complex setup, you will need to make
use of items like the CALLCOMPLETION dialplan function or the CC_INTERFACES channel
variable.

First, let's establish a very simple sip.conf to use for this

sip.conf

[Mar K]

cont ext =phone_cal | s

cc_agent _policy=generic

cc_nonitor_policy=generic ;W wll accept defaults for the rest of
the cc paraneters

;W al so are not concerned with other SIP details for this

; exanpl e

[R chard]

cont ext =phone_cal | s
cc_agent _policy=generic
cc_nonitor_policy=generic

Now, let's write a simple dialplan

extensions.conf

[phone_cal | s]

exten => 1000, 1, Di al (SI P/ Mar k, 20)
exten => 1000, n, Hangup

exten => 2000, 1, Di al (SI P/ Ri chard, 20)
exten => 2000, n, Hangup

exten => 30, 1, Cal | Conpl eti onRequest
exten => 30, n, Hangup

exten => 31, 1, Cal | Conpl eti onCancel
exten => 31, n, Hangup

Scenario 1: Mark picks up his phone and dials Richard by dialing 2000. Richard is currently on a
call, so Mark hears a busy signal. Mark then hangs up, picks up the phone and dials 30 to call
the CallCompletionRequest application. After some time, Richard finishes his call and hangs up.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://issues.asterisk.org

Mark is automatically called back by Asterisk. When Mark picks up his phone, Asterisk will dial
extension 2000 for him.

Scenario 2: Richard picks up his phone and dials Mark by dialing 1000. Mark has stepped away
from his desk, and so he is unable to answer the phone within the 20 second dial timeout.
Richard hangs up, picks the phone back up and then dials 30 to request call completion. Mark
gets back to his desk and dials somebody's number. When Mark finishes the call, Asterisk
detects that Mark's phone has had some activity and has become available again and rings
Richard's phone. Once Richard picks up, Asterisk automatically dials exteision 1000 for him.

Scenario 3: Much like scenario 1, Mark calls Richard and Richard is busy. Mark hangs up, picks
the phone back up and then dials 30 to request call completion. After a little while, Mark realizes
he doesn't actually need to talk to Richard, so he dials 31 to cancel call completion. When
Richard becomes free, Mark will not automatically be redialed by Asterisk.

Scenario 4: Richard calls Mark, but Mark is busy. About thirty seconds later, Richard decides
that he should perhaps request call completion. However, since Richard's phone has the default
cc_offer_timer of 20 seconds, he has run out of time to request call completion. He instead must
attempt to dial Mark again manually. If Mark is still busy, Richard can attempt to request call
completion on this second call instead.

Scenario 5: Mark calls Richard, and Richard is busy. Mark requests call completion. Richard
does not finish his current call for another 2 hours (7200 seconds). Since Mark has the default
ccbs_available_timer of 4800 seconds set, Mark will not be automatically recalled by Asterisk
when Richard finishes his call.

Scenario 6: Mark calls Richard, and Richard does not respond within the 20 second dial timeout.
Mark requests call completion. Richard does not use his phone again for another 4 hours
(144000 seconds). Since Mark has the default ccnr_available_timer of 7200 seconds set, Mark
will not be automatically recalled by Asterisk when Richard finishes his call.

Call Detail Records (CDR)
Top-level page for all things CDR

CDR Applications

SetAccount - Set account code for billing

SetAMAFlags - Sets AMA flags

NoCDR - Make sure no CDR is saved for a specific call
ResetCDR - Reset CDR

ForkCDR - Save current CDR and start a new CDR for this call
Authenticate - Authenticates and sets the account code
SetCDRUSserField - Set CDR user field

AppendCDRUserField - Append data to CDR User field

For more information, use the "core show application application” command. You can set default
account codes and AMA flags for devices in channel configuration files, like sip.conf, iax.conf etc.

CDR Fields

® accountcode: What account number to use, (string, 20 characters)
® src: Caller*ID number (string, 80 characters)

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

dst: Destination extension (string, 80 characters)

dcontext: Destination context (string, 80 characters)

clid: Caller*ID with text (80 characters)

channel: Channel used (80 characters)

dstchannel: Destination channel if appropriate (80 characters)

lastapp: Last application if appropriate (80 characters)

lastdata: Last application data (arguments) (80 characters)

start: Start of call (date/time)

answer: Answer of call (date/time)

end: End of call (date/time)

duration: Total time in system, in seconds (integer), from dial to hangup
billsec: Total time call is up, in seconds (integer), from answer to hangup
disposition: What happened to the call: ANSWERED, NO ANSWER, BUSY
amaflags: What flags to use: DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
user field: A user-defined field, maximum 255 characters

In some cases, uniqueid is appended:

® uniqueid: Unique Channel Identifier (32 characters) This needs to be enabled in the source code at compile time

r. If you use IAX2 channels for your calls, and allow 'full’ transfers (not media-only transfers), then when the calls is transferred the
server in the middle will no longer be involved in the signaling path, and thus will not generate accurate CDRs for that call. If you
can, use media-only transfers with IAX2 to avoid this problem, or turn off transfers completely (although this can result in a
media latency increase since the media packets have to traverse the middle server(s) in the call).

CDR Variables

If the channel has a CDR, that CDR has its own set of variables which can be accessed just like
channel variables. The following builtin variables are available.

${CDR(clid)} Caller ID

${CDR(src)} Source

${CDR(dst)} Destination

${CDR(dcontext)} Destination context

${CDR(channel)} Channel name

${CDR(dstchannel)} Destination channel

${CDR(lastapp)} Last app executed

${CDR(lastdata)} Last app's arguments

${CDR(start)} Time the call started.

${CDR(answer)} Time the call was answered.
${CDR(end)} Time the call ended.

${CDR(duration)} Duration of the call.

${CDR(billsec)} Duration of the call once it was answered.
${CDR(disposition)} ANSWERED, NO ANSWER, BUSY
${CDR(amaflags)} DOCUMENTATION, BILL, IGNORE etc
${CDR(accountcode)} The channel's account code.
${CDR(uniqueid)} The channel's unique id.
${CDR(userfield)} The channels uses specified field.

In addition, you can set your own extra variables by using Set(CDR(name)=value). These
variables can be output into a text-format CDR by using the cdr_custom CDR driver; see the
cdr_custom.conf.sample file in the configs directory for an example of how to do this.

CDR Storage Backends

Top-level page for information about storage backends for Asterisk's CDR engine.

MSSQL CDR Backend

sterisk can currently store CDRs into an MSSQL database in two different ways: cdr_odbc or
cdr_tds

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Call Data Records can be stored using unixODBC (which requires the FreeTDS package)
[cdr_odbc] or directly by using just the FreeTDS package [cdr_tds] The following provide some
examples known to get asterisk working with mssq|.

5 Only choose one db connector.

ODBC using cdr_odbc
Compile, configure, and install the latest unixODBC package:

tar -zxvf unixODBC-2.2.9.tar.gz && cd uni xODBC-2.2.9 && ./configure
--sysconfdir=/etc --prefix=/usr --disable-gui && rmake && nake
i nstall

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz && cd freetds-0.62.4 & & ./configure
--prefix=/usr --with-tdsver=7.0 \ --w th-unixodbc=/usr/lib && make
&& make install

Compile, or recompile, asterisk so that it will now add support for cdr_odbc.

meke clean &% ./configure --wth-odbc & nmake update && make && nake
i nstall

Setup odbc configuration files.

These are working examples from my system. You will need to modify for your setup. You are
not required to store usernames or passwords here.

/etc/odbcinst.ini

[Fr eeTDS]

Description = FreeTDS ODBC driver for MSSQL
Driver = /usr/lib/libtdsodbc. so

Setup = /usr/lib/libtdsS. so

FileUsage = 1

/etc/odbc.ini

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[MSSQL- ast eri sk]

description = Asteri sk ODBC for MSSQL
driver = FreeTDS

server = 192.168.1.25

port = 1433

dat abase = voi pdb

tds_version = 7.0

| anguage = us_engli sh

it Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This
command will erase the contents of cdr_tds.conf

[-f /etc/asterisk/cdr_tds.conf] > /etc/asterisk/cdr_tds. conf

', unixODBC requires the freeTDS package, but asterisk does not call freeTDS directly.

=

Now set up cdr_odbc configuration files.

These are working samples from my system. You will need to modify for your setup. Define your
usernames and passwords here, secure file as well.

letc/asterisk/cdr_odbc.conf

[gl obal]
dsn=MSSQL- ast eri sk
user nane=voi pdbuser
passwor d=voi pdbpass
| oguni quei d=yes

And finally, create the 'cdr' table in your mssql database.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CREATE TABLE cdr (
[calldate] [datetinme] NOT NULL ,
[clid] [varchar] (80) NOT NULL ,
[src] [varchar] (80) NOT NULL |,
[dst] [varchar] (80) NOT NULL |,
[dcontext] [varchar] (80) NOT NULL ,
[channel] [varchar] (80) NOT NULL ,
[dstchannel] [varchar] (80) NOT NULL ,
[lastapp] [varchar] (80) NOT NULL ,
[lastdata] [varchar] (80) NOT NULL |,
[duration] [int] NOT NULL ,
[billsec] [int] NOT NULL ,
[di sposition] [varchar] (45) NOT NULL ,
[amafl ags] [int] NOT NULL ,
[account code] [varchar] (20) NOT NULL ,
[uni queid] [varchar] (150) NOT NULL ,
[userfield] [varchar] (255) NOT NULL

)

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to
the database when it's complete.

TDS, using cdr_tds

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz && cd freetds-0.62.4 && ./configure
--prefix=/usr --with-tdsver=7.0 make && meke install

Compile, or recompile, asterisk so that it will now add support for cdr_tds.

make clean && ./configure --with-tds &% nmake update && nake && make
i nstall

Only install one database connector. Do not confuse asterisk by using both ODBC (cdr_odbc) and FreeTDS (cdr_tds). This
command will erase the contents of cdr_odbc.conf

[-f /etc/asterisk/cdr_odbc.conf] > /etc/asterisk/cdr_odbc. conf

Setup cdr_tds configuration files.

These are working samples from my system. You will need to modify for your setup. Define your
usernames and passwords here, secure file as well.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

/etc/asterisk/cdr_tds.conf [global] hostnane=192.168.1.25 port=1433
dbnanme=voi pdb user =voi pdbuser passwor d=voi pdpass char set =Bl G5

And finally, create the 'cdr' table in your mssql database.

CREATE TABLE cdr (
[account code] [varchar] (20) NULL
[src] [varchar] (80) NULL ,
[dst] [varchar] (80) NULL
[dcontext] [varchar] (80) NULL
[clid] [varchar] (80) NULL ,
[channel] [varchar] (80) NULL
[dstchannel] [varchar] (80) NULL ,
[lastapp] [varchar] (80) NULL
[lastdata] [varchar] (80) NULL
[start] [datetinme] NULL
[answer] [datetinme] NULL ,
[end] [datetine] NULL ,
[duration] [int] NULL ,
[billsec] [int] NULL ,
[disposition] [varchar] (20) NULL
[amafl ags] [varchar] (16) NULL ,
[uni queid] [varchar] (150) NULL
[userfield] [varchar] (256) NULL

)

Start asterisk in verbose mode.

You should see that asterisk logs a connection to the database and will now record every call to
the database when it's complete.

MySQL CDR Backend
OoDBC

Using MySQL for CDR records is supported by using ODBC and the cdr_odbc module.
Native
Alternatively, there is a native MySQL CDR module.

To use it, configure the module in cdr_mysql.conf. Create a table called cdr under the database
name you will be using the following schema.

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CREATE TABLE cdr (
call date datetime NOT NULL default '0000-00-00 00:00: 00",
clid varchar(80) NOT NULL default "',
src varchar (80) NOT NULL default "',
dst varchar(80) NOT NULL default "',
dcontext varchar(80) NOT NULL default "',
channel varchar(80) NOT NULL default "',
dst channel varchar(80) NOT NULL default "',
| ast app varchar(80) NOT NULL default "',
| astdata varchar (80) NOT NULL default "',
duration int(11) NOT NULL default 'O,
billsec int(11) NOT NULL default "0',
di sposition varchar(45) NOT NULL default '',
amafl ags int(11) NOT NULL default 'O,
account code varchar(20) NOT NULL default "',
uni quei d varchar(32) NOT NULL default "',
userfield varchar(255) NOT NULL default "'

)

PostgreSQL CDR Backend

If you want to go directly to postgresgl database, and have the cdr_pgsql.so compiled you can
use the following sample setup. On Debian, before compiling asterisk, just install libpgxx-dev.
Other distros will likely have a similiar package.

Once you have the compile done, copy the sample cdr_pgsql.conf file or create your own.

Here is a sample:

letc/asterisk/cdr_pgsql.conf

; Sanple Asterisk config file for CDR | oggi ng to PostgresSQ
[gl obal]

host nane=I| ocal host

port =5432

dbnanme=ast eri sk

passwor d=passwor d

user =post gres

t abl e=cdr

Now create a table in postgresql for your cdrs

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

CREATE TABLE cdr (
cal l date tinmestanp NOT NULL |,
clid varchar (80) NOT NULL ,
src varchar (80) NOT NULL ,
dst varchar (80) NOT NULL |,
dcontext varchar (80) NOT NULL ,
channel varchar (80) NOT NULL ,
dst channel varchar (80) NOT NULL ,
| astapp varchar (80) NOT NULL |,
| astdata varchar (80) NOT NULL ,
duration int NOT NULL ,
billsec int NOT NULL ,
di sposition varchar (45) NOT NULL ,
amafl ags int NOT NULL ,
account code varchar (20) NOT NULL |,
uni quei d varchar (150) NOT NULL |,
userfield varchar (255) NOT' NULL

);
SQLite 2 CDR Backend
SQLite version 2 is supported in cdr_sqlite.
SQLite 3 CDR Backend

SQLite version 3 is supported in cdr_sqlite3_custom.

RADIUS CDR Backend

What is needed

®* FreeRADIUS server
® Radiusclient-ng library
® Asterisk PBX

Installation of the Radiusclient library

Download the sources
From http://developer.berlios.de/projects/radiusclient-ng/

Untar the source tarball:

root @ ocal host:/usr/local/src# tar xvfz radiusclient-ng-0.5.2.tar.gz

Compile and install the library:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://developer.berlios.de/projects/radiusclient-ng/

root @ ocal host:/usr/local/src# cd radiusclient-ng-0.5.2

root @ocal host:/usr/local/src/radiusclient-ng-0.5.2#./configure
root @ ocal host:/usr/local /src/radiusclient-ng-0.5.2# nmake

root @ ocal host:/usr/local/src/radiusclient-ng-0.5.2# nake install

Configuration of the Radiusclient library

By default all the configuration files of the radiusclient library will be in
lusr/local/etc/radiusclient-ng directory.

File "radiusclient.conf" Open the file and find lines containing the following:

aut hserver | ocal host

This is the hostname or IP address of the RADIUS server used for authentication. You will have
to change this unless the server is running on the same host as your Asterisk PBX.

acctserver | ocal host

This is the hostname or IP address of the RADIUS server used for accounting. You will have to
change this unless the server is running on the same host as your Asterisk PBX.

File "servers"

RADIUS protocol uses simple access control mechanism based on shared secrets that allows
RADIUS servers to limit access from RADIUS clients.

A RADIUS server is configured with a secret string and only RADIUS clients that have the same
secret will be accepted.

You need to configure a shared secret for each server you have configured in radiusclient.conf
file in the previous step. The shared secrets are stored in /usr/local/etc/radiusclient-ng/servers
file.

Each line contains hostname of a RADIUS server and shared secret used in communication with

that server. The two values are separated by white spaces. Configure shared secrets for every
RADIUS server you are going to use.

File "dictionary"

Asterisk uses some attributes that are not included in the dictionary of radiusclient library,
therefore it is necessary to add them. A file called dictionary.digium (kept in the contrib dir) was
created to list all new attributes used by Asterisk. Add to the end of the main dictionary

file /usr/local/etc/radiusclient-ng/dictionary the line:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

$I NCLUDE / pat h/to/ di ctionary. di gi um

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:
http://freeradius.org/

Untar, configure, build, and install the server:

root @ ocal host:/usr/local/src# tar xvfz freeradius-1.1.1.tar.gz
root @ocal host:/usr/local/src# cd freeradius-1.1.1

root @ocal host"/usr/local/src/freeradius-1.1.1# ./configure
root @ocal host"/usr/local/src/freeradius-1.1. 1# nake

root @ocal host"/usr/local/src/freeradius-1.1.1# nmake install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb directory.
Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS server. These are
presented next.

File "clients.conf"
File /usr/local/etc/raddb/clients.conf contains description of RADIUS clients that are allowed to
use the server. For each of the clients you need to specify its hostname or IP address and also a

shared secret. The shared secret must be the same string you configured in radiusclient library.

Example:

client nmyhost { secret = nysecret shortnane = foo }

This fragment allows access from RADIUS clients on "myhost” if they use "mysecret” as the
shared secret. The file already contains an entry for localhost (127.0.0.1), so if you are running
the RADIUS server on the same host as your Asterisk server, then modify the existing entry
instead, replacing the default password.

File "dictionary”

5 As of version 1.1.2, the dictionary.digium file ships with FreeRADIUS.

The following procedure brings the dictionary.digium file to previous versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRADIUS server. You have to
add the same dictionary file (dictionary.digium), which you added to the dictionary of

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

http://freeradius.org/

radiusclient-ng library. You can include it into the main file, adding the following line at the end of
file /usr/local/etc/raddb/dictionary:

$I NCLUDE / pat h/to/ dictionary. digium

That will include the same new attribute definitions that are used in radiusclient-ng library so the
client and server will understand each other.

Asterisk Accounting Configuration

Compilation and installation:

The module will be compiled as long as the radiusclient-ng library has been detected on your
system.

By default FreeRADIUS server will log all accounting requests into
lusr/local/var/log/radius/radacct directory in form of plain text files. The server will create one file
for each hostname in the directory. The following example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/cdr.h for all the fields which
are recorded. By default, records in comma separated values will be created in
Ivar/log/asterisk/cdr-csv.

The configuration file for cdr_radius.so module is /etc/asterisk/cdr.conf

This is where you can set CDR related parameters as well as the path to the radiusclient-ng
library configuration file.

Logged Values

"Asterisk-Acc-Code", The account name of detail records

"Asterisk-Src",

"Asterisk-Dst",

"Asterisk-Dst-Ctx", The destination context

"Asterisk-Clid",

"Asterisk-Chan", The channel

"Asterisk-Dst-Chan", (if applicable)

"Asterisk-Last-App", Last application run on the channel

"Asterisk-Last-Data", Argument to the last channel

"Asterisk-Start-Time",

"Asterisk-Answer-Time",

"Asterisk-End-Time",

"Asterisk-Duration”, Duration is the whole length that the entire call lasted. ie. call rx'd to hangup "end time" minus "start time"
"Asterisk-Bill-Sec", The duration that a call was up after other end answered which will be <= to duration "end time" minus "answer time"
"Asterisk-Disposition”, ANSWERED, NO ANSWER, BUSY

"Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on a per channel basis like accountcode.
"Asterisk-Unique-ID", Unique call identifier

"Asterisk-User-Field" User field set via SetCDRUserField

Calling using Google
Prerequisites

Asterisk communicates with Google Voice and Google Talk using the chan_gtalk Channel Driver
and the res_jabber Resource module. Before proceeding, please ensure that both are compiled
and part of your installation. Compilation of res_jabber and chan_gtalk for use with Google Talk /

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Voice are dependant on the iksemel library files as well as the OpenSSL development libraries
presence on your system.

Calling using Google Voice or via the Google Talk web client requires the use of Asterisk 1.8.1.1
or greater. The 1.6.x versions of Asterisk only support calls made using the legacy GoogleTalk
external client.

For basic calling between Google Talk web clients, you need a Google Mail account.
For calling to and from the PSTN, you will need a Google Voice account.

In your Google account, you'll want to change the Chat setting from the default of "Automatically
allow people that | communicate with often to chat with me and see when I'm online" to the
second option of "Only allow people that I've explicitly approved to chat with me and see when
I'm online.”

IPVv6 is currently not supported. Use of IPv4 is required.
Google Voice can now be used with Google Apps accounts.
Gtalk configuration

The chan_gtalk Channel Driver is configured with the gtalk.conf configuration file, typically
located in /etc/asterisk. What follows is the minimum required configuration for successful
operation.

Minimum Gtalk Configuration

[general]

cont ext =l ocal

al | owguest s=yes

bi ndaddr =0.0.0.0

ext er ni p=216. 208. 246. 1

[guest]

di sal | ow=al |

al | onw=ul aw
cont ext =l ocal
connecti on=ast eri sk

This general section of this configuration specifies several items.

. That calls will terminate to or originate from the local context; context=local

. That guest calls are allowd; allowguests=yes

. That RTP sessions will be bound to a local address (an IPv4 address must be present); bindaddr=0.0.0.0
. (optional) That your external (the one outside of your NAT) IP address is defined; externip=216.208.246.1

A WNBE

The guest section of this configuration specifies several items.

1. That no codecs are allowed; disallow=all
2. That the ulaw codec is explicitly allowed; allow=ulaw

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

3. That calls received by the guest user will be terminated into the local context; context=local
4. That the Jabber connection used for guest calls is called "asterisk;" connection=asterisk

Jabber Configuration

The res_jabber Resource is configured with the jabber.conf configuration file, typically located in
letc/asterisk. What follows is the minimum required configuration for successful operation.

Minimum Jabber Configuration

[general]
aut or egi st er=yes

[asteri sk]

type=cli ent

server host =t al k. googl e. com

user name=your _googl e_user nane@nai | . coni Tal k
secr et =your _googl e_password

port =5222

uset | s=yes

usesasl| =yes

st at usnessage="1 am an Asterisk Server"

ti meout =100

The general section of this configuration specifies several items.

1. Debug mode is enabled, so that XMPP messages can be seen on the Asterisk CLI; debug=yes
2. Automated buddy pruning is disabled, otherwise buddies will be automatically removed from your list; autoprune=no
3. Automated registration of users from the buddy list is enabled; autoregister=yes

The asterisk section of this configuration specifies several items.

. The type is set to client, as we're connecting to Google as a service; type=client

. The serverhost is Google's talk server; serverhost=talk.google.com

. Our username is configured as your_google_username@gmail.com/resource, where our resource is "Talk;"
username=your_google_username@gmail.com/Talk

. Our password is configured using the secret option; secret=your_google_password

. Google's talk service operates on port 5222; port=5222

. TLS encryption is required by Google; usetls=yes

. Simple Authentication and Security Layer (SASL) is used by Google; usesasl=yes

We set a status message so other Google chat users can see that we're an Asterisk server; statusmessage="l am an Asterisk Server"

. We set a timeout for receiving message from Google that allows for plenty of time in the event of network delay; timeout=100

wWN

©o~No U N

Phone configuration

Now, let's place a phone into the same context as the Google calls. The configuration of a SIP
device for this purpose would, in sip.conf, typically located in /etc/asterisk, look something like:

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

[mal col nj

t ype=peer
secret=ny_secure_password
host =dynami c

cont ext =l ocal

Dialplan configuration

Incoming calls

Next, let's configure our dialplan to receive an incoming call from Google and route it to the SIP
phone we created. To do this, our dialplan, extensions.conf, typically located in /etc/asterisk,
would look like:

exten => s, 1, Answer ()

exten => s, n, Wi t(2)

exten => s, n, SendDTMF(1)

exten => s, n, D al (SI P/ mal col m 20)

1 Note that you might have to adjust the "Wait" time from 2 (in seconds) to something larger, like 8, depending on the current
mood of Google. Otherwise, your incoming calls might not be successfully picked up.

This example uses the "s" unmatched extension, because Google does not forward any DID
when it sends the call to Asterisk.

In this example, we're Answering the call, Waiting 2 seconds, sending the DTMF "1" back to
Google, and then dialing the call.

We do this, because inbound calls from Google enable, even if it's disabled in your Google Voice
control panel, call screening.

Without this SendDTMF event, you'll have to confirm with Google whether or not you want to
answer the call.

& Using Google's voicemail
Another method for accomplishing the sending of the DTMF event is to use the D dial option. The D option tells Asterisk to send
a specified DTMF string after the called party has answered. DTMF events specified before a colon are sent to the called party.
DTMF events specified after a colon are sent to the calling party.

In this example then, one does not need to actually answer the call first. This means
that if the called party doesn't answer, Google will resort to sending the call to one's
Google Voice voicemail box, instead of leaving it at Asterisk.

exten => s, 1,D al (SI P/ mal col m 20, D(:1))

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

i Filtering Caller ID
The inbound CallerID from Google is going to look a bit nasty, e.g.:

+15555551212@oi ce. googl e. cont srvres- MTAuM EALj | uMrk3Q k4Mz M=

Your VolIP client (SIPDroid) might not like this, so let's simplify that Caller ID a bit,
and make it more presentable for your phone's display. Here's the example that we'll
step through:

exten
exten
exten
exten =>

, Set (crazygoogl eci d=${ CALLERI D(nan®) })

, Set (stripcrazysuffix=${CUT(crazygooglecid, @1)})
, Set (CALLERI D(al |) =${stripcrazysuffix})

,Dial (SIP/ mal col m20,D(:1))

o n

\%
w nu n on
5 3 3 K

First, we set a variable called crazygooglecid to be equal to the name field of the
CALLERID function. Next, we use the CUT function to grab everything that's before
the @ symbol, and save it in a new variable called stripcrazysuffix. We'll set this
new variable to the CALLERID that we're going to use for our Dial. Finally, we'll
actually Dial our internal destination.

Outgoing calls

Outgoing calls to Google Talk users take the form of:

exten => 100, 1, D al (gtal k/ asteri sk/ nybuddy@mai | . com

Where the technology is "gtalk," the dialing peer is "asterisk" as defined in jabber.conf, and the
dial string is the Google account name.

Outgoing calls made to Google Voice take the form of:

exten =>
_IXXXXXXXXXX, 1, Di al (gtal k/ asteri sk/ +${ EXTEN} @oi ce. googl e. con)

Where the technology is "gtalk," the dialing peer is "asterisk" as defined in jabber.conf, and the
dial string is a full E.164 number (plus character followed by country code, followed by the rest of
the digits).

Interactive Voice with Text Response (IVTR)

Because the Google Talk web client provides both audio and text interface, you can use it to
provide a text-based way of traversing Interactive Voice Response (IVR) menus. This is
necessary since the client does not have any DTMF inputs.

In the following dialplan example, we will answer the call, wait a bit, send some text that will show

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

up in the caller's Google Talk client, play back a prompt, capture the caller's text-based
response, and then dial the appropriate SIP device.

exten => s, 1, Answer ()

exten => s, n, SendText ("If you know the extension of the party you
wish to reach, dial it now")

exten => s, n, Background(i f-u-know ext-dial)

exten =>

s, n, Set (OPTI ON=${ JABBER _RECEI VE(ast eri sk, ${ CALLERI D(nane) : : 15}, 5)})
exten => s, n, Di al (SI P/ ${ OPTI ON}, 20)

Note that with the JABBER_RECEIVE function, we're receiving the text from asterisk which we
defined earlier in this page as our connection to Google. We're also specifying with
${CALLERID(name)::15} that we want to strip off the last 15 characters from the CallerID name
string - which is the number of characters that Google is appending, as of this writing, to
represent an internal call ID number, and that we want to wait 5 seconds for a response.

Webinar

A Webinar was conducted on Tuesday, March 24, 2011 detailing Asterisk configuration for
calling using Google as well as several usage cases. A copy of the slides, in PDF format, is
available here - Google Calling Webinar - Public.pdf

Channel Event Logging (CEL)
Top-level page for all things CEL
CEL Design Goals

CEL, or Channel Event Logging, has been written with the hopes that it will help solve some of
the problems that were difficult to address in CDR records. Some difficulties in CDR generation
are the fact that the CDR record stores three events: the "Start" time, the "Answer" time, and the
"End" time. Billing time is usually the difference between "Answer" and "End", and total call
duration was the difference in time from "Start" to "End". The trouble with this direct and simple
approach is the fact that calls can be transferred, put on hold, conferenced, forwarded, etc. In
general, those doing billing applications in Asterisk find they have to do all sorts of very creative
things to overcome the shortcomings of CDR records, often supplementing the CDR records with
AGI scripts and manager event filters.

The fundamental assumption is that the Channel is the fundamental communication object in
asterisk, which basically provides a communication channel between two communication ports. It
makes sense to have an event system aimed at recording important events on channels. Each
event is attached to a channel, like ANSWER or HANGUP. Some events are meant to connect
two or more channels, like the BRIDGE_START event. Some events, like BLINDTRANSFER,
are initiated by one channel, but affect two others. These events use the Peer field, like BRIDGE
would, to point to the target channel.

The design philosophy of CEL is to generate event data that can grouped together to form a

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

https://wiki.asterisk.org/wiki/download/attachments/5996698/Google+Calling+Webinar+-+Public.pdf?version=1&modificationDate=1300994576490

billing record. This may not be a simple task, but we hope to provide a few different examples
that could be used as a basis for those involved in this effort.

There are definite parallels between Manager events and CEL events, but there are some
differences. Some events that are generated by CEL are not generated by the Manager interface
(yet). CEL is optimized for databases, and Manager events are not. The focus of CEL is billing.
The Manager interface is targeted to real-time monitoring and control of asterisk.

To give the reader a feel for the complexities involved in billing, please take note of the following
sequence of events:

Remember that 150, 151, and 152 are all Zap extension numbers, and their respective devices
are Zap/50, Zap/51, and Zap/52.

152 dials 151; 151 answers. 152 parks 151; 152 hangs up. 150 picks up the park (dials 701). 150
and 151 converse. 151 flashes hook; dials 152, talks to 152, then 151 flashes hook again for
3-way conference. 151 converses with the other two for a while, then hangs up. 150 and 152
keep conversing, then hang up. 150 hangs up first.(not that it matters).

This sequence of actions will generate the following annotated list of 42 CEL events:

Note that the actual CEL events below are in CSV format and do not include the ;;; and text after
that which gives a description of what the event represents.

"EV_CHAN_START", "2007-05-0

12: 46: 16", "f xs. 52", "162", "", """, "", "s", "extensi on", " Zap/ 52-1","", """, "X
;. 152 takes the phone off-hook

"EV_APP_START", "2007- 05- 09

12: 46: 18", "fxs. 52", " 152", " 152", """ "" "151", "extensi on", "Zap/ 52-1","Di ¢
;75 152 finishes dialing 151

"EV_CHAN_START", "2007- 05- 09

12: 46: 18", "f xs. 51", "151", """, """, """, "s", "extensi on", " Zap/ 51-1","", """, "X
77, 151 channel created, starts ringing

(151 is ringing)

"EV_ANSVER', "2007- 05- 09

12: 46: 19", "", "151"," 152" " "" "151", "extensi on","Zap/ 51-1", " AppDi al ",
Li ne) ", " DOCUVENTATI ON', " ", "1178736378.4","","" ;:: 151 answers
"EV_ANSVER' , " 2007- 05- 09

12: 46: 19", "fxs. 52", " 152", " 152", "" "" "151" "extensi on","Zap/52-1", " Di ¢

;7 so does 152 (??7?)

"EV_BRI DGE_START", "2007- 05- 09

12: 46: 20", "fxs. 52", "152","152", ", """ "151", "ext ensi on", " Zap/ 52-1","Di
;73 152 and 151 are bridged

(151 and 152 are conversing)

"EV_BRI DGE_END", "2007- 05- 09

12: 46: 25", "fxs. 52", "152","152", " """, "151", "ext ensi on", " Zap/ 52-1","Di
;;; after 5 seconds, the bridge ends (152 dials #7007?)

[ah}

[ah}

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

"EV_BRI DGE_START", "2007- 05-09
12: 46: 25", "fxs. 52", "152","152","", """, "151", "ext ensi on", " Zap/ 52-1","Di ¢
;;, extraneous O-second bridge?

"EV_BRI DGE_END", "2007- 05- 09

12: 46: 25", "fxs. 52", " 152", "152","", """, "151", "ext ensi on", " Zap/ 52- 1", " D

(a}}

"EV_PARK START", "2007-05-09

12: 46: 27" ,"","151", "162", """, """, "", "extensi on", " Zap/51-1", " Par ked
CalI","", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151 is parked
"EV_HANGUP", " 2007- 05- 09

12: 46: 29", "fxs. 52", "152","152","", """, "h", "extensi on", " Zap/ 52-1","", "",
UM sy 152 hangs up 2 sec later

"EV_CHAN_END", "2007- 05- 09

12: 46: 29", "fxs. 52", "152","152","" """, "h", "extensi on", " Zap/52-1","" """,
;5 152's channel goes away

(151 is parked and listening to MOH now, 150 picks up, and dials

701)

"EV_CHAN_START", "2007- 05- 09

12: 47: 08", "fxs. 50", "150","","","", "s", "extension", " Zap/ 50-1","", """, "X
;73 150 picks up the phone, dials 701

"EV_PARK_END", "2007- 05- 09

12:47:11","", "151", "162" """ """, "", "extension", " Zap/51-1", " Par ked
CalI","", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151's park

cones to end

"EV_ANSVER', "2007- 05- 09

12:47:11","fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
77, 150 gets answer (twi ce)

"EV_ANSVER', "2007- 05- 09

12:47:12","fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par

"EV_BRI DGE_START", "2007- 05- 09

12:47:12","fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
;;, bridge begins between 150 and recently parked 151 (150 and 151
are conversing, then 151 hits flash)

"EV_CHAN_START", "2007- 05- 09

12:47: 51", "fxs. 51", "151", ", """, """, "s", "extensi on", " Zap/ 51-2","", """, "IX
;;: 39 seconds later, 51-2 channel is created. (151 flashes hook)

" EV_HOOKFLASH', "2007- 05- 09

12: 47:51","","151", "1562", """ """ "" "extension","Zap/51-1", " Bridged

Cal I ", " Zap/ 50- 1", " DOCUMENTATI ON', " ", "1178736378. 4", "", " Zap/ 51- 2" ;;

a marker to record that 151 flashed the hook

"EV_BRI DGE_END", "2007- 05- 09

12:47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
;;, bridge ends between 150 and 151

"EV_BRI DGE_START", "2007- 05- 09

12:47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

7,3 0-second bridge from 150 to ? 150 gets no sound at all

"EV_BRI DGE_END", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
"EV_BRI DGE_START", "2007- 05- 09

12: 47: 51", "fxs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
;. bridge start on 150

(151 has dialtone after hitting flash; dials 152)
"EV_APP_START", "2007- 05- 09

12: 47: 55", "fxs. 51", "151", "151","", """, K "162", "extensi on", " Zap/ 51- 2", "Di ¢
7, 151-2 dials 152 after 4 seconds

"EV_CHAN_START", "2007- 05- 09

12: 47: 55", "fxs. 52", "162","", """, "", "s", "extensi on", " Zap/ 52-1","","", "X
,"U,"" 5,y 152 channel created to ring 152.

(152 ringing)

"EV_ANSVER', "2007- 05- 09

12: 47:58","","152","151", """, "",K "152", "extensi on", " Zap/ 52- 1", " AppDi al "
Li ne) ", " DOCUMENTATI ON', "", " 1178736475.7","","" ;;; 3 seconds |ater

152 answers

"EV_ANSVER', "2007- 05- 09

12: 47:58","fxs. 51", "151", "151","", """, K "1562", "extensi on", " Zap/ 51- 2", "Di ¢
775 ... and 151-2 al so answers

"EV_BRI DGE_START", "2007- 05- 09

12: 47:59","fxs. 51", "151", "151","", "",K " 162", "extensi on", " Zap/ 51- 2", "Di ¢
;737 1 second |later, bridge formed betw. 151-2 and 151 (152 answers,
151 and 152 convering; 150 is listening to silence; 151 hits flash

again... to start a 3way)

"EV_3WAY_START", "2007- 05- 09

12: 48:58","","151","152", """ """, "" "extension","Zap/51-1", " Bri dged
Cal | ", " Zap/ 50- 1", " DOCUMENTATI ON', "","1178736378. 4" ,"", " Zap/ 51- 2" ;;

anot her hook-flash to begin a 3-way conference
"EV_BRI DGE_END', "2007- 05- 09

12: 48: 58", "f xs. 50", "150", " 150", "","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
77, - alnmost 1 mnute later, the bridge ends (151 flashes hook

agai n)

"EV_BRI DGE_START", "2007- 05- 09

12: 48: 58", "f xs. 50", "150", " 150", "","", " 701", "ext ensi on", " Zap/ 50- 1", " Par

;;; 0O-second bridge at 150. (3 way conf formed)

" EV_BRI DGE_END", " 2007- 05- 09

12: 48: 58", "fxs. 50", "150", " 150", "","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
"EV_BRI DGE_START", "2007- 05- 09

12: 48: 58", "fxs. 50", "150", "150","","", " 701", "ext ensi on", " Zap/ 50- 1", " Par
;;; bridge starts for 150

(3way now, then 151 hangs up.)

"EV_BRI DGE_END', "2007- 05- 09

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

12: 49: 26", "f xs. 50", "150", "150","",""," 701", "ext ensi on", " Zap/ 50- 1", " Par
;;; 28 seconds later, bridge ends

"EV_HANGUP", " 2007- 05- 09

12: 49: 26","","151", "152","","","", K "extensi on", "Zap/ 51- 1", "Bri dged

Cal I ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151
hangs up, |eaves 150 and 152 connected

"EV_CHAN_END', "2007- 05- 09

12: 49: 26","","151", "152","", """, "", K "extensi on", "Zap/ 51- 1", "Bri dged

Cal I ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736378.4","","" ;;; 151
channel ends

"EV_CHAN_END', "2007- 05- 09

12: 49: 26", "fxs. 51", "151","151","","","h", "ext ensi on", " Zap/ 51- 2ZOMBI E",
77, 152-2 channel ends (zonbie)

(just 150 and 152 now)

"EV_BRI DGE_END", "2007- 05- 09

12:50: 13", "fxs. 50", "150", "150","","", " 152", "ext ensi on", " Zap/ 50- 1", "Di ¢
7., 47 sec later, the bridge from 150 to 152 ends
"EV_HANGUP", " 2007- 05- 09

12:50: 13","","152","151","","","", "extensi on", " Zap/ 52- 1", "Bri dged

Cal I ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736475. 7","","" ;;; 152
hangs up

"EV_CHAN_END', "2007- 05- 09

12:50: 13","","152","151","","","", "extensi on", " Zap/ 52- 1", " Bri dged

Cal I ", "Zap/ 50- 1", " DOCUMENTATI ON', "","1178736475. 7","","" ;;; 152
channel ends

"EV_HANGUP", " 2007- 05- 09

12:50: 13", "fxs. 50", "150", "150","","","h", "ext ensi on", " Zap/ 50- 1", "","",
;5 150 hangs up

"EV_CHAN_END', "2007- 05- 09

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

12: 50: 13" , n f XS_ 50" , n 150l| , n 150l| , mn , nn , n hll , n eXt ensi On" , n Zap/ 50_ 1II , nn , mn ,
;.. 150 ends

In terms of Manager events, the above Events correspond to the following 80 Manager events:

Event: Newchanne
Privilege: call,al
Channel : Zap/52-1
State: Rsrvd

Cal | erl DNum 152

Cal |l erl DNane: fxs.52
Uni quei d: 1178801102.5

Event: Newcal lerid

Privilege: call,al

Channel : Zap/52-1

Call erl DNum 152

Cal | er| DNane: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)
Event: Newcal lerid

Privilege: call,al

Channel : Zap/52-1

Cal l erl DNum 152

Cal | er| DNane: fxs. 52

Uni quei d: 1178801102.5

CID-CallingPres: 0 (Presentation Allowed, Not Screened)

Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Ring

Cal l erl DNum 152

Cal | er| DNanme: fxs. 52
Uni quei d: 1178801102.5
Event: Newexten
Privilege: call,al
Channel . Zap/52-1

Cont ext: extension

Ext ension: 151
Priority: 1
Application: Set
AppDat a: CDR(nyvar) =zi ngo
Uni quei d: 1178801102.5
Event: Newexten

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Privilege: call,al
Channel : Zap/52-1

Cont ext: extension

Ext ensi on: 151

Priority: 2
Application: D a
AppDat a: Zap/ 51| 30| Tt Vi
Uni quei d: 1178801102.5

Event: Newchanne
Privilege: call,al
Channel : Zap/51-1
State: Rsrvd

Cal | erl DNum 151

Cal | er | DNane: fxs.51
Uni quei d: 1178801108. 6
Event: Newstate
Privilege: call, al
Channel : Zap/51-1
State: Ringing

Cal l erl DNum 152

Cal | er | DNane: fxs.52
Uni quei d: 1178801108. 6

Event: D a

Privilege: call,al
SubEvent: Begin

Sour ce: Zap/52-1
Destination: Zap/51-1

Cal l erl DNum 152

Cal I er | DNane: fxs. 52
SrcUni quel D 1178801102.5
Dest Uni quel D: 1178801108. 6
Event: Newcal lerid
Privilege: call,al

Channel : Zap/51-1

Cal l erl DNum 151

Cal | er I DNarme: <Unknown>
Uni quei d: 1178801108. 6
CID-CallingPres: O (Presentation Allowed, Not Screened)

Event: Newstate
Privilege: call,al
Channel : Zap/52-1
State: Ringing

Cal | erl DNum 152

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Cal | er | DNan®:
1178801102. 5
Newst at e
call, all
Zap/ 51-1

Uni quei d:
Event:
Privil ege:
Channel :

State: Up

fxs. 52

Call er| DNum 151

Cal | er | DNane:

Uni quei d:
Event:
Privil ege:
Channel :

State: Up

Call er| DNum 152

Cal | er | DNane:
1178801102.5

Uni quei d:

Event :
Privil ege:

Li nk

fxs. 52

call, all

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal lerl D1: 152
CallerlD2: 151

Event: Unlink
Privilege: call,al

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal l er1 D1: 152
CallerlD2: 151

Event: Link

Privilege: call,al

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Uni quei d1: 1178801102.
Uni quei d2: 1178801108.
Cal lerl D1: 152

Cal lerl D2: 151

Event: Unlink
Privilege: call,al

<unknown>
1178801108. 6
Newst at e
call,all
Zap/ 52-1

Channel 1: Zap/52-1
Channel 2: Zap/51-1

Content is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Uni quei d1: 1178801102.5
Uni quei d2: 1178801108. 6
CallerlDl: 152
Cal lerl D2: 151

Event: Par kedcCal
Privilege: call,al
Exten: 701

