Contents

1 Encoding and escaping schemes
2 Conversion functions
3 Internal string functions

4 Possibilities, and things to do

Index

The I3str-convert package: string encoding conversions”

The IATEX3 Project!
Released 2014/06/03

1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing
a string of characters is done in two steps.

e The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be UTF-16, 1SO 8859-1, etc. See Table 1 for a list of supported
encodings.!

¢ Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods

supported.?

*This file describes v5028, last revised 2014/06/03.
TE-mail: latex-team@latex-project.org
IEncodings and escapings will be added as they are requested.

mailto:latex-team@latex-project.org

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

(Encoding) description
utf8 UTF-8
utf16 UTF-16, with byte-order mark
utf16be UTF-16, big-endian
utfi6le UTF-16, little-endian
utf32 UTF-32, with byte-order mark
utf32be UTF-32, big-endian
utf32le UTF-32, little-endian
is088591, latinl 1SO 8859-1
15088592, latin2 ISO 8859-2
15088593, latin3 ISO 8859-3
is088594, latin4 ISO 8859-4
is088595 ISO 8859-5
is088596 1SO 8859-6
15088597 ISO 8859-7
15088598 ISO 8859-8
15088599, latinb IS0 8859-9
150885910, 1latin6 1SO 8859-10
is0885911 1SO 8859-11
150885913, latin7 ISO 8859-13
is0885914, 1atin8 ISO 8859-14
150885915, 1latin9 1SO 8859-15
is0885916, 1latinl0 1SO 8859-16
clist commar-list of integers
(empty) native (Unicode) string

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

(Escaping) description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits
name see \pdfescapename
string see \pdfescapestring
url encoding used in URLs

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

\c_max_char_int

__str_gset_other:Nn

2 Conversion functions

\str_set_convert:Nnnn (str var) {(string)} {(name 1)} {(name 2)}

This function converts the (string) from the encoding given by (name 1) to the encoding
given by (name 2), and stores the result in the (str var). Each (name) can have the
form (encoding) or (encoding)/{escaping), where the possible values of (encoding) and
(escaping) are given in Tables 1 and 2, respectively. The default escaping is to input and
output bytes directly. The special case of an empty (name) indicates the use of “native”
strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \1_foo_str { Hello! } { } { utfi6/hex }

results in the variable \1_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the UTF-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the (string) is not valid according to the (escaping 1) and
(encoding 1), or if it cannot be reencoded in the (encoding 2) and (escaping 2) (for
instance, if a character does not exist in the (encoding 2)). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the (encoding 2),
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:NnnnTF (str var) {(string)} {(name 1)} {(name 2)} {(true code)}
{(false code)}

As \str_set_convert:Nnnn, converts the (string) from the encoding given by (name I)
to the encoding given by (name 2), and assigns the result to (str var). Contrarily to
\str_set_convert:Nnnn, the conditional variant does not raise errors in case the (string)
is not valid according to the (name 1) encoding, or cannot be expressed in the (name 2)
encoding. Instead, the (false code) is performed.

The maximum valid character code, 255 for pdfTEX, and 1114111 for XqTEX and LuaTgX.

3 Internal string functions

__str_gset_other:Nn (tl1 var) {(token list)}

Converts the (token list) to an (other string), where spaces have category code “other”,
and assigns the result to the (¢ var), globally.

__str_hexadecimal_use:NTF

__str_output_byte:n *

__str_hexadecimal_use:NTF (token) {(true code)} {(false code)}

If the (token) is a hexadecimal digit (upper case or lower case), its upper-case version is
left in the input stream, followed by the (true code). Otherwise, the (false code) is left
in the input stream.

TgXhackers note: This function fails on some inputs if the escape character is a hexadec-
imal digit. We are thus careful to set the escape character to a known (safe) value before using
it.

__str_output_byte:n {(intexpr)}

Expands to a character token with category other and character code equal to the value
of {intexpr). The value of (intezpr) must be in the range [—1, 255], and any value outside
this range results in undefined behaviour. The special value —1 is used to produce an
empty result.

4 Possibilities, and things to do

Encoding/escaping-related tasks.

o In XHTEX/LuaTgX, would it be better to use the ~~~~.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ~ the category
superscript, and use \scantokens.

e Change \str_set_convert:Nnnn to expand its last two arguments.

e Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

e Add documentation about each encoding and escaping method, and add examples.

e The hex unescaping should raise an error for odd-token count strings.

¢ Decide what bytes should be escaped in the url escaping. Perhaps !’ () *-./0123456789_

are safe, and all other characters should be escaped?
¢ Automate generation of 8-bit mapping files.

¢ Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

o More encodings (see Heiko’s stringenc). CESU?

e More escapings: ASCII85, shell escapes, lua escapes, etc.?

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

F __str_gset_other:Nn 4, 4
foo commands: __str_hexadecimal_use:NTF 5,5
\l_fOO_StI' 4 __str_output_byte 13 5, 5
\str_set_convert:Nnnn .. 4,4, 4,4,5
M \str_set_convert:NnnnTF 4,4
max commands:
\c_max_char_int 4 T
S TEX and ETEX 2¢ commands:
str commands: \pdfescapename 3
\str_gset_convert:Nnnn 4 \pdfescapestring 3
\str_gset_convert:NnnnTF 4 \scantokens 5

	Contents
	1 Encoding and escaping schemes
	2 Conversion functions
	3 Internal string functions
	4 Possibilities, and things to do
	Index
	F
	M
	S
	T

