probsoln v3.04: creating problem
sheets optionally with solutions

Nicola L.C. Talbot

School of Computing Sciences
University of East Anglia
Norwich. Norfolk
NR4 7TJ. United Kingdom.
http://theoval.cmp.uea.ac.uk/~nlct/

2012-08-23

Contents

1

2

9

Introduction

Package Options

Verbatim

Showing and Hiding Solutions
General Formatting Commands
Defining a Problem

Using a Problem

Loading Problems From External Files
8.1 Randomly Selecting Problems Not Selected in Previous Doc-
uments . ..o

Iterating Through Datasets

10 Random Number Generator

11 Compatibility With Versions Prior to 3.0

http://theoval.cmp.uea.ac.uk/~nlct/

12 The Code 18

12.1 Package Definition oL 18
12.2 Package Options o .. 18
12.3 Databases L Lo 25
12.4 Defining New Problems 27
12.5 Using Problems oL 35
12.6 Loading Problems From Another File 36
12.7 Iterating Through a Data Base 40
12.8 Random Numbers 41
12.9 Compatibility With Older Versions 45
12.10Formatting Commands 46

1 Introduction

The probsoln package is designed for teachers or lecturers who want to
create problem sheets for their students. This package was designed with
mathematics problems in mind, but can be used for other subjects as well.
The idea is to create a file containing a large number of problems with
their solutions which can be read in by KTEX, and then select a number
of problems to typeset. This means that once the database has been set
up, each year you can easily create a new problem sheet that is sufficiently
different from the previous year, thus preventing the temptation of current
students seeking out the previous year’s students, and checking out their
answers. There is also an option that can be passed to the package to
determine whether or not the solutions should be printed. In this way, one
file can either produce the student’s version or the teacher’s version.

2 Package Options

The following options may be passed to this package:

answers Show the answers

noanswers Don’t show the answers (default)

draft Display the label and dataset name when a problem is used
final Don’t display label and dataset name when a problem is used

usedefaultargs Make \thisproblem use the default arguments supplied in
the problem definition.

nousedefaultargs Make \thisproblem prompt for problem arguments (de-
fault).

\ProbSolnFragileExt

robSolnFragileFile

\showanswers

\hideanswers

onlyproblem

3 Verbatim

As from version 3.02, problems and solutions may contain verbatim text,
but you must use the fragile (or fragile=true) option for the associated
environments.

Alternatively, if most of your problems contain verbatim, you can glob-
ally set this option using:
\setkeys{probsoln}{fragile}
You can switch off this option using fragile=false.

The fragile option writes information to a temporary file. This defaults

to \jobname.vrb but the name may be changed. The extension (.vrb) is
given by:

\ProbSolnFragileExt

The base name (\jobname) is given by:

\ProbSolnFragileFile

4 Showing and Hiding Solutions

In addition to the answers and noanswers package options, it is also possible
to show or suppress the solutions using

\showanswers

and

\hideanswers

respectively.

The boolean variable showanswers determines whether the answers should
be displayed. You can use this value with the ifthen package to specify
different text depending on whether the solutions should be displayed. For
example:

Assignment 1\ifthenelse{\boolean{showanswers}}{ (Solution Sheet)}{}
Alternatively you can use \ifshowanswers...\else...\fi:
Assignment 1\ifshowanswers\space (Solution Sheet)\fi

For longer passages, you can use the environments

\begin{(onlyproblem)} [{option)]

onlysolution

solution

\solutionname

and

\begin{(onlysolution)} [{option)]

For example:

\begin{onlyproblem}/

What is the derivative of $f(x) = x728%7
\end{onlyproblem}%
\begin{onlysolution}%

$f° (x) = 2x$

\end{onlysolution}

The above will only display the question if showanswers is false and will
only display the solution if showanswers is true. If you want the question
to appear in the answer sheet as well as the solution, then don’t put the
question in the onlyproblem environment:

What is the derivative of $f(x) = x"2$7
\begin{onlysolution}%

Solution: $f’(x) = 2x$
\end{onlysolution}

If you want to include verbatim text in the body of onlyproblem or

onlysolution, you need to specify fragile in the optional argument of
the environment. (See Section 3 for further details.)

If you use onlysolution within the defproblem environment, the problem
will be tagged as having a solution and will be added to the list used by
\foreachsolution. The optional argument of onlysolution (and onlyprob-
lem) is inherited from the parent defproblem setting.

5 General Formatting Commands

The commands and environments described in this section are provided to
assist formatting problems and their solutions.

\begin{solution}(texrt)\end{solution}

By default, this is equivalent to
\par\noindent\textbf{\solutionname}: (text)

where \solutionname defaults to “Solution”. Note that you must place
the solution environment inside the onlysolution environment or between

textenum

\correctitem
\incorrectitem

\ifshowanswers...\fi to ensure that it is suppressed when the solutions
are not wanted. (See Section 4.)

Note that the probsoln package will only define the solution environment
if it is not already defined.

\begin{textenum}...\end{textenum}

The textenum environment is like the enumerate environment but is in-line.
It uses the same counter that the enumerate environment would use at that
level so the question can be compact but the answer can use enumerate
instead. For example:

\begin{onlyproblem}’
Differentiate the following:
\begin{textenum}
\item $f(x)=2"x$%; \item $f(x)=\cot(x)$
\end{textenum}
\end{onlyproblem}
\begin{onlysolution}
\begin{enumerate}
\item
\begin{alignx}
f(x) &= 27x = \exp(\1n(x72)) =\exp(2\1n(x))\\
£2(x) &= \exp(2\1ln(x))\times \frac{2F{x}\\
&= f(x)\frac{2}{x}
\end{alignx}
\item
\begin{alignx*}
f(x) &= \cot(x) = (\tan(x))~{-2hH\
£2(x) &= -(\tan(x)) {-2FH\times\sec™2(x)\\
&=-\csc™2x
\end{alignx}
\end{enumerate}
\end{onlysolution}

In this example, the items in the question are brief, so an enumerate environ-
ment would result in a lot of unnecessary white space, but the answers re-
quire more space, So an enumerate environment is more appropriate. Since
the textenum environment uses the same counters as the enumerate environ-
ment, the question and answer sheets use consistent labelling. Note that
there are other packages available on CTAN that you can use to create
in-line lists. Check the TeX Catalogue' for further details.

\correctitem
\incorrectitem

1http ://www.tex.ac.uk/tex-archive/help/Catalogue/bytopic.html#enumeration

http://www.tex.ac.uk/tex-archive/help/Catalogue/bytopic.html#enumeration

\correctitemformat
ncorrectitemformat

defproblem

You can use the commands \correctitem and \incorrectitem in place
of \item. If the solutions are suppressed, these commands behave in the
same way as \item, otherwise they format the item label using one of the
commands:

\correctitemformat{(label)}
\incorrectitemformat{(label)}

For example:

Under which of the following functions does $S=\{a_1,a_2\1}$
become a probability space?

\begin{enumerate}

\incorrectitem $P(a_1)=\frac{1}{3}$, $P(a_2)=\frac{1}{2}$
\correctitem $P(a_1)=\frac{3}{4}$, $P(a_2)=\frac{1}{4}$
\correctitem $P(a_1)=1$, $P(a_2)=0%

\incorrectitem $P(a_1)=\frac{5}{4}$, $P(a_2)=-\frac{1}{4}$
\end{enumerate}

The default definition of \correctitemformat puts a frame around the
label.

6 Defining a Problem

It is possible to construct a problem sheet with solutions using the com-
mands described in the previous sections, however it is also possible to
define a set of problems for later use. In this way you can create an exter-
nal file containing many problems some or all of which can be loaded and
used in a document. The probsoln package has a default data set labelled
“default” in which you can store problems. Alternatively, you can create
multiple data sets. You can then iterate through each problem in a prob-
lem set. You can use a previously defined problem more than once, which
means that by judicious use of onlyproblem, onlysolution or the showanswers
boolean variable in conjunction with \showanswers and \hideanswers,
you can print the solutions in a different location to the questions (for
example in an appendix).

\begin{defproblem} [(n)] [(default args)I1{(label)} [{option)]
(definition)
\end{defproblem}

This defines the problem whose label is given by (label). The label must
be unique for a given data set and should not contain active characters or
a comma. (Active characters include the special characters such as $ and
&, but some packages may make other symbols active, such as the colon

\newproblem

(:) character. For example, the ngerman and babel packages make certain
punctuation active. Check the relevant package documentation for details.)

The final optional argument (option) may be fragile to indicate that
the problem contains verbatim text. Any occurrences of onlyproblem or

onlysolution contained within defproblem are inherited from defproblem.
(See Section 3 for further details.)

If defproblem occurs in the document or is included via \input or
\include, then the problem will be added to the default data set. If def-
problem occurs in an external file that is loaded using one of the commands
defined in Section 8 then the problem will be added to the specified data
set.

The contents of the defproblem environment should be the text that de-
fines the problem. This may include any of the commands defined in Sec-
tion 4 and Section 5.

The problem may optionally take (n) arguments (where (n) is from 0 to
9). The arguments can be referenced in the definition via #1,... #9. If (n)
is omitted then the problem doesn’t take any arguments. The following
example defines a problem with one argument:

\begin{defproblem}[1]{diffsin}
Differentiate $f(x)=\sin(#1x)$.
\begin{onlysolution}/,
\begin{solution}
$£°(x) = #1\cos(#1x)$
\end{solution}
\end{onlysolution}
\end{defproblem}

The second optional argument (default args) supplies default problem
arguments that will automatically be used within \thisproblem when used
in \foreachproblem in conjunction with the package option usedefaultargs.
(See Section 9.) For example:

\begin{defproblem}[1] [{2}]{diffsin}
Differentiate $f(x)=\sin(#1x)$.
\begin{onlysolution}/,
\begin{solution}
$£° (x) = #1\cos(#1x)$
\end{solution}
\end{onlysolution}
\end{defproblem}

\newproblem[(n)] [{(default args)]{(label)}{(problem)}{(solution)}

This is a shortcut command for:
\begin{defproblem} [(n)] [(default args)]{(label)}
(problem)%

\begin{onlysolution}
\begin{solution}¥
(solution)%
\end{solutionl}%
\end{onlysolution},
\end{defproblem}

For example:

\newproblem[1]{diffsin}{%
\(f(x) = \sin(#1x)\)
jyA
{%
\N(£f’ (x) = #1\cos(#1x)\)
}

is equivalent to

\begin{defproblem} [1]{diffcos}/
\(f(x) = \cos(#1x)\)
\begin{onlysolution}y
\begin{solution}y,
\ (£’ (x) = -#1\sin(#1x)\)
\end{solution}},
\end{onlysolution}’
\end{defproblem}

(In this example, the argument will need to be a positive number to avoid
a double minus in the answer. If you want to perform floating point arith-
metic on the arguments, then try the fp or pgfmath packages.)

Alternatively, if you want to supply default arguments to use when iter-
ating through problems with \foreachproblem:

\newproblem[1] [{3}]{diffsin}{%
\(f(x) = \sin(#1x)\)

%

{%
\(f’(x) = #1\cos(#1x)\)

}

\newproblem* | \newproblemx [(n)] [(default args)1{(label)}{(definition)}

This is a shortcut for:
\begin{defproblem} [(n)] [(default args)1{(label)}%
(definition)%
\end{defproblem}

\useproblem

\loadallproblems

Note that you can’t use verbatim text with \newproblem or

\newproblem*. Use the defproblem environment instead with the
fragile option.

7 Using a Problem

Once you have defined a problem using defproblem or \newproblem (see
Section 6), you can later display the problem using:

\useproblem[(data set)]{(label)}{(arg1)}.. .{(argn)}

where (data set) is the name of the data set that contains the problem
(the default data set is used if omitted), (label) is the label identifying the
required problem and (arg;), ..., (argy) are the arguments to pass to the
problem, if the problem was defined to have arguments (where N is the
number of arguments specified when the problem was defined).

For example, in the previous section the problem diffcos was defined
to have one argument, so it can be used as follows:

\useproblem{diffcos}{3}

This will be equivalent to:

\(£(x) = \cos(3x)\)
\begin{onlysolution}’,
\begin{solution}y,

\ (£’ (x) = -3\sin(3x)\)
\end{solution},
\end{onlysolution}’

8 Loading Problems From External Files

You can store all your problem definitions (see Section 6) in an external file.
These problems can all be appended to the default data set by including
the file via \input or they can be appended to other data sets using one
of the commands described below. Once you have loaded all the required
problems, you can iterate through the data sets using the commands de-
scribed in Section 9. Note that the commands below will create a new data
set, if the named data set doesn’t exist.

\loadallproblems [(data set)]{(filename)}

This will load all problems defined in (filename) and append them to the
specified data set, in the order in which they are defined in the file. If (data

yadselectedproblems

\loadexceptproblems

\loadrandomproblems

\loadrandomexcept

\PSNuseoldrandom

set) is omitted, the default data set will be used. If (data set) doesn’t exist,
it will be created.

\loadselectedproblems [(data set)]{(labels)}{(filename)}

This is like \loadallproblems, but only those problems whose label is
listed in the comma-separated list (labels) are loaded. For example, if I
have some problems defined in the file derivatives.tex, then

\loadselectedproblems{diffsin,diffcos}{derivatives}

will only load the problems whose labels are diffsin and diffcos, respec-
tively. All the other problems in the file will remain undefined.

\loadexceptproblems [(data set)]{(exception list)}{(filename)}

This is the reverse of \loadselectedproblems. This loads all problems
except those whose labels are listed in (exception list).

\loadrandomproblems [(data set)]{(n)}{(filename)>}

This randomly loads (n) problems from (filename) and adds them to the
given data set. If (data set) is omitted, the default data set is assumed.
Note that the problems will be added to the data set in a random order,
not in the order in which they were defined. There must be at least (n)
problems defined in (filename).

\loadrandomexcept [(data set)]1{(n)}{(filename)}{(exception list)}

This is similar to \loadrandomproblems except that it won’t load those
problems whose labels are listed in (exception list). If you want to auto-
matically exclude problems included in previous documents, see
Section 8.1.

Note that the random number generator has been modified in version
3.01 in order to fix a bug. If you want to ensure that your random numbers
are compatible with earlier versions, you can switch to the old generator
using

\PSNuseoldrandom

10

\SetStartMonth

\SetStartYear

\SetUsedFileName

It is generally not a good idea to place anything in (filename) that is
not inside the body of defproblem or in the arguments to \newproblem
or \newproblem*. All the commands in this section input the external

file within a local scope, so command definitions would need to be made
global to have any effect. In addition, \1loadrandomproblems has to load
each file twice, which means that anything outside a problem definition
will be parsed twice.

8.1 Randomly Selecting Problems Not Selected in Previous
Documents

Suppose you have a large set of questions that you want to randomly select
for assignments and exams. The chances are, you don’t want to include
questions that have been previously set for, say, the last three years. That
is, you don’t want to select questions the students may already have seen.
As from version 3.03, you can now do this.

The probsoln package defaults to the UK academic year, which starts in
September. If this isn’t appropriate, you can change it using:

\SetStartMonth{(n)}

where (n) is the number of the month. (1 = January, 2 = February, etc.)

The start year is the calender year in effect when the academic year
started. For example, if this is the academic year 2011/12, then the start
year is 2011. This is automatically set to the start of the current academic
year. It is also updated when \SetStartMonth is used.” If you want to set
it to a specific year, you can use:

\SetStartYear{(year)}

For example: \SetStartYear{2008} indicates the academic year 2008/9.
There are two files concerned with previously used labels. They are:

The previously used labels file This keeps track of all problems used in
previous years, as well as problems used by other documents that have
this as their previously used labels file, and it contains the problem
labels from the last run of the current document.

The current used labels file This defaults to \jobname.prb, but the name
can be changed using;:

\SetUsedFileName{(name)}

236 don’t use \SetStartMonth after \SetStartYear.

11

\ClearUsedFile

'xcludePreviousFile

This file keeps track of all the labels used in the current document
from the previous KTEX run. Note that if you want to delete this
file, first clear it using

\ClearUsedFile{(file)}

in place of \ExcludePreviousFile{(file)}, described below. The
argument (file) is the previously used labels file described above.
\ClearUsedFile will remove all labels in the current used labels file
from the previously used labels file and clear the current used labels
file. Once this file is empty, it may then be deleted.

Before loading randomly selected problems, first specify the previously
used labels file with the command:

\ExcludePreviousFile [(number of years)]1{(file name)}

where (file name) is the name of the previously used file. The optional
argument (number of years) specifies the year cut-off. This defaults to 3,
which means that only those labels used this year or the previous 2 years
will be kept. Any problems used before then may be reused.

Suppose I'm lecturing a first year undergraduate mathematics course
(designated, say, mth101). I want to set assignments on each topic and an
exam at the end of the year (as well as a resit or second sitting paper). I've
got databases with problems for each topic, but the first and second sitting
exams mustn’t include any of the problems used in the assignments or
any problems used in assignments or exams for the previous two academic
years. I'm going to arrange my directory structure as follows:

e mth101/

— assignment1/ (differentiation)
* assignmentl.tex

— assignment2/ (probability spaces)
* assignment2.tex

— assignment3/ (linear algebra)
* assignment3.tex

— exams/
% exam.tex (first sitting)
* resit.tex (second sitting)

— databases/

*x differentiation.tex

12

\foreachproblem

\thisproblem

\thisproblemlabel

\foreachsolution

\foreachdataset

* probabilityspaces.tex
* linearalgebra.tex

— previouslabels.tex (created by probsoln)

9 Iterating Through Datasets

Once you have defined all your problems for a given data set, you can use
an individual problem with \useproblem (see Section 7) but it is more
likely that you will want to iterate through all the problems so that you
don’t need to remember the labels of all the problems you have defined.

\foreachproblem[(data set)]{({body)}

This does (body) for each problem in the given data set. If (data set) is
omitted, the default data set is used. Within (body) you can use

\thisproblem

to use the current problem and

\thisproblemlabel

to access the current label. If the problem requires arguments, and no
default arguments were supplied in the problem definition or the package
option usedefaultargs was not used, then you will be prompted for argu-
ments, so if you want to use this approach you will need to use IATEX in
interactive mode. If you do provide arguments, they will be stored in the
event that you need to iterate through the data set again. The arguments
will be included in \thisproblem, so you only need to use \thisproblem
without having to specify \useproblem.
For example, to iterate through all problems in the default data set:

\begin{enumerate}
\foreachproblem{\item\thisproblem}
\end{enumerate}

\foreachsolution[(data set)]1{(body)}

This is equivalent to \foreachsolution, but only iterates through prob-
lems that contain the onlysolution environment. Note that you still need
to use \showanswers or the answers package option for the contents of the
onlysolution environment to appear.

\foreachdataset{(cmd)}{(body)}

13

This does (body) for each of the defined data sets. Within (body), (cmd)
will be set to the name of the current data set. For example, to display all
problems in all data sets:

\begin{enumerate}

\foreachdataset{\thisdataset}{%
\foreachproblem[\thisdataset]{\item\thisproblem}}
\end{enumerate}

Suppose I have two external files called derivatives.tex and probspaces.tex
which define problems using both onlyproblem and onlysolution for example:

\begin{defproblem}{cosxsqsinx}’

\begin{onlyproblem}/

$y = \cos(x"2)\sin x$.%

\end{onlyproblem}’

\begin{onlysolution}y

\[\frac{dy}{dx} = -\sin(x"2)2x\sin x + \cos(x"2)\cos x\]
\end{onlysolution}’

\end{defproblem}

I can write a document that creates two data sets, one for the derivative
problems and one for the problems about probability spaces. I can then
use \hideanswers and iterate through the require data set to produce
the problems. Later, I can use \showanswers and iterate over all problems
defined in both data sets to produce the chapter containing all the answers.
When displaying the questions, I have taken advantage of the fact that I
can cross-reference items within an enumerate environment, and redefined
\theenumi to label the questions according to the chapter. The cross-
reference label is constructed from the problem label and is referenced in
the answer section to ensure that the answers have the same label as the
questions.

\documentclass{report}

\usepackage{probsoln}

\begin{document}

\hideanswers

\chapter{Differentiation}

% randomly select 25 problems from derivatives.tex and add to
% the data set called ’deriv’

\loadrandomproblems [deriv]{25}{derivatives}

% Display the problems
\renewcommand{\theenumi}{\thechapter.\arabic{enumil}}

\begin{enumerate}
\foreachproblem[deriv]{\item\label{prob:\thisproblemlabel}\thisproblem}
\end{enumerate}

% You may need to change \theenumi back here

14

\PSNuseoldrandom

\PSNrandseed

\chapter{Probability Spaces}

% randomly select 25 problems from probspaces.tex and add to
% the data set called ’spaces’
\loadrandomproblems [spaces] {25}{probspaces}

% Display the problems
\renewcommand{\theenumi}{\thechapter.\arabic{enumi}}

\begin{enumerate}
\foreachproblem[spaces]{\item\label{prob:\thisproblemlabel}\thisproblem}
\end{enumerate}

% You may need to change \theenumi back here

\appendix

\chapter{Solutions}

\showanswers

\begin{itemize}

\foreachdataset{\thisdataset}{%
\foreachproblem[\thisdataset]{\item[\ref{prob:\thisproblemlabel}]\thisproblem}
}

\end{itemize}

\end{document}

10 Random Number Generator

This package provides a pseudo-random number generator that is used by
\loadrandomproblems. As noted earlier the random number generator has
been modified in version 3.01 in order to fix a bug. If you want to ensure
that your random numbers are compatible with earlier versions, you can
switch to the old generator using

\PSNuseoldrandom

\PSNrandseed{(n)}

This sets the seed to (n) which must be a non-zero integer. For example,
to generate a different set of random numbers every time you IATEX your
document,® put the following in your preamble:

\PSNrandseed{\time}

or to generate a different set of random numbers every year you IATEX your
document:

\PSNrandseed{\year}
3

assuming you leave at least a minute between runs.

15

\PSNgetrandseed

\PSNrandom

\random

\doforrandN

\PSNgetrandseed{(register)}

This stores the current seed in the count register specified by (register).
For example:

\newcount\myseed
\PSNgetrandseed{\myseed}

\PSNrandom{(register)}{(n)}

Generates a random integer from 1 to (n) and stores in the count register
specified by (register). For example, the following generates an integer from
1 to 10 and stores it in the register \myreg:

\newcount\myreg
\PSNrandom{\myreg}{10%}

\random{(counter)}{{min)}{ (maz)}

Generates a random integer from (min) to (maz) and stores in the given
counter. For example, the following generates a random number between
3 and 8 (inclusive) and stores it in the counter myrand.

\newcounter{myrand}
\random{myrand}{3}{8}

\doforrandN{(n)}{(cmd)}{(list)}{(text)}

Randomly selects (n) values from the comma-separated list given by (list)
and iterates through this subset. On each iteration it sets (cmd) to the cur-
rent value and does (text). For example, the following will load a randomly
selected problem from two of the listed files (where filel.tex, file2.tex
and file3.tex are files containing at least one problem):

\doforrandN{2}{\thisfile}{filel,file2,file3}{%
\loadrandomproblems{1}{\thisfile}}

11 Compatibility With Versions Prior to 3.0

Version 3.0 of the probsoln package completely changed the structure of the
package, but the commands described in this section have been provided
to maintain compatibility with earlier versions. The only problems that
are likely to occur are those where commands are contained within groups.
This will effect any commands that are contained in external files that are

16

\selectrandomly

\selectallproblems

outside of the arguments to \newproblem and \newproblem*. However,
since the external files had to be parsed twice in order to load the problems,
this shouldn’t be an issue as adding anything other than problem definitions
in those files would be problematic anyway.

The other likely difference is where the random generator is used in a
group. This includes commands such as \selectrandomly. For example,
if your document contained something like:

\begin{enumerate}
\selectrandomly{file1}{8%}

\item Solve the following:
\begin{enumerate}
\selectrandomly{file2}{4}
\end{enumerate}

\selectrandomly{file3}{2}
\end{enumerate}

Then using versions prior to v3.0 will produce a different set of random
numbers since the second \selectrandomly is in a different level of group-
ing. If you want to ensure that the document produces exactly the same
random set with the new version as with the old version, you will need to
get and set the random number seed. For example, the above would need
to be modified so that it becomes:

\begin{enumerate}
\selectrandomly{filel1}{8%}

\item Solve the following:
\newcount\oldseed
\PSNgetrandseed{\oldseed}
\begin{enumerate}
\selectrandomly{file2}{4}
\end{enumerate}
\PSNrandseed{\oldseed}

\selectrandomly{file3}{2}
\end{enumerate}

\selectrandomly{(filename)}{(n)}

This is now equivalent to:
{\loadrandomproblens [(filename)]{(n)}{(filename)}}%
\foreachproblem[(filename)]{\PSNitem\thisproblem\endPSNitem}

\selectallproblems{(filename)}

17

\ifshowanswers

\showanswers

\hideanswers

fusedefaultprobargs

usedefaultargs

This is now equivalent to:
{\loadallproblems [(filename)]l{(filename)}}’,
\foreachproblem[(filename)]{\PSNitem\thisproblem\endPSNitem}
Note that in both the above cases, a new data set is created with the
same name as the file name.

12 The Code

12.1 Package Definition
This package requires KTEX 2¢.
\NeedsTeXFormat{LaTeX2e}

Identify this package and version:
\ProvidesPackage{probsoln}[2012/08/23 v3.04 (NLCT)]
Required packages:
\RequirePackage{ifthen}
\RequirePackage{amsmath}

\RequirePackage{etoolbox}

12.2 Package Options

Define boolean to determine whether or not to show the solutions. This
governs whether the contents of onlysolution and onlyproblem are displayed.

\newif\ifshowanswers
\showanswersfalse

Define synonym for \showanswerstrue

\let\showanswers\showanswerstrue

Define synonym for \showanswersfalse

\let\hideanswers\showanswersfalse

The package option answers displays the solutions.

\DeclareOption{answers}{\showanswerstrue}

The package option noanswers hides the solutions.

\DeclareOption{noanswers}{\showanswersfalse}

Determine whether or not to use default arguments for problems.

\newif\ifusedefaultprobargs

\DeclareOption{usedefaultargs}{\usedefaultprobargstrue}

18

usedefaultargs

\DeclareOption{nousedefaultargs}{\usedefaultprobargsfalse}
\usedefaultprobargsfalse

\prob@showdraftlabel | \prob@showdraftlabel{(db name)}{(label)}

Used by \useproblem to display data base name and problem label when
in draft mode.

\newcommand*{\prob@showdraftlabell} [2]{}

\draftproblemlabel | \draftproblemlabel{(db name)}{(label)}

Displays the data base name and label.
\newcommand*{\draftproblemlabell} [2]{ [#1,#2]}

Draft mode displays the problem label using \draftproblemlabel

\DeclareOption{draft}{%
\renewcommand*{\prob@showdraftlabel} [2]{\draftproblemlabel{#1}{#2}}}

Final mode:

\DeclareOption{finall}{%
\renewcommand*{\prob@showdraftlabel} [2]{}}

Process package options:

\ProcessOptions

\RequirePackage{xkeyval}

\if@probefragile Need a conditional to determine whether \long@collect@body needs to
be aware of verbatim contents.

\define@boolkey{probsoln} [@prob@] {fragile} [true] {}

\ProbSolnFragileExt The extension used for temporary files dealing with fragile contents.
\newcommand*{\ProbSolnFragileExt}{vrb}

ProbSolnFragileFile The filename used for temporary files dealing with fragile contents.
\newcommand*{\ProbSolnFragileFile}{\jobname}

\probsoln@write File handle for temporary files.

\newwrite\probsoln@urite

\probsoln@startyear The year as at the start of the new academic year. (For example, if the
academic year starts in September and today is any date between 2011-09-
01 and 2012-08-30, then the start year is 2011.)

\newcount\probsoln@startyear

19

\SetStartYear

\GetStartYear

probsoln@startmonth

\SetStartMonth

\probsoln@prev

\probsoln@used

robsoln@prev@cutoff

obsoln@usedfilename

\SetUsedFileName

Provide command to set the starting year manually.

\newcommand*{\SetStartYear}[1]1{/
\probsoln@startyear=#1\relax
\renewcommand\SetStartMonth [1]{}

\PackageError{probsoln}{\string\SetStartMonth\space
can’t be used after \string\SetStartYear}{}}J

}

Gets the value of the start year count register:
\newcommand*{\GetStartYear}{\probsoln@startyear}

The month starting the academic year. (1=January, 2=February, etc).

\newcount\probsoln@startmonth

Define command to set the month starting the academic year. This also
sets the starting year.

\newcommand*{\SetStartMonth} [1]{%
\probsoln@startmonth=#1\relax
\probsoln@startyear=\year\relax
\ifnum\month<\probsoln@startmonth

\advance\probsoln@startyear by -1\relax
\fi
}

Set the default starting month to 9 (September):
\SetStartMonth{9}

File handle for file containing previous labels.

\newwrite\probsoln@prev

File handle for file containing previous used.

\newwrite\probsoln@used

Cut-off year. Problems excluded if the year they were set is greater than
the cut-off year.

\newcount\probsoln@prev@cutoff

Stores the file name for the used problems file. (Defaults to \jobname.prb)

\newcommand*{\@probsoln@usedfilename}{\jobname.prb}

Set the name of the used problems file.

\newcommand*{\SetUsedFileName} [1]{%
\renewcommand*{\@probsoln@usedfilename}{#1}/

3

20

\ClearUsedFile Clear the contents of the used file (\@probsoln@usedfilename) and
remove corresponding entries from the previous file (as specified in
\ExcludePreviousFile). Not to be used after \ExcludePreviousFile.

\newcommand*{\ClearUsedFile} [1]1{%
\probsoln@prev@cutoff=0\relax
\@probsoln@readprev{#11}/,

Only write labels that aren’t in the used file.

\@for\@this@db:=\prob@databases\do{’
{h
\edef\@prev@list{\csname probsoln@prev@list@\@this@db\endcsname},
\ifdefempty{\@prev@list}’
{3%
{k
\@for\@this@label:=\@prev@list\do{/
\ifcsundef{@used@problem@\@this@db @\@this@labell}
{%
\immediate\write\probsoln@prev{y
\string\previousproblem{\@this@label}{\@this@db},
{\csname @prev@problem@\@this@db @\O@this@label\endcsnamel}},
Yh
{3%
%
Y
/A
Y
\immediate\closeout\probsoln@prev
\immediate\closeout\probsoln@used
\@disable@exclude@prev
}

ExcludePreviousFile Exclude problems used in the last (n) years.

\newcommand*{\ExcludePreviousFile} [2] [3]{%
\probsoln@prev@cutoff=\probsoln@startyear\relax
\advance\probsoln@prev@cutoff by -#1\relax
\@probsoln@readprev{#2}/,

\@write@prev

\def\ExcludePreviousFile[2] [3]{\PackageError{probsoln}{0nly one
instance of \string\ExcludePreviousFile\space allowed}{You’ve
already used this command. You are only allowed to use it oncel}l}),

\def\ClearUsedFile[1]{%
\PackageError{probsoln}y,

{\string\ClearUsedFile\space may not be used after
\string\ExcludePreviousFile}{}}/,
}

\@probsoln@readprev Read contents of previous and used files and open for writing.

\newcommand*{\@probsoln@readprev}[1]{%
\@enable@exclude@prev

21

\InputIfFileExists{#11}}
{\PackageInfo{probsoln}j,
{Excluded problem file ‘#1’ foundl}}/,
{\PackageInfo{probsoln},
{Excluded problem file ‘#1’ not found. A new one will be
created}}’
\InputIfFileExists{\@probsoln@usedfilenamel}
{\PackageInfo{probsoln}y,
{Current problems file ‘\@probsoln@usedfilename’ found}}%
{\PackageInfo{probsoln}
{No current problem file ‘\@probsoln@usedfilename’ found. A new one will be created
\immediate\openout\probsoln@prev=#1
\immediate\openout\probsoln@used=\@probsoln@usedfilename

3

\probsoln@prev@list Maintain a list of all previous problem labels:
\newcommand*{\probsoln@prev@list@default}{}

\@write@prev Write all previous labels to file.

\newcommand*{\@write@prev}{/
\@for\@this@db:=\prob@databases\do{’
{h
\edef\@prev@list{\csname probsoln@prev@list@\@this@db\endcsname},
\ifdefempty{\@prev@listl}’
{}%
{%
\@for\@this@label:=\@prev@list\do{%
\immediate\write\probsoln@prev{%
\string\previousproblem{\@this@label}{\@this@db}/
{\csname @prev@problem@\@this@db @\@this@label\endcsnamel}}y,
/A
Y
Yh
%
}

enable@exclude@prev Enable commands for excluding previously selected problems.

\newcommand*{\@enable@exclude@prev}{/

Redefine macro that adds used problem to used problem file and previous
problem file.

\renewcommand*{\Q@addQused@problem} [2]{%
\immediate\write\probsolnQused{\string\usedproblem{##1}{##2}{\number\probsoln@startyear
\ifcsundef{@prev@problem@##20##1}

{%
\immediate\write\probsoln@prev{
\string\previousproblem{##1}{##2}{\number\probsoln@startyear}}’
\expandafter\xdef\csname Qprev@problem@##20##1\endcsname{,
\number\probsoln@startyearl}y,

22

/A
{h
\expandafter\ifnum\csname @prev@problem@##2@##1\endcsname
<\probsoln@startyear
\immediate\write\probsoln@prev{%
\string\previousproblem{##1}{##2}{\number\probsoln@startyear}}’
\expandafter\xdef\csname Qprev@problem@##20##1\endcsname{’,
\number\probsoln@startyearl}y,
\fi
/A
%
Redefine macro that fetches the exclusion list. (First argument is the macro
in which to store the list, the second argument is the database.)

\renewcommand*{\@fetch@excluded@list} [2]{%
\def##1{}/
\ifcsdef{probsoln@prev@list@##2}/
%
\edef\@prev@list{\csname probsoln@prev@list@##2\endcsnamel},
\@for\@this@label:=\@prev@list\do{¥%

If it isn’t one of the used problems, it can be added to the exclusion list:
\ifcsundef{Qused@problem@##20@\QthisQlabell},
{%

It isn’t, so label can be added to the exclusion list:

\ifcsempty{##11}/,
{\edef##1{\@this@label}}’
{\edef##1{##1,\@this@label}}
hyA
{%
%
Y
{3%
jyA
Add new previous list for given database:

\renewcommand*{\@add@newprevlist}[1]{%
\expandafter\gdef\csname probsoln@prev@list@##1\endcsname{}’
%
Redefine macro that closes the exclusion-related files.

\renewcommand*{\close@probsoln@prev}{%

\closeout\probsoln@prev

\closeout\probsoln@used
T

}

isable@exclude@prev Disable commands for excluding previously selected problems.

\newcommand*{\@disable@exclude@prev}{%
\renewcommand*{\@add@used@problem} [2]{}/

23

\@add@used@problem

fetch@excluded@list

\@add@newprevlist

close@probsoln@prev

\previousproblem

\renewcommand*{\@fetch@excluded@list} [2]{\def##1{}}V
\renewcommand*{\Q@add@newprevlist}[1]{}%
\renewcommand*{\close@probsoln@prev}{1}/

}

By default, the commands for excluding previously selected problems are
disabled.

Adds problem to used problems list. (First argument is the label, the
second argument is the database name.)
\newcommand*{\@add@used@problem} [2] {}

Fetches the excluded list. (First argument macro in which to store the list.
The second argument is the database name.)

\newcommand*{\@fetch@excluded@list} [2]{%
\def#1{}%
}

Adds a new previous list for the given database:
\newcommand*{\@add@newprevlist} [1]1{}

Close file used for previous labels

\newcommand*{\close@probsoln@prev}{}

At the end of the document, close file if required:
\AtEndDocument{\close@probsoln@prev}

Identifies problem that has been selected and the year it was selected. (First
argument label, second argument database name, third argument year.)
\newcommand*{\previousproblem}[3]{/
\ifnum#3>\probsoln@prev@cutoff
If data set hasn’t been defined, define it:
\ifcsundef{prob@db@#2}{\prob@newdb{#2}}{1}/

Define command that stores the year the problem was used:
\expandafter\gdef\csname @prev@problem@#2@#1\endcsname{#3}J,

Add label to the previous list for this data set:

\edef\@prev@list{\csname probsoln@prev@list@#2\endcsnamel,
\ifdefempty{\@prev@list}/
%
\expandafter\xdef\csname probsoln@prev@list@#2\endcsname{#11}/,
Yh
{%
\expandafter\xdef\csname probsoln@prev@list@#2\endcsname{’
\@prev@list,#1}Y%
/A
\fi
}

24

\usedproblem

\prob@databases

\prob@newdb

Don’t want to exclude problems that were selected in the previous run of
this document for the current year, so they need to be identified in the aux

file.

\newcommand*{\usedproblem} [3]{%

\ifnum#3=\probsoln@startyear
\expandafter\def\csname Qused@problem@#20#1\endcsname{#31}/
\fi
}

12.3 Databases

All the problems are stored in data bases. Each data base (name) is repre-
sented as a macro \prob@db@(name) which stores a comma-separated list
of labels for each problem associated with that data base. Each problem
(label) is stored in the macro \prob@data@(name)@(name)@(label). Prob-
lems loaded from an external file using \loadproblems are added to the
specified data base. Any problems that are defined in the document or are
\inputed from another file (without the use of \loadproblems) are added
to the default data base.
Define the default data base:

\newcommand*{\prob@db@default}{}

Store a list of all the defined data bases.
\newcommand*{\prob@databases}{default}

Each defined database has a list of undisplayed solutions.
\newcommand*{\prob@db@default@solutions}{}

\prob@newdb{(name)}

Creates a new (empty) data base.

\newcommand*{\prob@newdb} [1]{%
\ifcsundef{prob@db@#11}7
{%
\expandafter\gdef\csname prob@db@#1\endcsname{}%
\xdef\prob@databases{\prob@databases,#1}%
\expandafter\gdef\csname prob@db@#1@solutions\endcsname{l}’
\@add@newprevlist{#1}%
%
%
\PackageError{probsoln}{Data set ‘#1’ is already defined},
{Data set names must be uniquel}
Y
}

25

\prob@currentdb Keep a track of the current data base
\newcommand*{\prob@currentdb}{default}

\moveproblem | \moveproblem{(label)}{(source)}{(target)}

\newcommand{\moveproblem} [3]{%
\@moveproblem{#1}{#2}{#3}%
\expandafter\let\expandafter\Q@tmpdblist
\csname prob@db@#2\endcsname
\expandafter\gdef\csname prob@db@#2\endcsname{}%
\@for\@tmplab:=\@tmpdblist\do{%
\ifthenelse{\equal{\@tmplab}{#1}}{}{%
\expandafter\ifx\csname prob@db@#2\endcsname\Qempty
\expandafter\xdef\csname prob@db@#2\endcsname{\@tmplabl}y,
\else
\expandafter\xdef\csname prob@db@#2\endcsname{’
\csname prob@db@#2\endcsname,?
\@tmplabl}y,
\fi
Yh
Yh
}

\@moveproblem | \@moveproblem{(label)}{(source)}{(target)}

Moves problem identified by (label) from the data base (source) to the data
base (target). (Doesn’t remove label from (source) — that needs to be done

separately.)
\newcommand*{\@moveproblem} [3]{%

Add label to target data base

\ifcsempty{prob@db@#31}7
%
\expandafter\xdef\csname prob@db@#3\endcsname{#1}%
Y
{h
\expandafter\xdef\csname prob@db@#3\endcsname{’,
\csname prob@db@#3\endcsname,#1}/,
%
Redefine \prob@data@(source)@(label) as \prob@data@(target)@(label).

\edef\do@mo