
The decNumber C library

23rd January 2010

Mike Cowlishaw

IBM Fellow
IBM UK Laboratories

mfc@uk.ibm.com

Version 3.68

mailto:mfc@uk.ibm.com

Copyright © IBM Corporation 2010. All rights reserved.

Table of Contents

Overview 5

User’s Guide 9
Example 1 – simple addition 11
Example 2 – compound interest 12
Example 3 – passive error handling 13
Example 4 – active error handling 14
Example 5 – compressed formats 16
Example 6 – Packed Decimal numbers 18
Example 7 – Using the decQuad module 19
Example 8 – Using decQuad with decNumber 20

Module descriptions 21
decContext module 22

Definitions 24
Functions 25

decNumber module 30
Definitions 32
Functions 32
Conversion functions 33
Arithmetic and logical functions 34
Utility functions 41

decimal32, decimal64, and decimal128 modules 48
Definitions 48
Functions 49

decFloats modules 52
Definitions 53
Functions 53

decPacked module 67
Definitions 67
Functions 67

Additional options 69
Customization parameters 70
Tuning parameters 71
Print and testing parameters 72

Appendix A – Library performance 73
Description of the tables 73

Version 3.68 3

decDouble performance tables 74
decQuad performance tables 76
Notes 77

Appendix B – Changes 79

Index 87

4 Version 3.68

Overview

The decNumber library implements the General Decimal Arithmetic Specification1 in ANSI C. This
specification defines a decimal arithmetic which meets the requirements of commercial, financial, and
human-oriented applications. It also matches the decimal arithmetic in the IEEE 754 Standard for
Floating Point Arithmetic.2

The library fully implements the specification, and hence supports integer, fixed-point, and floating-
point decimal numbers directly, including infinite, NaN (Not a Number), and subnormal values. Both
arbitrary-precision and fixed-size representations are supported.

The arbitrary-precision code is optimized and tunable for common values (tens of digits) but can be
used without alteration for up to a billion digits of precision and 9-digit exponents. It also provides
functions for conversions between concrete representations of decimal numbers, including Packed
BCD (4-bit Binary Coded Decimal) and the three primary IEEE 754 fixed-size formats of decimal
floating-point (decimal32, decimal64, and decimal128).

The three fixed-size formats are also supported by three modules called decFloats (see page 52), which
have an extensive set of functions that work directly from the formats and provide arithmetical,
logical, and shifting operations, together with conversions to binary integers, Packed BCD, and 8-bit
BCD. Most of the functions defined in IEEE 754 are included, together with other functions outside
the scope of that standard but essential for a decimal-only language implementation.

Library structure

The library comprises several modules (corresponding to classes in an object-oriented
implementation). Each module has a header file (for example, decNumber.h) which defines its data
structure, and a source file of the same name (e.g., decNumber.c) which implements the operations
on that data structure. These correspond to the instance variables and methods of an object-oriented
design.

The core of the library is the decNumber module. This uses an arbitrary-precision decimal number
representation designed for efficient computation in software and implements the arithmetic and
logical operations, together with a number of conversions and utilities. Once a number is held as a
decNumber, no further conversions are necessary to carry out arithmetic.

Most functions in the decNumber module take as an argument a decContext structure, which provides
the context for operations (precision, rounding mode, etc.) and also controls the handling of
exceptional conditions (corresponding to the flags and trap enablers in a hardware floating-point
implementation).

1 See http://speleotrove.com/decimal/ for details.
2 Approved June 2008, expected to be published later in the year.

Version 3.68 Overview 5

http://speleotrove.com/decimal/

The decNumber representation is variable-length and machine-dependent (for example, it contains
integers which may be big-endian or little-endian).

In addition to the arbitrary-precision decNumber format, three fixed-size compact formats are
provided for conversions and interchange.3 These formats are endian-dependent but otherwise are
machine-independent:
decimal32 a 32-bit decimal floating-point representation which provides 7 decimal digits of

precision in a compressed format
decimal64 a 64-bit decimal floating-point representation which provides 16 decimal digits of

precision in a compressed format
decimal128 a 128-bit decimal floating-point representation which provides 34 decimal digits of

precision in a compressed format.

A fourth, machine-independent, Binary Coded Decimal (BCD) format is also provided:
decPacked The decPacked format is the classic packed decimal format implemented by IBM S/360

and later machines, where each digit is encoded as a 4-bit binary sequence (BCD) and a
number is ended by a 4-bit sign indicator. The decPacked module accepts variable
lengths, allowing for very large numbers (up to a billion digits), and also allows the
specification of a scale.

The module for each format provides conversions to and from the core decNumber format. The
decimal32, decimal64, and decimal128 modules also provide conversions to and from character string
format.

The decimal32, decimal64, and decimal128 formats are also supported directly by three modules
which can be used stand-alone (that is, they have no dependency on the decNumber module). These
are:
decSingle a module that provides the functions for the decimal32 format; this format is intended for

storage and interchange only and so the module provides utilities and conversions but no
arithmetic functions

decDouble a module that provides the functions for the decimal64 format; this format is an IEEE
754 basic format and so a full set of arithmetic and other functions is included

decQuad a module that provides the functions for the decimal128 format; this format is an IEEE
754 basic format; it contains the same set of functions as decDouble.4

These modules use the same context mechanism (decContext) as decNumber and so can be used
together with the decNumber module when required in order to use the mathematical functions in that
module or to use its arbitrary-precision capability. Examples are included in the User’s Guide (see
page 9).

Relevant standards

It is intended that, where applicable, functions provided in the decNumber package follow the
requirements of:

• the decimal arithmetic requirements of IEEE 754 except that:

3 See http://speleotrove.com/decimal/decbits.html for details of the formats.
4 Except for two which convert to or from a wider format.

6 Overview Version 3.68

http://speleotrove.com/decimal/decbits.html

1. the IEEE remainder operator (decNumberRemainderNear) is restricted to those values where
the intermediate integer can be represented in the current precision, because the conventional
implementation of this operator would be very long-running for the range of numbers
supported (up to ±101,000,000,000).

2. the mathematical functions in the decNumber module do not, in general, correspond to the
recommended functions in IEEE 754 with the same or similar names; in particular, the power
function has some different special cases, and most of the functions may be up to one unit
wrong in the last place (note, however, that the squareroot function is correctly rounded)

• the floating-point decimal arithmetic defined in ANSI X3.274-19965 (including errata through
2001); note that this applies to functions in the decNumber module only, with appropriate
context.

Please advise the author of any discrepancies with these standards.

5 American National Standard for Information Technology – Programming Language REXX, X3.274-1996, American
National Standards Institute, New York, 1996.

Version 3.68 Overview 7

User’s Guide

To use the decNumber library efficiently it is best to first convert the numbers you are working with
from strings or another coded representation into decNumber format, then carry out calculations on
them, and finally convert them back into the desired string or coded format.

Conversions to and from the decNumber format are fast; they are usually faster than all but the
simplest calculations (x=x+1, for example). Therefore, in general, the cost of conversions is small
compared to that of calculation.

The coded formats currently provided for in the library are

• strings (ASCII bytes, terminated by '\0', as usual for C)

• three formats of compressed floating-point decimals

• Packed Decimal numbers with optional scale.

However, when arbitrary-precision calculation is not required (that is, up to 34 digits of precision is all
that is required) it is even more efficient to use one of the decFloats modules (see page 52) for
arithmetic and other operations. The decFloats modules work directly from the decimal-encoded
compressed formats and avoid the need for conversions to and from the decNumber format. Tables
comparing the performance of the decFloats modules with decNumber can be found in Appendix A
(see page 73).

The remainder of this section illustrates the use of the coded formats and the decFloats modules in
conjunction with the core decContext and decNumber modules by means of examples.

Notes on running the examples

1. All the examples are written conforming to ANSI C, except that they use “line comment”
notation (comments starting with //) from BCPL and C++ for more concise commentary. Most
C compilers support this; if not, a short script can be used to convert the line comments to
traditional block comments (/* ... */). Note that the decNumber header files use only block
comments so do not require conversion.

2. Some pieces of the decNumber package are sensitive to the whether the underlying platform is
big-endian or little-endian; for a big-endian machine, set the DECLITEND tuning parameter (see
page 70) to 0.

The code provided for the first and seventh examples (example1.c and example7.c) includes
a call to the decContextTestEndian routine, which will display a warning if DECLITEND is set
incorrectly.

3. The header files and Example 6 use the standard integer types from stdint.h described in the

Version 3.68 User’s Guide 9

ANSI C99 standard (ISO/IEC 9899:1999). If your C compiler does not supply stdint.h, the
following will suffice:
/* stdint.h -- some standard integer types from C99 */
typedef unsigned char uint8_t;
typedef char int8_t;
typedef unsigned short uint16_t;
typedef short int16_t;
typedef unsigned int uint32_t;
typedef int int32_t;
typedef unsigned long long uint64_t;
typedef long long int64_t;

You may need to change these if (for example) the int type in your compiler does not describe
a 32-bit integer. If there are no 64-bit integers available with your compiler, set the DECUSE64
tuning parameter (see page 70) to 0; the last two typedefs above are then not needed.

4. One aspect of the examples is implementation-defined. It is assumed that the default handling
of the SIGFPE signal is to end the program. If your implementation ignores this signal, the lines
with set.traps=0; would not be needed in the simpler examples.

10 User’s Guide Version 3.68

Example 1 – simple addition
This example is a simple test program which can easily be extended to demonstrate more complicated
operations or to experiment with the functions available.

 1. // example1.c -- convert the first two argument words to decNumber,
 2. // add them together, and display the result
 3.
 4. #define DECNUMDIGITS 34 // work with up to 34 digits
 5. #include "decNumber.h" // base number library
 6. #include <stdio.h> // for printf
 7.
 8. int main(int argc, char *argv[]) {
 9. decNumber a, b; // working numbers
10. decContext set; // working context
11. char string[DECNUMDIGITS+14]; // conversion buffer
12.
13. if (argc<3) { // not enough words
14. printf("Please supply two numbers to add.\n");
15. return 1;
16. }
17. decContextDefault(&set, DEC_INIT_BASE); // initialize
18. set.traps=0; // no traps, thank you
19. set.digits=DECNUMDIGITS; // set precision
20.
21. decNumberFromString(&a, argv[1], &set);
22. decNumberFromString(&b, argv[2], &set);
23. decNumberAdd(&a, &a, &b, &set); // a=a+b
24. decNumberToString(&a, string);
25. printf("%s + %s => %s\n", argv[1], argv[2], string);
26. return 0;
27. } // main

This example is a complete, runnable program. In later examples we’ll leave out some of the
“boilerplate”, checking, etc., but this one should compile and be usable as it stands.

Lines 1 and 2 document the purpose of the program.

Line 4 sets the maximum precision of decNumbers to be used by the program, which is used by the
embedded header file in line 5 (and also elsewhere in this program).

Line 6 includes the C library for input and output, so we can use the printf function. Lines 8 through
11 start the main function, and declare the variables we will use. Lines 13 through 16 check that
enough argument words have been given to the program.

Lines 17–19 initialize the decContext structure, turn off error signals, and set the working precision to
the maximum possible for the size of decNumbers we have declared.

Lines 21 and 22 convert the first two argument words into numbers; these are then added together in
line 23, converted back to a string in line 24, and displayed in line 25.

Note that there is no error checking of the arguments in this example, so the result will be NaN (Not a
Number) if one or both words is not a number. Error checking is introduced in Example 3 (see page
13).

Version 3.68 User’s Guide 11

Example 2 – compound interest
This example takes three parameters (initial amount, interest rate, and number of years) and calculates
the final accumulated investment. For example:

100000 at 6.5% for 20 years => 352364.51

The heart of the program is:
 1. decNumber one, mtwo, hundred; // constants
 2. decNumber start, rate, years; // parameters
 3. decNumber total; // result
 4. decContext set; // working context
 5. char string[DECNUMDIGITS+14]; // conversion buffer
 6.
 7. decContextDefault(&set, DEC_INIT_BASE); // initialize
 8. set.traps=0; // no traps
 9. set.digits=25; // precision 25
10. decNumberFromString(&one, "1", &set); // set constants
11. decNumberFromString(&mtwo, "-2", &set);
12. decNumberFromString(&hundred, "100", &set);
13.
14. decNumberFromString(&start, argv[1], &set); // parameter words
15. decNumberFromString(&rate, argv[2], &set);
16. decNumberFromString(&years, argv[3], &set);
17.
18. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
19. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
20. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
21. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
22. decNumberRescale(&total, &total, &mtwo, &set); // two digits please
23.
24. decNumberToString(&total, string);
25. printf("%s at %s%% for %s years => %s\n",
26. argv[1], argv[2], argv[3], string);
27. return 0;

These lines would replace the content of the main function in Example 1 (adding the check for the
number of parameters would be advisable).

As in Example 1, the variables to be used are first declared and initialized (lines 1 through 12), with
the working precision being set to 25 in this case. The parameter words are converted into
decNumbers in lines 14–16.

The next four function calls calculate the result; first the rate is changed from a percentage (e.g., 6.5)
to a per annum rate (1.065). This is then raised to the power of the number of years (which must be a
whole number), giving the rate over the total period. This rate is then multiplied by the initial
investment to give the result.

Next (line 22) the result is rescaled so it will have only two digits after the decimal point (an exponent
of -2), and finally (lines 24–26) it is converted to a string and displayed.

12 User’s Guide Version 3.68

Example 3 – passive error handling
Neither of the previous examples provides any protection against invalid numbers being passed to the
programs, or against calculation errors such as overflow. If errors occur, therefore, the final result will
probably be NaN or infinite (decNumber result structures are always valid after an operation, but their
value may not be useful).

One way to check for errors would be to check the status field of the decContext structure after every
decNumber function call. However, as that field accumulates errors until cleared deliberately it is
often more convenient and more efficient to delay the check until after a sequence is complete.

This passive checking is easily added to Example 2. Replace lines 14 through 22 in that example with
(the original lines repeated here are unchanged):

 1. decNumberFromString(&start, argv[1], &set); // parameter words
 2. decNumberFromString(&rate, argv[2], &set);
 3. decNumberFromString(&years, argv[3], &set);
 4. if (set.status) {
 5. printf("An input argument word was invalid [%s]\n",
 6. decContextStatusToString(&set));
 7. return 1;
 8. }
 9. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
10. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
11. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
12. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
13. decNumberRescale(&total, &total, &mtwo, &set); // two digits please
14. if (set.status & DEC_Errors) {
15. set.status &= DEC_Errors; // keep only errors
16. printf("Result could not be calculated [%s]\n",
17. decContextStatusToString(&set));
18. return 1;
19. }

Here, in the if statement starting on line 4, the error message is displayed if the status field of the set
structure is non-zero. The call to decContextStatusToString in line 6 returns a string which
describes a set status bit (probably “Conversion syntax”).

In line 14, the test is augmented by anding the set.status value with DEC_Errors. This ensures
that only serious conditions trigger the message. In this case, it is possible that the DEC_Inexact and
DEC_Rounded conditions will be set (if an overflow occurred) so these are cleared in line 15.

With these changes, messages are displayed and the main function ended if either a bad input
parameter word was found (for example, try passing a non-numeric word) or if the calculation could
not be completed (e.g., try a value for the third argument which is not an integer).6

6 Of course, in a user-friendly application, more detailed and specific error messages are appropriate. But here we are
demonstrating error handling, not user interfaces.

Version 3.68 User’s Guide 13

Example 4 – active error handling
The last example handled errors passively, by testing the context status field directly. In this example,
the C signal mechanism is used to handle traps which are raised when errors occur.

When one of the decNumber functions sets a bit in the context status, the bit is compared with the
corresponding bit in the traps field. If that bit is set (is 1) then a C Floating-Point Exception signal
(SIGFPE) is raised. At that point, a signal handler function (previously identified to the C runtime) is
called.

The signal handler function can either simply log or report the trap and then return (and execution will
continue as though the trap had not occurred) or – as in this example – it can call the C longjmp
function to jump to a previously preserved point of execution.

Note that if a jump is used, control will not return to the code which called the decNumber function
that raised the trap, and so care must be taken to ensure that any resources in use (such as allocated
memory) are cleaned up appropriately.

To create this example, modify the Example 1 code this time, by first removing line 18
(set.traps=0;). This will leave the traps field with its default setting, which has all the
DEC_Errors bits set, hence enabling traps for any of those conditions. Then insert after line 6 (before
the main function):

 1. #include <signal.h> // signal handling
 2. #include <setjmp.h> // setjmp/longjmp
 3.
 4. jmp_buf preserve; // stack snapshot
 5.
 6. void signalHandler(int sig) {
 7. signal(SIGFPE, signalHandler); // re-enable
 8. longjmp(preserve, sig); // branch to preserved point
 9. }

Here, lines 1 and 2 include definitions for the C library functions we will use. Line 4 declares a global
buffer (accessible to both the main function and the signal handler) which is used to preserve the point
of execution to which we will jump after handling the signal.

Lines 6 through 9 are the signal handler. Line 7 re-enables the signal handler, as described below (in
this example this is in fact unnecessary as we will be ending the program immediately). This is
normally needed as handlers are disabled on entry, and need to be re-enabled if more than one trap is
to be handled.

Line 8 jumps to the point preserved when the program starts up (in the next code insert). The value,
sig, which the signal handler receives is passed to the preserved code. In this example, sig always
has the value SIGFPE, but in a more complicated program the same signal handler could be used to
handle other signals, too.

The next segment of code is inserted after line 11 of Example 1 (just after the existing declarations):
 1. int value; // work variable
 2.
 3. signal(SIGFPE, signalHandler); // set up signal handler
 4. value=setjmp(preserve); // preserve and test environment
 5. if (value) { // (non-0 after longjmp)
 6. set.status &= DEC_Errors; // keep only errors
 7. printf("Signal trapped [%s].\n", decContextStatusToString(&set));
 8. return 2;
 9. }

14 User’s Guide Version 3.68

Here, a work variable is declared in line 1 and the signal handler function is registered (identified to
the C run time) in line 3. The call to the signal function identifies the signal to be handled (SIGFPE)
and the function (signalHandler) that will be called when the signal is raised, and enables the
handler.

Next, in line 4, the setjmp function is called. On its first call, this saves the current point of
execution into the preserve variable and then returns 0. The following lines (5–8) are then not
executed and execution of the main function continues as before.

If a trap later occurs (for example, if one of the arguments is not a number) then the following takes
place:

1. the SIGFPE signal is raised by the decNumber library

2. the signalHandler function is called by the C run time with argument SIGFPE

3. the function re-enables the signal, and then calls longjmp

4. this in turn causes the execution stack to be “unwound” to the point which was preserved in the
initial call to setjmp

5. the setjmp function then returns, with the (non-0) value passed to it in the call to longjmp

6. the test in line 5 then succeeds, so line 6 clears any informational status bits in the status field in
the context structure which was given to the decNumber routines and line 7 displays a message,
using the same structure

7. finally, in line 8, the main function is ended by the return statement.

Of course, different behaviors are possible both in the signal handler, as already noted, and after the
jump; the main program could prompt for new values for the input parameters and then continue as
before, for example.

Version 3.68 User’s Guide 15

Example 5 – compressed formats
The previous examples all used decNumber structures directly, but that format is not necessarily
compact and is machine-dependent. These attributes are generally good for performance, but are less
suitable for the storage and exchange of numbers.

The decimal32, decimal64, and decimal128 forms are provided as efficient, formats used for storing
numbers of up to 7, 16 or 34 decimal digits respectively, in 4, 8, or 16 bytes. These formats are similar
to, and are used in the same manner as, the C float and double data types.

Here’s an example program. Like Example 1, this is runnable as it stands, although it’s recommended
that at least the argument count check be added.

 1. // example5.c -- decimal64 conversions
 2. #include "decimal64.h" // decimal64 and decNumber library

 3. #include <stdio.h> // for (s)printf
 4.
 5. int main(int argc, char *argv[]) {
 6. decimal64 a; // working decimal64 number
 7. decNumber d; // working number
 8. decContext set; // working context
 9. char string[DECIMAL64_String]; // number->string buffer
10. char hexes[25]; // decimal64->hex buffer
11. int i; // counter
12.
13. decContextDefault(&set, DEC_INIT_DECIMAL64); // initialize
14.
15. decimal64FromString(&a, argv[1], &set);
16. // lay out the decimal64 as eight hexadecimal pairs
17. for (i=0; i<8; i++) {
18. sprintf(&hexes[i*3], "%02x ", a.bytes[i]);
19. }
20. decimal64ToNumber(&a, &d);
21. decNumberToString(&d, string);
22. printf("%s => %s=> %s\n", argv[1], hexes, string);
23. return 0;
24. } // main

Here, the #include on line 2 not only defines the decimal64 type, but also includes the decNumber
and decContext header files. Also, if DECNUMDIGITS (see page 30) has not already been defined, the
decimal64.h file sets it to 16 so that any decNumbers declared will be exactly the right size to take
any decimal64 without rounding.

The declarations in lines 6–11 create three working structures and other work variables; the
decContext structure is initialized in line 13 (here, set.traps is 0).

Line 15 converts the input argument word to a decimal64 (with a function call very similar to
decNumberFromString). Note that the value would be rounded if the number needed more than 16
digits of precision.

Lines 16–19 lay out the decimal64 as eight hexadecimal pairs in a string, so that its encoding can be
displayed.

Lines 20–22 show how decimal64 numbers are used. First the decimal64 is converted to a
decNumber, then arithmetic could be carried out, and finally the decNumber is converted back to some
standard form (in this case a string, so it can be displayed in line 22). For example, if the input
argument were “79”, the following would be displayed on a big-endian machine:

16 User’s Guide Version 3.68

79 => 22 38 00 00 00 00 00 79 => 79

(On a little-endian machine the byte order would be reversed.)

The decimal32 and decimal128 forms are used in exactly the same way, for working with up to 7 or up
to 34 digits of precision respectively. These forms have the same constants and functions as decimal64
(with the obvious name changes).

Like decimal64.h, the decimal32 and decimal128 header files define the DECNUMDIGITS constant
(see page 30) to either 7 or 34 if it has not already been defined.

It is also possible to work with the decimal128 (etc.) formats directly, without converting to and from
the decNumber format; this is much faster when only the fixed-size formats are needed. Example 7
(see page 19) shows how to use the decQuad module for calculations in the 128-bit format.

Version 3.68 User’s Guide 17

Example 6 – Packed Decimal numbers
This example reworks Example 2, starting and ending with Packed Decimal numbers. First, lines 4
and 5 of Example 1 (which Example 2 modifies) are replaced by the line:

 1. #include "decPacked.h"

Then the following declarations are added to the main function:
 1. uint8_t startpack[]={0x01, 0x00, 0x00, 0x0C}; // investment=100000
 2. int32_t startscale=0;
 3. uint8_t ratepack[]={0x06, 0x5C}; // rate=6.5%
 4. int32_t ratescale=1;
 5. uint8_t yearspack[]={0x02, 0x0C}; // years=20
 6. int32_t yearsscale=0;
 7. uint8_t respack[16]; // result, packed
 8. int32_t resscale; // ..
 9. char hexes[49]; // for packed->hex
10. int i; // counter

The first three pairs declare and initialize the three parameters, with a Packed Decimal byte array and
associated scale for each. In practice these might be read from a file or database. The fourth pair is
used to receive the result. The last two declarations (lines 9 and 10) are work variables used for
displaying the result.

Next, in Example 2, line 5 is removed, and lines 14 through 26 are replaced by:
 1. decPackedToNumber(startpack, sizeof(startpack), &startscale, &start);

 2. decPackedToNumber(ratepack, sizeof(ratepack), &ratescale, &rate);
 3. decPackedToNumber(yearspack, sizeof(yearspack), &yearsscale, &years);

 4.
 5. decNumberDivide(&rate, &rate, &hundred, &set); // rate=rate/100
 6. decNumberAdd(&rate, &rate, &one, &set); // rate=rate+1
 7. decNumberPower(&rate, &rate, &years, &set); // rate=rate**years
 8. decNumberMultiply(&total, &rate, &start, &set); // total=rate*start
 9. decNumberRescale(&total, &total, &mtwo, &set); // two digits please
10.
11. decPackedFromNumber(respack, sizeof(respack), &resscale, &total);
12.
13. // lay out the total as sixteen hexadecimal pairs
14. for (i=0; i<16; i++) {
15. sprintf(&hexes[i*3], "%02x ", respack[i]);
16. }
17. printf("Result: %s (scale=%ld)\n", hexes, (long int)resscale);

Here, lines 1 through 3 convert the Packed Decimal parameters into decNumber structures. Lines 5-9
calculate and rescale the total, as before, and line 11 converts the final decNumber into Packed
Decimal and scale. Finally, lines 13-17 lay out and display the result, which should be:

Result: 00 00 00 00 00 00 00 00 00 00 00 03 52 36 45 1c (scale=2)

Note that the number is right-aligned, with a sign nibble.

18 User’s Guide Version 3.68

Example 7 – Using the decQuad module
This example reworks Example 1, but using the decQuad module for all conversions and the
arithmetic.

 1. // example7.c -- using decQuad to add two numbers together
 2.
 3. #include "decQuad.h" // decQuad library
 4. #include <stdio.h> // for printf
 5.
 6. int main(int argc, char *argv[]) {
 7. decQuad a, b; // working decQuads
 8. decContext set; // working context
 9. char string[DECQUAD String]; // number->string buffer
10.
11. if (argc<3) { // not enough words
12. printf("Please supply two numbers to add.\.n");
13. return 1;
14. }
15. decContextDefault(&set, DEC INIT DECQUAD); // initialize
16.
17. decQuadFromString(&a, argv[1], &set);
18. decQuadFromString(&b, argv[2], &set);
19. decQuadAdd(&a, &a, &b, &set); // a=a+b
20. decQuadToString(&a, string);
21.
22. printf("%s + %s => %s\n", argv[1], argv[2], string);
23. return 0;
24. } // main

This example is a complete, runnable program. Like Example 1, it takes two argument words,
converts them to a decimal format (in this case decQuad, the 34-digit format), adds them, and converts
the result back to a string for display.

Line 3 includes the decQuad header file. This in turn includes the other necessary header, decContext.
The context variable set is used to set the rounding mode for the conversions from string and for the
add, and its status field is used to report any errors (not checked in this example). No other field in the
context is used.

To compile and run this, only the files example7.c, decContext.c, and decQuad.c are needed.

To use the 16-digit format instead of the 34-digit format, change decQuad to decDouble and QUAD to
DOUBLE in the example. Note that in this case the file decQuad.c is still needed (must be compiled),
because decDouble requires decQuad.

Version 3.68 User’s Guide 19

Example 8 – Using decQuad with decNumber
This example shows how the decNumber and decQuad modules can be mixed, in this case to raise one
number to the power of another. (In this case, the use of the decQuad module could be avoided – this
is just to demonstrate how to use the two modules together.)

 1. // example8.c -- using decQuad with the decNumber module
 2.
 3. #include "decQuad.h" // decQuad library
 4. #include "decimal128.h" // interface to decNumber
 5. #include <stdio.h> // for printf
 6.
 7. int main(int argc, char *argv[]) {
 8. decQuad a; // working decQuad
 9. decNumber numa, numb; // working decNumbers
10. decContext set; // working context
11. char string[DECQUAD String]; // number->string buffer
12.
13. if (argc<3) { // not enough words
14. printf("Please supply two numbers for power(2*a, b).\n");
15. return 1;
16. }
17. decContextDefault(&set, DEC INIT DECQUAD); // initialize
18.
19. decQuadFromString(&a, argv[1], &set); // get a
20. decQuadAdd(&a, &a, &a, &set); // double a
21. decQuadToNumber(&a, &numa); // convert to decNumber
22. decNumberFromString(&numb, argv[2], &set);
23. decNumberPower(&numa, &numa, &numb, &set); // numa=numa**numb
24. decQuadFromNumber(&a, &numa, &set); // back via a Quad
25. decQuadToString(&a, string); // ..
26.
27. printf("power(2*%s, %s) => %s\n", argv[1], argv[2], string);
28. return 0;
29. } // main

Here, the decimal128 module is used as a “proxy” between the decNumber and decQuad formats. The
decimal128 and decQuad structures are identical (except in name) so pointers to the structures can
safely be cast from one to the other. The decQuadToNumber and decQuadFromNumber functions
are in fact macros which cast the data pointer and then use the decimal128ToNumber or
decimal128FromNumber function to effect the conversion. Using a proxy in this way avoids any
dependencies between decQuad and decNumber.

Note that the same decContext structure (set) is used for both decQuad and decNumber function
calls. decQuad uses only the round and status fields, but decNumber also needs the other fields. All the
fields are initialized by the call to decContextDefault.

The inclusion of decimal128.h also sets up the DECNUMDIGITS required and includes
decNumber.h. The decimal128 module requires decimal64 (for shared code and tables), so the full
list of files to compile for this example is: example8.c, decContext.c, decQuad.c,
decNumber.c, decimal128.c, and decimal64.c.

20 User’s Guide Version 3.68

Module descriptions

The section contains a detailed description of each of the modules in the library. Each description is in
three parts:

1. An overview of the module and a description of its primary data structure.

2. A description of other definitions in the header (.h) file. This summarizes the content of the
header file rather than detailing every constant as it is assumed that users will have a copy of the
header file available.

3. A description of the functions in the source (.c) file. This is a detailed description of each
function and how to use it, the intent being that it should not be necessary to have the source file
available in order to use the functions.

The modules all conform to some general rules:

• They are reentrant (they have no static variables and may safely be used in multi-threaded
applications), and use only aligned integers and strict aliasing.

• All data structures are passed by reference, for best performance. Data structures whose
references are passed as inputs are never altered unless they are also used as a result. Where
appropriate, functions return a reference to a result argument.

• Only arbitrary-precision calculations might allocate memory. Up to some maximum precision
(chosen by a tuning parameter in the decNumberLocal.h file), even these calculations do not
require allocated memory, except for rounded input arguments and some mathematical
functions. Whenever memory is allocated, it is always released before the function returns or
raises any traps. The latter constraint implies that long jumps may safely be made from a signal
handler handling any traps, for example.

• The names of all modules start with the string “dec”, and the names of all public constants start
with the string “DEC”.

• Public functions (and macros used as functions) in a module have names which start with the
name of the module (for example, decNumberAdd). This naming scheme corresponds to the
common naming scheme in object-oriented languages, where that function (method) might be
called decNumber.add.

• The types int and long are not used; instead types defined in the C99 stdint.h header file
are used to ensure integers are of the correct length.

• Strings always follow C conventions. That is, they are always terminated by a null character
('\0').

Version 3.68 Module descriptions 21

decContext module
The decContext module defines the data structure used for providing the context for operations and for
managing exceptional conditions. The decNumber module uses all of these fields for full control of
arbitrary-precision arithmetic; the decFloats modules (decQuad, etc.) are fixed-size and fixed-format
and use only the round and status fields.

The decContext structure comprises the following fields:
digits The digits field is used to set the precision to be used for an operation. The result of an

operation will be rounded to this length if necessary, and hence the space needed for the
result decNumber structure is limited by this field.

digits is of type int32_t, and must have a value in the range 1 through 999,999,999.
emax The emax field is used to set the magnitude of the largest adjusted exponent that is

permitted. The adjusted exponent is calculated as though the number were expressed in
scientific notation (that is, except for 0, expressed with one non-zero digit before the
decimal point).

If the adjusted exponent for a result or conversion would be larger than emax then an
overflow results.

emax is of type int32_t, and must have a value in the range 0 through 999,999,999.
emin The emin field is used to set the smallest adjusted exponent that is permitted for normal

numbers. The adjusted exponent is calculated as though the number were expressed in
scientific notation (that is, except for 0, expressed with one non-zero digit before the
decimal point).

If the adjusted exponent for a result or conversion would be smaller than emin then the
result is subnormal. If the result is also inexact, an underflow results. The exponent of
the smallest possible number (closest to zero) will be emin-digits+1.7 emin is usually set to
-emax or to -(emax-1).

emin is of type int32_t, and must have a value in the range -999,999,999 through 0.
round The round field is used to select the rounding algorithm to be used if rounding is

necessary during an operation. It must be one of the values in the rounding
enumeration:
DEC_ROUND_CEILING Round towards +Infinity.
DEC_ROUND_DOWN Round towards 0 (truncation).
DEC_ROUND_FLOOR Round towards -Infinity.
DEC_ROUND_HALF_DOWN Round to nearest; if equidistant, round down.
DEC_ROUND_HALF_EVEN Round to nearest; if equidistant, round so that the final digit

is even.
DEC_ROUND_HALF_UP Round to nearest; if equidistant, round up.
DEC_ROUND_UP Round away from 0.
DEC_ROUND_05UP The same as DEC_ROUND_UP, except that rounding up only

7 See http://speleotrove.com/decimal/decarith.html for details.

22 Module descriptions Version 3.68

http://speleotrove.com/decimal/decarith.html

occurs if the digit to be rounded up is 0 or 5 and after
Overflow the result is the same as for DEC_ROUND_DOWN.

DEC_ROUND_DEFAULT The same as DEC_ROUND_HALF_EVEN.
status The status field comprises one bit for each of the exceptional conditions described in the

specifications (for example, Division by zero is indicated by the bit defined as
DEC_Division_by_zero). Once set, a bit remains set until cleared by the user, so more
than one condition can be recorded.

status is of type uint32_t (unsigned integer). Bits in the field must only be set if they
are defined in the decContext header file. In use, bits are set by the decNumber library
modules when exceptional conditions occur, but are never reset. The library user should
clear the bits when appropriate (for example, after handling the exceptional condition),
but should never set them.

traps The traps field is used to indicate which of the exceptional conditions should cause a trap.
That is, if an exceptional condition bit is set in the traps field, then a trap event occurs
when the corresponding bit in the status field is set and decContextSetStatus is
called (which happens automatically at the end of any operation which sets a status bit).

In this implementation, a trap is indicated by raising the signal SIGFPE (defined in
signal.h), the Floating-Point Exception signal.

Applications may ignore traps, or may use them to recover from failed operations.
Alternatively, applications can prevent all traps by clearing the traps field, and inspect the
status field directly to determine if errors have occurred.

traps is of type uint32_t. Bits in the field must only be set if they are defined in the
decContext header file.

Note that the result of an operation is always a valid number, but after an exceptional
condition has been detected its value may be one of the special values (NaN or infinite).
These values can then propagate through other operations without further conditions
being raised.

clamp The clamp field controls explicit exponent clamping, as is applied when a result is
encoded in one of the compressed formats. When 0, a result exponent is limited to a
maximum of emax and a minimum of emin (for example, the exponent of a zero result
will be clamped to be in this range). When 1, a result exponent has the same minimum
but is limited to a maximum of emax-(digits-1). As well as clamping zeros, this may
cause the coefficient of a result to be padded with zeros on the right in order to bring the
exponent within range.

For example, if emax is +96 and digits is 7, the result 1.23E+96 would have a [sign,
coefficient, exponent] of [0, 123, 94] if clamp were 0, but would give [0, 1230000,
90] if clamp were 1.

Also when 1, clamp limits the length of NaN payloads to digits-1 (rather than digits) when
constructing a NaN by conversion from a string.

clamp is of type uint8_t (an unsigned byte).
extended The extended field controls the level of arithmetic supported. When 1, special values are

possible, some extra checking required for IEEE 754 conformance is enabled, and
subnormal numbers can result from operations (that is, results whose adjusted exponent

Version 3.68 Module descriptions 23

is as low as emin-(digits-1) are possible). When 0, the X3.274 subset is supported; in
particular, -0 is not possible, operands are rounded, and the exponent range is balanced.

If extended will always be 1, then the DECSUBSET tuning parameter (see page 70) may be
set to 0 in decContext.h. This will remove the extended field from the structure, and
also remove all code that refers to it. This gives a 10%–20% speed improvement for
many operations.

extended is of type uint8_t (an unsigned byte).

Please see the arithmetic specification for further details on the meaning of specific settings (for
example, the rounding mode).

Definitions
The decContext.h header file defines the context used by most functions in the decNumber module;
it is therefore automatically included by decNumber.h. In addition to defining the decContext data
structure described above, it also includes:

• The enumeration of the rounding modes supported by this implementation (for the round field of
the decContext).

• The decClass enumeration (and corresponding strings) which is used to classify numbers with
the decNumberClass function (see page 41) or the equivalent functions in decQuad, etc.

• The exceptional condition flags, used in the status and traps fields. The flags used can be
modified by the DECEXTFLAG tuning parameter (see page 70).

• Constants describing the range of precision and adjusted exponent supported by the decNumber
package.

• Groupings for the exceptional conditions flags, indicating how they correspond to the named
conditions defined in IEEE 754, which are usually considered errors (DEC_Errors), etc.

• A character constant naming each of the exceptional conditions (intended for human-readable
error reporting).

• Constants used for selecting initialization schemes.

• Definitions of the public functions in the decContext module.

Several of the exceptional condition flags merit special attention:

• The DEC_Clamped flag is set whenever the exponent of a result is clamped to an extreme value,
derived from emax or emin and possibly modified by clamp.

• The DEC_Inexact flag is set whenever a result is inexact (non-zero digits were discarded) due
to rounding of input operands or the result.

• The DEC_Lost_digits flag is set when an input operand is made inexact through rounding
(which can only occur if extended is 0).

• The DEC_Rounded flag is set whenever a result or input operand is rounded (even if only zero
digits were discarded).

• The DEC_Subnormal flag is set whenever a result is a subnormal value.

24 Module descriptions Version 3.68

Unlike the other status flags, which indicate error conditions, execution continues normally when
these events occur and the result is a number (unless an error condition also occurs). As usual, any or
all of the conditions can be enabled for traps and in this case the operation is completed before the trap
takes place.

Note that of the above only the DEC_Inexact flag is set by the decFloats modules. The other
informational flags are only set by the decNumber module.

Functions
The decContext.c source file contains the public functions defined in the header file, as follows. In
all these functions, only status bits (etc.) that are defined in the decContext.h header file should be
used.8

decContextClearStatus(context, status)

This function is used to clear (set to zero) one or more status bits in the status field of a decContext.

The arguments are:
context (decContext *) Pointer to the structure whose status is to be updated.
status (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit to be

cleared in the context status field.

Returns context.

decContextDefault(context, kind)

This function is used to initialize a decContext structure to default values. It is stongly recommended
that this function always be used to initialize a decContext structure, even if most or all of the fields
are to be set explicitly (in case new fields are added to a later version of the structure).

The arguments are:
context (decContext *) Pointer to the structure to be initialized.
kind (int32_t) The kind of initialization to be performed. Only the values defined in the

decContext header file are permitted (any other value will initialize the structure to a
valid condition, but with the DEC_Invalid_operation status bit set).

When kind is DEC_INIT_BASE, the defaults for the ANSI X3.274 arithmetic subset are
set. That is, the digits field is set to 9, the emax field is set to 999999999, the round field is
set to ROUND_HALF_UP, the status field is cleared (all bits zero), the traps field has all the
DEC_Errors bits set (DEC_Rounded, DEC_Inexact, DEC_Lost_digits, and
DEC_Subnormal are 0), clamp is set to 0, and extended (if present) is set to 0.

When kind is DEC_INIT_DECIMAL32 or DEC_INIT_DECSINGLE, defaults for a
decimal32 number using IEEE 754 rules are set. That is, the digits field is set to 7, the
emax field is set to 96, the emin field is set to -95, the round field is set to
DEC_ROUND_HALF_EVEN, the status field is cleared (all bits zero), the traps field is
cleared (no traps are enabled), clamp is set to 1, and extended (if present) is set to 1.

When kind is DEC_INIT_DECIMAL64 or DEC_INIT_DECDOUBLE, defaults for a
8 If “private” bits were allowed, future extension of the library with other conditions would be impossible.

Version 3.68 Module descriptions 25

decimal64 number using IEEE 754 rules are set. That is, the digits field is set to 16, the
emax field is set to 384, the emin field is set to -383, and the other fields are set as for
DEC_INIT_DECIMAL32.

When kind is DEC_INIT_DECIMAL128 or DEC_INIT_DECQUAD, defaults for a
decimal128 number using IEEE 754 rules are set. That is, the digits field is set to 34, the
emax field is set to 6144, the emin field is set to -6143, and the other fields are set as for
DEC_INIT_DECIMAL32.

Returns context.

decContextGetRounding(context)

This function is used to return the round (rounding mode) field of a decContext.

The argument is:
context (decContext *) Pointer to the structure whose rounding mode is to be returned.

Returns the enum rounding rounding mode.

decContextGetStatus(context)

This function is used to return the status field of a decContext.

The argument is:
context (decContext *) Pointer to the structure whose status is to be returned.

Returns the uint32_t status field.

decContextRestoreStatus(context, status, mask)

This function is used to restore one or more status bits in the status field of a decContext from a saved
status field.

The arguments are:
context (decContext *) Pointer to the structure whose status is to be updated.
status (uint32_t) A saved status field (as saved by decContextSaveStatus or retrieved by

decContextGetStatus).
mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit to be

restored (set to 0 or 1, taken from the corresponding bit in status) in the context status
field.

Returns context.

Note that setting a bit using this function does not cause a trap (use the decContextSetStatus function
can be used to raise a trap, if desired).

decContextSaveStatus(context, mask)

This function is used to save one or more status bits from the status field of a decContext.

26 Module descriptions Version 3.68

The arguments are:
context (decContext *) Pointer to the structure whose status is to be saved.
mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit to be saved

from the context status field.

Returns the uint32_t which is the logical And of the context status field and the mask.

decContextSetRounding(context, rounding)

This function is used to set the rounding mode in the round field of a decContext.

The arguments are:
context (decContext *) Pointer to the structure whose rounding mode is to be set.
rounding (enum rounding) The rounding mode to be copied to the context round field.

Returns context.

decContextSetStatus(context, status)

This function is used to set one or more status bits in the status field of a decContext. If any of the bits
being set have the corresponding bit set in the traps field, a trap is raised (regardless of whether the bit
is already set in the status field). Only one trap is raised even if more than one bit is being set.

The arguments are:
context (decContext *) Pointer to the structure whose status is to be set.
status (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit to be set in

the context status field.

Returns context.

Normally, only library modules use this function. Applications may clear status bits but should not set
them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a C long jump, and
hence control may not return from the function. It should therefore only be invoked when any state
and resources used (such as allocated memory) are clean.

decContextSetStatusFromString(context, string)

This function is used to set a status bit in the status field of a decContext, using the name of the bit as
returned by the decContextStatusToString function. If the bit being set has the corresponding bit set in
the traps field, a trap is raised (regardless of whether the bit is already set in the status field).

The arguments are:
context (decContext *) Pointer to the structure whose status is to be set.
string (char *) A string which must be exactly equal to one that might be returned by

decContextStatusToString. If the string is “No status”, the status is not changed and
no trap is raised. If the string is “Multiple status”, or is not recognized, then the call
is in error.

Version 3.68 Module descriptions 27

Returns context unless the string is in error, in which case NULL is returned.

Normally, only library and test modules use this function. Applications may clear status bits but
should not set them (except, perhaps, for testing).

Note that a signal handler which handles a trap raised by this function may execute a C long jump, and
hence control may not return from the function. It should therefore only be invoked when any state
and resources used (such as allocated memory) are clean.

decContextSetStatusFromStringQuiet(context, string)

This function is identical to decContextSetStatusFromString except that the context traps field is
ignored (i.e., no trap is raised).

decContextSetStatusQuiet(context, status)

This function is identical to decContextSetStatus except that the context traps field is ignored (i.e., no
trap is raised).

decContextStatusToString(context)

This function returns a pointer (char *) to a human-readable description of a status bit. The string
pointed to will be a constant.

The argument is:
context (decContext *) Pointer to the structure whose status is to be returned as a string. The

bits set in the status field must comprise only bits defined in the header file.

If no bits are set in the status field, a pointer to the string “No status” is returned. If more than one
bit is set, a pointer to the string “Multiple status” is returned.

Note that the content of the string pointed to is a programming interface (it is understood by the
decContextSetStatusFromString function) and is therefore not language- or locale-dependent.

decContextTestEndian(quiet)

This function checks that the DECLITEND tuning parameter (see page 70) is set correctly.

The argument is:
quiet (uint8 t) If 0, a warning message is displayed (using printf) if DECLITEND is set

incorrectly. If 1, no message is displayed.

Returns 0 if the DECLITEND parameter is correct, 1 if it is incorrect and should be set to 1, and -1 if it
is incorrect and should be set to 0.

decContextTestSavedStatus(status, mask)

This function is used to test one or more status bits in a saved status field.

The arguments are:
status (uint32_t) A saved status field (as saved by decContextSaveStatus or retrieved by

decContextGetStatus).

28 Module descriptions Version 3.68

mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit in status to
be included in the test.

Returns the uint32_t which is the logical And of status and mask.

decContextTestStatus(context, mask)

This function is used to test one or more status bits in a context.

The arguments are:
context (decContext *) Pointer to the structure whose status is to be tested.
mask (uint32_t) Any 1 (set) bit in this argument will cause the corresponding bit in context

status field to be included in the test.

Returns the uint32_t which is the logical And of the context status field and mask.

decContextZeroStatus(context)

This function is used to clear (set to zero) all the status bits in the status field of a decContext.

The argument is:
context (decContext *) Pointer to the structure whose status is to be zeroed.

Returns context.

Version 3.68 Module descriptions 29

decNumber module
The decNumber module defines the data structure used for representing numbers in a form suitable for
computation, and provides the functions for operating on those values.

The decNumber structure is optimized for efficient processing of relatively short numbers (tens or
hundreds of digits); in particular it allows the use of fixed sized structures and minimizes copy and
move operations. The functions in the module, however, support arbitrary precision arithmetic (up to
999,999,999 decimal digits, with exponents up to 9 digits).

The essential parts of a decNumber are the coefficient, which is the significand of the number, the
exponent (which indicates the power of ten by which the coefficient should be multiplied), and the sign,
which is 1 if the number is negative, or 0 otherwise. The numerical value of the number is then given
by: (-1)sign × coefficient × 10exponent.

Numbers may also be a special value. The special values are NaN (Not a Number), which may be quiet
(propagates quietly through operations) or signaling (raises the Invalid operation condition when
encountered), and ±infinity.

These parts are encoded in the four fields of the decNumber structure:
digits The digits field contains the length of the coefficient, in decimal digits.

digits is of type int32_t, and must have a value in the range 1 through 999,999,999.

exponent The exponent field holds the exponent of the number. Its range is limited by the
requirement that the range of the adjusted exponent of the number be balanced and fit
within a whole number of decimal digits (in this implementation, be -999,999,999
through +999,999,999). The adjusted exponent is the exponent that would result if the
number were expressed with a single digit before the decimal point, and is therefore
given by exponent+digits-1.

When the extended flag in the context is 1, gradual underflow (using subnormal values) is
enabled. In this case, the lower limit for the adjusted exponent becomes -999,999,999-
(precision-1), where precision is the digits setting from the context; the adjusted exponent
may then have 10 digits.

exponent is of type int32_t.
bits The bits field comprises one bit which indicates the sign of the number (1 for negative, 0

otherwise), 3 bits which indicate the special values, and 4 further bits which are unused
and reserved. These reserved bits must be zero.

If the number has a special value, just one of the indicator bits (DECINF, DECNAN, or
DECSNAN) will be set (along with DECNEG iff the sign is 1). If DECINF is set digits must
be 1 and the other fields must be 0. If the number is a NaN, the exponent must be zero
and the coefficient holds any diagnostic information (with digits indicating its length, as
for finite numbers). A zero coefficient indicates no diagnostic information.

bits is of type uint8_t (an unsigned byte). Masks for the named bits, and some useful
macros, are defined in the header file.

lsu The lsu field is one or more units in length (of type decNumberUnit, an unsigned
integer), and contains the digits of the coefficient. Each unit represents one or more of the
digits in the coefficient and has a binary value in the range 0 through 10n-1, where n is the
number of digits in a unit, set by the compile-time definition DECDPUN (see page 71).

30 Module descriptions Version 3.68

The size of a unit is the smallest of 1, 2, or 4 bytes which will contain the maximum
value held in the unit.

The units comprising the coefficient start with the least significant unit (lsu). Each unit
except the most significant unit (msu) contains DECDPUN digits. The msu contains from
1 through DECDPUN digits, and must not be 0 unless digits is 1 (for the value zero).
Leading zeros in the msu are never included in the digits count, except for the value zero.

The number of units predefined for the lsu field is determined by DECNUMDIGITS, which
defaults to 1 (the number of units will be DECNUMDIGITS divided by DECDPUN, rounded
up to a whole unit).

For many applications, there will be a known maximum length for numbers and
DECNUMDIGITS can be set to that length, as in Example 1 (see page 11). In others, the
length may vary over a wide range and it then becomes the programmer’s responsibility
to ensure that there are sufficient units available immediately following the decNumber
lsu field. This can be achieved by enclosing the decNumber in other structures which
append various lengths of unit arrays, or in the more general case by allocating storage
with sufficient space for the other decNumber fields and the units of the number.

lsu is an array of type decNumberUnit (an unsigned integer whose length depends on
the value of DECDPUN), with at least one element. If digits needs fewer units than the size
of the array, remaining units are not used (they will neither be changed nor referenced).
For special values, only the first unit need be 0.

It is expected that decNumbers will usually be constructed by conversions from other formats, such as
strings or decimal64 structures, so the decNumber structure is in some sense an “internal”
representation; in particular, it is machine-dependent.9

Examples:
If DECDPUN were 4, the value -1234.50 would be encoded with:

digits = 6
exponent = -2
bits = 0x80
lsu = {3450, 12}

the value 0 would be:

digits = 1
exponent = 0
bits = 0x00
lsu = {0}

and -∞ (minus infinity) would be:

digits = 1
exponent = 0
bits = 0xC0
lsu = {0}

9 The layout of an integer might be big-endian or little-endian, for example.

Version 3.68 Module descriptions 31

Definitions
The decNumber.h header file defines the decNumber data structure described above. It also
includes:

• The tuning parameter DECDPUN.

This sets the number of digits held in one unit (see page 30), which in turn alters the
performance and other characteristics of the library. Further details are given in the tuning
section (see page 71).

If this parameter is changed, the decNumber.c source file must be recompiled for the change
to have effect.

• The decClass enumeration (and corresponding strings) which is used to classify decNumbers
with the decNumberClass function (see page 41).

• Constants naming the bits in the bits field, such as DECNEG, the sign bit.

• Definitions of the public functions and macros in the decNumber module.

Functions
The decNumber.c source file contains the public functions defined in the header file. These
comprise conversions to and from strings, the arithmetic and logical operations, and some utility
functions.

The functions all follow some general rules:

• Operands to the functions which are decNumber structures (referenced by an argument) are
never modified unless they are also specified to be the result structure (which is always
permitted).

Often, operations which do specify an operand and result as the same structure can be carried
out in place, giving improved performance. For example, x=x+1, using the decNumberAdd
function, can be several times faster than x=y+1.

• Each function forms its primary result by setting the content of one of the structures referenced
by the arguments; a pointer to this structure is returned by the function.

• Exceptional conditions and errors are reported by setting a bit in the status field of a referenced
decContext structure (see page 22). The corresponding bit in the traps field of the decContext
structure determines whether a trap is then raised, as also described earlier.

• If an argument to a function is corrupt (it is a NULL reference, or it is an input argument and the
content of the structure it references is inconsistent), the function is unprotected (may “crash”)
unless DECCHECK is enabled (see the next rule). However, in normal operation (that is, no
argument is corrupt), the result will always be a valid decNumber structure. The value of the
decNumber result may be infinite or a quiet NaN if an error was detected (i.e., if one of the
DEC_Errors bits (see page 24) is set in the decContext status field).

• For best performance, input operands are assumed to be valid (not corrupt) and are not checked
unless DECCHECK (see page 72) is 1, which enables full operand checking. Whether DECCHECK
is 0 or 1, the value of a result is undefined if an argument is corrupt. DECCHECK checking is a
diagnostic tool only; it will report the error and prevent code failure by ensuring that results are

32 Module descriptions Version 3.68

valid numbers (unless the result reference is NULL), but it does not attempt to correct arguments.

Conversion functions
The conversion functions build a decNumber from a string, or lay out a decNumber as a character
string. Additional Utility functions (see page 41) are included in the package for conversions to and
from BCD strings and binary integers.

decNumberFromString(number, string, context)

This function is used to convert a character string to decNumber format. It implements the to-number
conversion from the arithmetic specification.

The conversion is exact provided that the numeric string has no more significant digits than are
specified in context.digits and the adjusted exponent is in the range specified by context.emin
and context.emax. If there are more than context.digits digits in the string, or the exponent is
out of range, the value will be rounded as necessary using the context.round rounding mode. The
context.digits field therefore both determines the maximum precision for unrounded numbers
and defines the minimum size of the decNumber structure required.

The arguments are:
number (decNumber *) Pointer to the structure to be set from the character string.
string (char *) Pointer to the input character string. This must be a valid numeric string, as

defined in the appropriate specification. The string will not be altered.
context (decContext *) Pointer to the context structure whose digits, emin, and emax fields

indicate the maximum acceptable precision and exponent range, and whose status field is
used to report any errors. If its extended field is 1, then special values (±Inf,
±Infinity, ±NaN, or ±sNaN, independent of case) are accepted, and the sign and
exponent of zeros are preserved. NaNs may also specify diagnostic information as a
string of digits following the name.

Returns number.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a number,
which depends on the setting of extended in the context), DEC_Overflow (the adjusted exponent of the
number is larger than context.emax), or DEC_Underflow (the adjusted exponent is less than
context.emin and the conversion is not exact). If any of these conditions are set, the number
structure will have a defined value as described in the arithmetic specification (this may be a
subnormal or infinite value).

decNumberToString(number, string)

This function is used to convert a decNumber number to a character string, using scientific notation if
an exponent is needed (that is, there will be just one digit before any decimal point). It implements the
to-scientific-string conversion.

The arguments are:
number (decNumber *) Pointer to the structure to be converted to a string.
string (char *) Pointer to the character string buffer which will receive the converted number.

Version 3.68 Module descriptions 33

It must be at least 14 characters longer than the number of digits in the number
(number->digits).

Returns string.

No error is possible from this function. Note that non-numeric strings (one of +Infinity,
-Infinity, NaN, or sNaN) are possible, and NaNs may have a - sign and/or diagnostic information.

decNumberToEngString(number, string)

This function is used to convert a decNumber number to a character string, using engineering notation
(where the exponent will be a multiple of three, and there may be up to three digits before any decimal
point) if an exponent is needed. It implements the to-engineering-string conversion.

The arguments and result are the same as for the decNumberToString function, and similarly no error
is possible from this function.

Arithmetic and logical functions
The arithmetic and logical functions all follow the same syntax and rules, and are summarized below.
They all take the following arguments:
number (decNumber *) Pointer to the structure where the result will be placed.
lhs (decNumber *) Pointer to the structure which is the left hand side (lhs) operand for the

operation. This argument is omitted for monadic operations.
rhs (decNumber *) Pointer to the structure which is the right hand side (rhs) operand for

the operation.
context (decContext *) Pointer to the context structure whose settings are used for

determining the result and for reporting any exceptional conditions.

Each function returns number. The decNumberFMA function (see page 36) also takes a third numeric
operand fhs (decNumber *), a pointer to the structure which is the “far hand side” operand for the
operation.

Some functions, such as decNumberExp, are described as mathematical functions. These have some
restrictions: context.emax must be < 106, context.emin must be > -106, and context.digits
must be < 106. Non-zero operands to these functions must also fit within these bounds.

The precise definition of each operation can be found in the specification document.

decNumberAbs(number, rhs, context)

The number is set to the absolute value of the rhs. This has the same effect as decNumberPlus unless
rhs is negative, in which case it has the same effect as decNumberMinus.

decNumberAdd(number, lhs, rhs, context)

The number is set to the result of adding the lhs to the rhs.

34 Module descriptions Version 3.68

decNumberAnd(number, lhs, rhs, context)

The number is set to the result of the digit-wise logical and of lhs and rhs.

decNumberCompare(number, lhs, rhs, context)

This function compares two numbers numerically. If the lhs is less than the rhs then the number will be
set to the value -1. If they are equal (that is, when subtracted the result would be 0), then number is set
to 0. If the lhs is greater than the rhs then the number will be set to the value 1. If the operands are not
comparable (that is, one or both is a NaN) the result will be NaN.

decNumberCompareSignal(number, lhs, rhs, context)

This function compares two numbers numerically. It is identical to decNumberCompare except that
all NaNs (including quiet NaNs) signal.

decNumberCompareTotal(number, lhs, rhs, context)

This function compares two numbers using the IEEE 754 total ordering. If the lhs is less than the rhs in
the total order then the number will be set to the value -1. If they are equal, then number is set to 0. If
the lhs is greater than the rhs then the number will be set to the value 1.

The total order differs from the numerical comparison in that: -NaN < -sNaN < -Infinity < -finites <
-0 < +0 < +finites < +Infinity < +sNaN < +NaN. Also, 1.000 < 1.0 (etc.) and NaNs are ordered by
payload.

decNumberCompareTotalMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers using the IEEE 754 total ordering. It is
identical to decNumberCompareTotal except that the signs of the operands are ignored and taken to be
0 (non-negative).

decNumberDivide(number, lhs, rhs, context)

The number is set to the result of dividing the lhs by the rhs.

decNumberDivideInteger(number, lhs, rhs, context)

The number is set to the integer part of the result of dividing the lhs by the rhs.

Note that it must be possible to express the result as an integer. That is, it must have no more digits
than context.digits. If it does then DEC_Division_impossible is raised.

decNumberExp(number, rhs, context)

The number is set to e raised to the power of rhs, rounded if necessary using the digits setting in the
context and using the round-half-even rounding algorithm.

Finite results will always be full precision and inexact, except when rhs is a zero or -Infinity
(giving 1 or 0 respectively). Inexact results will almost always be correctly rounded, but may be up to
1 ulp (unit in last place) in error in rare cases.

Version 3.68 Module descriptions 35

This is a mathematical function; the 106 restrictions on precision and range apply as described above.

decNumberFMA(number, lhs, rhs, fhs, context)

The number is set to the result of multiplying the lhs by the rhs and then adding fhs to that intermediate
result. It is equivalent to a multiplication followed by an addition except that the intermediate result is
not rounded and will not cause overflow or underflow. That is, only the final result is rounded and
checked.

This is a mathematical function; the 106 restrictions on precision and range apply as described above.

decNumberInvert(number, rhs, context)

The number is set to the result of the digit-wise inversion of rhs (A 0 digit becomes 1 and vice versa.)

decNumberLn(number, rhs, context)

The number is set to the natural logarithm (logarithm in base e) of rhs, rounded if necessary using the
digits setting in the context and using the round-half-even rounding algorithm. rhs must be positive or a
zero.

Finite results will always be full precision and inexact, except when rhs is equal to 1, which gives an
exact result of 0. Inexact results will almost always be correctly rounded, but may be up to 1 ulp (unit
in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as described above.

decNumberLogB(number, rhs, context)

The number is set to the adjusted exponent of rhs, according to the rules for the “logB” operation of
IEEE 754. This returns the exponent of rhs as though its decimal point had been moved to follow the
first digit while keeping the same value. The result is not limited by emin or emax.

decNumberLog10(number, rhs, context)

The number is set to the logarithm in base ten of rhs, rounded if necessary using the digits setting in the
context and using the round-half-even rounding algorithm. rhs must be positive or a zero.

Finite results will always be full precision and inexact, except when rhs is equal to an integral power of
ten, in which case the result is the exact integer.

Inexact results will almost always be correctly rounded, but may be up to 1 ulp (unit in last place) in
error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as described above.

decNumberMax(number, lhs, rhs, context)

This function compares two numbers numerically and sets number to the larger. If the numbers
compare equal then number is chosen with regard to sign and exponent. Unusually, if one operand is a
quiet NaN and the other a number, then the number is returned.

36 Module descriptions Version 3.68

decNumberMaxMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers numerically and sets number to the larger. It is
identical to decNumberMax except that the signs of the operands are ignored and taken to be 0 (non-
negative).

decNumberMin(number, lhs, rhs, context)

This function compares two numbers numerically and sets number to the smaller. If the numbers
compare equal then number is chosen with regard to sign and exponent. Unusually, if one operand is a
quiet NaN and the other a number, then the number is returned.

decNumberMinMag(number, lhs, rhs, context)

This function compares the magnitude of two numbers numerically and sets number to the smaller. It is
identical to decNumberMin except that the signs of the operands are ignored and taken to be 0 (non-
negative).

decNumberMinus(number, rhs, context)

The number is set to the result of subtracting the rhs from 0. That is, it is negated, following the usual
arithmetic rules; this may be used for implementing a prefix minus operation.

decNumberMultiply(number, lhs, rhs, context)

The number is set to the result of multiplying the lhs by the rhs.

decNumberNextMinus(number, rhs, context)

The number is set to the closest value to rhs in the direction of -Infinity. This is computed as though by
subtracting an infinitesimal amount from rhs using DEC_ROUND_FLOOR, except that no flags are set
unless rhs is an sNaN.

This function is a generalization of the IEEE 754 nextDown operation.

decNumberNextPlus(number, rhs, context)

The number is set to the closest value to rhs in the direction of +Infinity. This is computed as though by
adding an infinitesimal amount to rhs using DEC_ROUND_CEILING, except that no flags are set unless
rhs is an sNaN.

This function is a generalization of the IEEE 754 nextUp operation.

decNumberNextToward(number, lhs, rhs, context)

The number is set to the closest value to lhs in the direction of rhs. This is computed as though by
adding or subtracting an infinitesimal amount to lhs using DEC_ROUND_CEILING or
DEC_ROUND_FLOOR, depending on whether rhs is larger or smaller than lhs. If rhs is numerically equal
to lhs then the result is a copy of lhs with the sign taken from rhs. Flags are set as usual for an addition
or subtraction except that if the operands are equal or the result is normal (finite, non-zero, and not
subnormal) no flags are set.

Version 3.68 Module descriptions 37

This function is a generalization of the proposed IEEE 754 nextAfter operation.10

decNumberOr(number, lhs, rhs, context)

The number is set to the result of the digit-wise logical inclusive or of lhs and rhs.

decNumberPlus(number, rhs, context)

The number is set to the result of adding the rhs to 0. This takes place according to the settings given in
the context, following the usual arithmetic rules. This may therefore be used for rounding or for
implementing a prefix plus operation.

decNumberPower(number, lhs, rhs, context)

The number is set to the result of raising the lhs to the power of the rhs, rounded if necessary using the
settings in the context.

Results will be exact when the rhs has an integral value and the result does not need to be rounded, and
also will be exact in certain special cases, such as when the lhs is a zero (see the arithmetic
specification for details).

Inexact results will always be full precision, and will almost always be correctly rounded, but may be
up to 1 ulp (unit in last place) in error in rare cases.

This is a mathematical function; the 106 restrictions on precision and range apply as described above,
except that the normal range of values and context is allowed if the rhs has an integral value in the
range -1999999997 through +999999999.11

decNumberQuantize(number, lhs, rhs, context)

This function is used to modify a number so that its exponent has a specific value, equal to that of the
rhs. The decNumberRescale (see page 39) function may also be used for this purpose, but requires the
exponent to be given as a decimal number.

When rhs is a finite number, its exponent is used as the requested exponent (it provides a “pattern” for
the result). Its coefficient and sign are ignored.

The number is set to a value which is numerically equal (except for any rounding) to the lhs, modified
as necessary so that it has the requested exponent. To achieve this, the coefficient of the number is
adjusted (by rounding or shifting) so that its exponent has the requested value. For example, if the lhs
had the value 123.4567, and the rhs had the value 0.12, the result would be 123.46 (that is, 12346
with an exponent of -2, matching the exponent of the rhs).

Note that the exponent of the rhs may be positive, which will lead to the number being adjusted so that
it is a multiple of the specified power of ten.

If adjusting the exponent would mean that more than context.digits would be needed in the
coefficient, then the DEC_Invalid_operation condition is raised. This guarantees that in the absence
of error the exponent of number is always equal to that of the rhs.

If either operand is a special value then the usual rules apply, except that if either operand is infinite and
10 The nextAfter operation was dropped from the proposed standard during the ballot process.
11 This relaxation of the restrictions provides upwards compatibility with an earlier version of the decNumberPower

function which could only handle an rhs with an integral value.

38 Module descriptions Version 3.68

the other is finite then the DEC_Invalid_operation condition is raised, or if both are infinite then
the result is the first operand.

decNumberRemainder(number, lhs, rhs, context)

Integer-divides lhs by rhs and places the remainder from the division in number.

That is, if the same lhs, rhs, and context arguments were given to the decNumberDivideInteger and
decNumberRemainder functions, resulting in i and r respectively, then the identity

lhs = (i × rhs) + r

holds.

Note that, as for decNumberDivideInteger, it must be possible to express the integer part of the result
(i) as an integer. That is, it must have no more digits than context.digits. If it does have more
then DEC_Division_impossible is raised.

decNumberRemainderNear(number, lhs, rhs, context)

The number is set to the remainder when lhs is divided by the rhs, using the rules defined in IEEE 754.
This follows the same definition as decNumberRemainder, except that the nearest integer (or the
nearest even integer if the remainder is equidistant from two) is used for i instead of the result from
decNumberDivideInteger.

For example, if lhs had the value 10 and rhs had the value 6 then the result would be -2 (instead of 4)
because the nearest multiple of 6 is 12 (rather than 6).

decNumberRescale(number, lhs, rhs, context)

This function is used to rescale a number so that its exponent has a specific value, given by the rhs.
The decNumberQuantize (see page 38) function may also be used for this purpose, and is often easier
to use.

The rhs must be a whole number (before any rounding); that is, any digits in the fractional part of the
number must be zero. It must have no more than nine digits, or context.digits digits, (whichever
is smaller) in the integer part of the number.

The number is set to a value which is numerically equal (except for any rounding) to the lhs, rescaled
so that it has the requested exponent. To achieve this, the coefficient of the number is adjusted (by
rounding or shifting) so that its exponent has the value of the rhs. For example, if the lhs had the value
123.4567, and decNumberRescale was used to set its exponent to -2, the result would be 123.46
(that is, 12346 with an exponent of -2).

Note that the rhs may be positive, which will lead to the number being adjusted so that it is a multiple
of the specified power of ten.

If adjusting the scale would mean that more than context.digits would be needed in the coefficient,
then the DEC_Invalid_operation condition is raised. This guarantees that in the absence of error
the exponent of number is always equal to the rhs.

decNumberRotate(number, lhs, rhs, context)

This function is used to rotate the digits in the coefficient of a number as though its coefficient had the

Version 3.68 Module descriptions 39

length given by context.digits and its most-significant digit were connected to its least-significant
digit.

The number is set to a copy of lhs with the digits of its coefficient rotated to the left (if rhs is positive)
or to the right (if rhs is negative) without adjusting the exponent or the sign. If lhs has fewer digits
than context.digits the coefficient is padded with zeros on the left before the rotate. Any
insignificant leading zeros in the result are removed, as usual.

rhs is the count of digits to rotate; it must be an integer (that is, it must have an exponent of 0) and must
be in the range -context.digits through +context.digits.

decNumberSameQuantum(number, lhs, rhs)

This function is used to test whether the exponents of two numbers are equal. The coefficients and
signs of the operands (lhs and rhs) are ignored.

If the exponents of the operands are equal, or if they are both Infinities or they are both NaNs, number
is set to 1. In all other cases, number is set to 0. No error is possible.

decNumberScaleB(number, lhs, rhs, context)

This function is used to adjust (scale) the exponent of a number, using the rules of the “scaleB”
operation in IEEE 754. The number is set to the result of multiplying lhs by ten raised to the power of
rhs. rhs must be an integer (that is, it must have an exponent of 0) and it must also be in the range
-1999999997 through +999999999.12

decNumberShift(number, lhs, rhs, context)

This function is used to shift the digits in the coefficient of a number. The number is set to a copy of lhs
with the digits of its coefficient shifted to the left (if rhs is positive) or to the right (if rhs is negative)
without adjusting the exponent or the sign. The coefficient is padded with zeros on the left or right, as
necessary. Any leading zeros in the result are ignored, as usual.

rhs is the count of digits to shift; it must be an integer (that is, it must have an exponent of 0) and must
be in the range -context.digits through +context.digits.

decNumberSquareRoot(number, rhs, context)

The number is set to the square root of the rhs, rounded if necessary using the digits setting in the
context and using the round-half-even rounding algorithm. The preferred exponent of the result is
floor(exponent/2).

decNumberSubtract(number, lhs, rhs, context)

The number is set to the result of subtracting the rhs from the lhs.

12 This range is an implementation restriction and is smaller than that suggested by the arithmetic specification. The
restriction can be worked around by calling the function more than once.

40 Module descriptions Version 3.68

decNumberToIntegralExact(number, rhs, context)

The number is set to the rhs, with any fractional part removed if necessary using the rounding mode in
the context.

The Inexact flag is set if the result is numerically different from rhs. Other than that, no flags are set
(unless the operand is a signaling NaN). The result may have a positive exponent.

decNumberToIntegralValue(number, rhs, context)

The number is set to the rhs, with any fractional part removed if necessary using the rounding mode in
the context.

No flags, not even Inexact, are set (unless the operand is a signaling NaN). The result may have a
positive exponent.

decNumberXor(number, lhs, rhs, context)

The number is set to the result of the digit-wise logical exclusive or of lhs and rhs.

Utility functions
The utility functions include copying, trimming, test, and initializing functions, along with specialized
conversions and a function for determining the version of the decNumber package.

decNumberClass(number, context)

This function is used to determine the class of a decNumber. The arguments are:
number (decNumber *) Pointer to the decNumber to be classified.
context (decContext *) Pointer to the context (the value of emin is used to determine if a finite

number is normal or subnormal).

Returns an enum decClass (defined in decNumber.h), which can be converted to a character string
using decNumberClassToString. No error is possible from this function.

decNumberClassToString(number, context)

This function is used to convert a decClass enumeration to a string. The argument is:
class (enum decClass) The enumeration to be converted.

Returns a string (const char *) which points to one of the constant strings "sNaN", "NaN",
"-Infinity", "-Normal", "-Subnormal", "-Zero", "+Zero", "+Subnormal", "+Normal",
"+Infinity", or "Invalid". No error is possible from this function.

decNumberCopy(number, source)

This function is used to copy the content of one decNumber structure to another. It is used when the
structures may be of different sizes and hence a straightforward structure copy by C assignment is
inappropriate. It also may have performance benefits when the number is short relative to the size of
the structure, as only the units containing the digits in use in the source structure are copied.

Version 3.68 Module descriptions 41

The arguments are:
number (decNumber *) Pointer to the structure to receive the copy. It must have space for

source->digits digits.
source (decNumber *) Pointer to the structure which will be copied to number. All fields are

copied, with the units containing the source->digits digits being copied starting from
lsu. The source structure is unchanged.

Returns number. No error is possible from this function.

decNumberCopyAbs(number, source)

This function is used to copy the absolute value of the content of one decNumber structure to another.
It is identical to decNumberCopy except that the sign of the result is always 0. This is equivalent to
the quiet abs function described in IEEE 754.

Returns number. No error is possible from this function.

decNumberCopyNegate(number, source)

This function is used to copy the value of the content of one decNumber structure to another while
inverting its sign. It is identical to decNumberCopy except that the sign of the result is the inverse of
that in source. This is equivalent to the quiet negate function described in IEEE 754.

Returns number. No error is possible from this function.

decNumberCopySign(number, source, pattern)

This function is used to copy the value of the content of one decNumber structure to another and
changing its sign to that of a third. It is identical to decNumberCopy except that the sign of the result
is taken from the third argument instead of from source. This is equivalent to the quiet copysign
function described in IEEE 754.

The first two arguments are as for decNumberCopy. The third is:
pattern (decNumber *) Pointer to the structure which provides the sign.

Returns number. No error is possible from this function.

decNumberFromInt32(number, i)

This function is used to convert a signed (two’s complement) 32-bit binary integer to a decNumber.
The arguments are:
number (decNumber *) Pointer to the structure that will received the converted integer. This

must have space for the digits needed to represent the value of i, which may need up to
ten digits.

i (int32_t) The integer to be converted.

Returns number. No error is possible from this function.

42 Module descriptions Version 3.68

decNumberFromUInt32(number, u)

This function is used to convert an unsigned 32-bit binary integer to a decNumber. The arguments are:
number (decNumber *) Pointer to the structure that will received the converted integer. This

must have space for the digits needed to represent the value of u, which may need up to
ten digits.

u (uint32_t) The integer to be converted.

Returns number. No error is possible from this function.

decNumberGetBCD(number, bcd)

This function is used to convert the coefficient of a decNumber to Binary Coded Decimal, one digit
(value 0–9) per byte. The arguments are:
number (decNumber *) Pointer to the structure containing the coefficient to be converted.
bcd (uint8_t *) Pointer to the byte array which will receive the converted coefficient; the

most significant digit of the coefficient will be placed in bcd[0]. The first number-
>digits elements of bcd will have their values set; no other elements are affected.

Returns bcd. No error is possible from this function.

decNumberIsCanonical(number)

This function is used to test whether the encoding of a decNumber is canonical.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) always, because decNumbers always have canonical encodings (the function is
provided for compatibility with the IEEE 754 operation isCanonical). This function may be
implemented as a macro; no error is possible.

decNumberIsFinite(number)

This function is used to test whether a number is finite.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is finite, or 0 (false) otherwise (that is, it is an infinity or a NaN). This
function may be implemented as a macro; no error is possible.

decNumberIsInfinite(number)

This function is used to test whether a number is infinite.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is infinite, or 0 (false) otherwise (that is, it is a finite number or a NaN).
This function may be implemented as a macro; no error is possible.

Version 3.68 Module descriptions 43

decNumberIsNaN(number)

This function is used to test whether a number is a NaN (quiet or signaling).

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a NaN, or 0 (false) otherwise. This function may be implemented as a
macro; no error is possible.

decNumberIsNegative(number)

This function is used to test whether a number is negative (either minus zero, less than zero, or a NaN
with a sign of 1). Note that in the decFloats packages, this is called (for example) decQuadIsSigned, and
decQuadIsNegative does not include zeros or NaNs.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is negative, or 0 (false) otherwise. This function may be implemented as
a macro; no error is possible.

decNumberIsNormal(number)

This function is used to test whether a number is normal (that is, finite, non-zero, and not subnormal).

The arguments are:
number (decNumber *) Pointer to the structure whose value is to be tested.
context (decContext *) Pointer to the context (the value of emin is used to determine if a finite

number is normal or subnormal).

Returns 1 (true) if the number is normal, or 0 (false) otherwise. This function may be implemented as
a macro; no error is possible.

decNumberIsQNaN(number)

This function is used to test whether a number is a Quiet NaN.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Quiet NaN, or 0 (false) otherwise. This function may be
implemented as a macro; no error is possible.

decNumberIsSNaN(number)

This function is used to test whether a number is a Signaling NaN.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is a Signaling NaN, or 0 (false) otherwise. This function may be

44 Module descriptions Version 3.68

implemented as a macro; no error is possible.

decNumberIsSpecial(number)

This function is used to test whether a number has a special value (Infinity or NaN); it is the inversion
of decNumberIsFinite (see page 43).

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is special, or 0 (false) otherwise. This function may be implemented as a
macro; no error is possible.

decNumberIsSubnormal(number)

This function is used to test whether a number is subnormal (that is, finite, non-zero, and magnitude
less than 10emin).

The arguments are:
number (decNumber *) Pointer to the structure whose value is to be tested.
context (decContext *) Pointer to the context (the value of emin is used to determine if a finite

number is normal or subnormal).

Returns 1 (true) if the number is subnormal, or 0 (false) otherwise. This function may be implemented
as a macro; no error is possible.

decNumberIsZero(number)

This function is used to test whether a number is a zero (either positive or negative).

The argument is:
number (decNumber *) Pointer to the structure whose value is to be tested.

Returns 1 (true) if the number is zero, or 0 (false) otherwise. This function may be implemented as a
macro; no error is possible.

decNumberRadix()

This function returns the radix (number base) used by the decNumber package. This always returns
10. This function may be implemented as a macro; no error is possible.

decNumberReduce(number, rhs, context)

This function has the same effect as decNumberPlus except that the final result is set to its simplest
(shortest) form without changing its value. That is, a non-zero number which has any trailing zeros in
the coefficient has those zeros removed by dividing the coefficient by the appropriate power of ten and
adjusting the exponent accordingly, and a zero has its exponent set to 0.

The decNumberTrim function (see page 46) can be used to remove only fractional trailing zeros.

This function was previously called decNumberNormalize (and is still available under that name for
compatibility).

Version 3.68 Module descriptions 45

decNumberSetBCD(number, bcd, n)

This function is used to set the coefficient of a decNumber from a Binary Coded Decimal array which
has one digit (value 0–9) per byte. The arguments are:
number (decNumber *) Pointer to the structure whose coefficient is to be set.
bcd (uint8_t *) Pointer to the byte array which provides the coefficient; the most

significant digit of the coefficient is at bcd[0] and the least significant is at bcd[n-1].
n (uint32_t *) Count of the BCD digits to be converted.

number must have space for at least n digits. If number is a NaN, or is Infinite, or is to become a zero, n
must be 1 and bcd[0] must be zero.

Returns number. No error is possible from this function.

decNumberToInt32(number, context)

This function is used to convert a decNumber to a signed (two’s complement) 32-bit binary integer.
The arguments are:
number (decNumber *) Pointer to the structure that will have its value converted.
context (decContext *) Pointer to the context (used only for reporting an error).

The DEC_Invalid_operation condition is raised if number does not have an exponent of 0, or if it
is a NaN or Infinity, or if it is out-of-range (cannot be represented). In this case the result is 0. Note
that a -0 is not out of range (it is numerically equal to zero and will be converted without raising the
condition).

Returns the signed integer (int32_t).

decNumberToUInt32(number, context)

This function is used to convert a decNumber to an unsigned 32-bit binary integer. The arguments are:
number (decNumber *) Pointer to the structure that will have its value converted.
context (decContext *) Pointer to the context (used only for reporting an error).

The DEC_Invalid_operation condition is raised if number does not have an exponent of 0, or if it
is a NaN or Infinity, or if it is out-of-range (cannot be represented). In this case the result is 0. Note
that a -0 is not out of range (but all values less than zero are).

Returns the unsigned integer (uint32_t).

decNumberTrim(number)

This function is used to remove insignificant trailing zeros from a number, uncoditionally. That is, if
the number has any fractional trailing zeros they are removed by dividing the coefficient by the
appropriate power of ten and adjusting the exponent accordingly. The decNumberReduce function (see
page 45) can be used to remove all trailing zeros.

The argument is:
number (decNumber *) Pointer to the structure whose value is to be trimmed.

46 Module descriptions Version 3.68

Returns number. No error is possible from this function.

decNumberVersion()

This function returns a pointer (char *) to a human-readable description of the version of the
decNumber package being run. The string pointed to will have at most 16 characters and will be a
constant, and will comprise two words (the name and a decimal number identifying the version)
separated by a blank. For example:

decNumber 3.40

No error is possible from this function.

decNumberZero(number)

This function is used to set the value of a decNumber structure to zero.

The argument is:
number (decNumber *) Pointer to the structure to be set to 0. It must have space for one digit.

Returns number. No error is possible from this function.

Version 3.68 Module descriptions 47

decimal32, decimal64, and decimal128 modules
The decimal32, decimal64, and decimal128 modules define the data structures and conversion
functions for the IEEE 754 decimal-encoded compressed decimal formats which are 32, 64, or 128
bits (4, 8, or 16 bytes) long, respectively. These provide up to 7, 16, or 34 digits of decimal precision
in a compact and machine-independent form. Details of the formats are available at:

http://speleotrove.com/decimal/decbits.html

These modules provide the interface between the compressed numbers and the decNumber internal
format (and also provide string conversions). The decFloats modules (see page 52) provide arithmetic
and other functions which work on data in the same formats directly. Example 7 and Example 8 in the
User’s Guide (see page 19) show how to work with data in the formats with or without using the
decNumber module.

Apart from the different lengths and ranges of the numbers, these three modules are identical, so this
section just describes the decimal64 module. The definitions and functions for the other two formats
are the same, except for the obvious name and value changes.

In this implementation each format is represented as an array of unsigned bytes. There is therefore just
one field in the decimal64 structure:
bytes The bytes field represents the eight bytes of a decimal64 number, using Densely Packed

Decimal encoding for the coefficient.13

The storage of a number in the bytes array is assumed to follow the byte ordering (“endianness”) of
the computing platform (if big-endian, then bytes[0] contains the sign bit of the format). The code
in these modules requires that the DECLITEND tuning parameter (see page 70) be set to match the
endianness of the platform.

Note that the equivalent structures in the decFloats modules are identical except for their names. It is
therefore safe to cast pointers between them if they are the same size (for example between decimal64
and decDouble). This means that these modules can be used as proxies between the decNumber
module and the decFloats modules.

The decimal64 module includes private functions for coding and decoding Densely Packed Decimal
data; these functions are shared by the other compressed format modules. Hence, when using any of
these three then decimal64.c must be compiled too.

Definitions
The decimal64.h header file defines the decimal64 data structure described above. It includes the
decNumber.h header file, to simplify use, and (if not already defined) it sets the DECNUMDIGITS
constant to 16, so that any declared decNumber will be the right size to contain any decimal64
number.

If more than one of the three decimal format header files are used in a program, they must be included
in decreasing order of size so that the largest value of DECNUMDIGITS will be used.

The decimal64.h header file also contains:

• Constants defining aspects of decimal64 numbers, including the maximum precision, the
minimum and maximum (adjusted) exponent supported, the bias applied to the exponent, the

13 See http://speleotrove.com/decimal/DPDecimal.html for a summary of Densely Packed
Decimal encoding.

48 Module descriptions Version 3.68

http://speleotrove.com/decimal/DPDecimal.html
http://speleotrove.com/decimal/decbits.html

length of the number in bytes, and the maximum number of characters in the string form of the
number (including terminator)

• Definitions of the public functions in the decimal64 module.

The decimal64 module also contains the shared routines for compressing and expanding Densely
Packed Decimal data, and uses the decDPD.h header file. The latter contains look-up tables which
are used for encoding and decoding Densely Packed Decimal data (only three of of the tables in the
header file are used). These tables are automatically generated and should not need altering.

Functions
The decimal64.c source file contains the public functions defined in the header file. These
comprise conversions to and from strings and decNumbers, and some utilities.

When a decContext structure is used to report errors, the same rules are followed as for other modules.
That is, a trap may be raised, etc.

decimal64FromString(decimal64, string, context)

This function is used to convert a character string to decimal64 format. It implements the to-number
conversion in the arithmetic specification (that is, it accepts subnormal numbers, NaNs, and infinities,
and it preserves the sign and exponent of 0). If necessary, the value will be rounded to fit.

The arguments are:
decimal64 (decimal64 *) Pointer to the structure to be set from the character string.
string (char *) Pointer to the input character string. This must be a valid numeric string, as

defined in the specification. The string will not be altered.
context (decContext *) Pointer to the context structure which controls the conversion, as for

the decNumberFromString function (see page 33) except that the precision and exponent
range are fixed for each format (the values of emax, emin, and digits are ignored).

Returns decimal64.

Possible errors are DEC_Conversion_syntax (the string does not have the syntax of a number),
DEC_Overflow (the adjusted exponent of the number is positive and is greater than emax for the
format), or DEC_Underflow (the adjusted exponent of the number is negative and is less than emin for
the format and the conversion is not exact). If one of these conditions is set, the decimal64 structure
will have the value NaN, ±Infinity or the largest possible finite number, or a finite (possibly
subnormal) number respectively, with the same sign as the converted number after overflow or
underflow.

decimal64ToString(decimal64, string)

This function is used to convert a decimal64 number to a character string, using scientific notation if
an exponent is needed (that is, there will be just one digit before any decimal point). It implements the
to-scientific-string conversion in the arithmetic specification.

The arguments are:
decimal64 (decimal64 *) Pointer to the structure to be converted to a string.

Version 3.68 Module descriptions 49

string (char *) Pointer to the character string buffer which will receive the converted number.
It must be at least DECIMAL64_String (24) characters long.

Returns string; no error is possible from this function.

decimal64ToEngString(decimal64, string)

This function is used to convert a decimal64 number to a character string, using engineering notation
(where the exponent will be a multiple of three, and there may be up to three digits before any decimal
point) if an exponent is needed. It implements the to-engineering-string conversion in the arithmetic
specification.

The arguments and result are the same as for the decimal64ToString function, and similarly no error is
possible from this function.

decimal64FromNumber(decimal64, number, context)

This function is used to convert a decNumber to decimal64 format.

The arguments are:
decimal64 (decimal64 *) Pointer to the structure to be set from the decNumber. This may

receive a numeric value (including subnormal values and -0) or a special value.
number (decNumber *) Pointer to the input structure. The decNumber structure will not be

altered.
context (decContext *) Pointer to a context structure whose status field is used to report any

error and whose other fields are used to control rounding, etc., as required.

Returns decimal64.

The possible errors are as for the decimal64FromString function (see page 49), except that
DEC_Conversion_syntax is not possible.

decimal64ToNumber(decimal64, number)

This function is used to convert a decimal64 number to decNumber form in preparation for arithmetic
or other operations.

The arguments are:
decimal64 (decimal64 *) Pointer to the structure to be converted to a decNumber. The decimal64

structure will not be altered.
number (decNumber *) Pointer to the result structure. It must have space for 16 digits of

precision.

Returns number; no error is possible from this function.

decimal64Canonical(decimal64, source)

This function is used to ensure that a decimal64 number is encoded with the canonical form. That is,
all declets use the preferred 1000 encodings and an infinity has a coefficient of zero.

50 Module descriptions Version 3.68

The arguments are:
decimal64 (decimal64 *) Pointer to the structure to receive a copy of source, with canonical

encoding.
source (decimal64 *) Pointer to the structure to be converted to a canonical encoding.

Returns decimal64; no error is possible from this function.

decimal64IsCanonical(decimal64)

This function is used to test whether a decimal64 number is encoded with the canonical form. That is,
that all declets use the preferred 1000 encodings and an infinity has a coefficient of zero.

The argument is:
decimal64 (decimal64 *) Pointer to the structure to be tested.

Returns an unsigned integer (uint32_t *) which is 1 if decimal64 has canonical encoding, or 0
otherwise. No error is possible from this function.

Version 3.68 Module descriptions 51

decFloats modules
The decFloats modules are decSingle, decDouble, and decQuad. These are based on the 32-bit, 64-bit,
and 128-bit decimal types in the IEEE 754 Standard for Floating Point Arithmetic.

In contrast to the arbitrary-precision decNumber module, these modules work directly from the
decimal-encoded formats designed by the IEEE 754 committee, which are also now implemented in
IBM System z (z9 and z10) and IBM System p (POWER6) processors, and in SAP NetWeaver 7.1.14

Conversions to and from the decNumber internal format are not needed (typically the numbers are
represented internally in “unpacked” BCD or in a base of some other power of ten), and no memory
allocation is necessary, so these modules are much faster than using decNumber for implementing the
types.

Like the decNumber module, the decFloats modules

• need only 32-bit integer support; 64-bit integers are not required and binary floating-point is not
used

• support both big-endian and little-endian encodings and platforms

• support both ASCII/UTF8 and EBCDIC strings

• are reentrant and use only aligned integers and strict aliasing

• use only ANSI C.

The modules should therefore be usable on any platform with an ANSI C compiler that supports 32-bit
integers.

The decFloats modules define the data structures and a large set of functions for working directly with
the same compressed formats as decimal32, decimal64, and decimal128. The names are different to
allow them to be used stand-alone or with the decNumber module, as illustrated in Examples 7 and 8
in the User’s Guide (see page 19).

These three modules all share many of the same functions (working on the different sizes of the
formats). The decQuad module has all the same functions as decDouble except for two functions
which would convert to or from a wider format. The decSingle module is a limited (“storage”) format
which has a only a few conversion and miscellaneous functions; it is intended that any computation be
carried out in a wider format.

The remainder of this section therefore describes only the decDouble format – in the list of functions,
assume that there is a corresponding decQuad format function unless stated and assume there is not a
corresponding decSingle format function unless stated.

In this implementation each format is represented as an array of unsigned bytes. There is therefore just
one field in the decDouble structure:
bytes The bytes field represents the eight bytes of a decDouble number, using Densely Packed

Decimal encoding for the coefficient. As of decNumber 3.56 the structure has been
changed to a union of the bytes array with arrays of larger integers; see the header file for
each type for details.15

14 IBM, the IBM logo, System p, System z, and POWER6 are trademarks of International Business Machines Corporation
in the United States, other countries, or both. SAP and SAP NetWeaver are trademarks of SAP AG, in Germany, other
countries, or both.

15 See http://speleotrove.com/decimal/DPDecimal.html for a summary of Densely Packed
Decimal encoding.

52 Module descriptions Version 3.68

http://speleotrove.com/decimal/DPDecimal.html

The storage of a number in the bytes array is assumed to follow the byte ordering (“endianness”) of
the computing platform (if big-endian, then bytes[0] contains the sign bit of the format). The code
in these modules requires that the DECLITEND tuning parameter (see page 70) be set to match the
endianness of the platform.

The decSingle and decDouble modules both require that the next wider format be included in a
program compilation (so that conversion to and from that wider format can be effected), hence the
decQuad module is always needed.16 It, therefore, contains the constant lookup tables from the the
decDPD.h header file which are shared by all three modules. These tables are automatically
generated and should not need altering.

Most of the code for these modules is included from the shared source files decCommon.c and
decBasic.c. The former contains the functions available in all three modules17 and the latter the
functions available only in decDouble and decQuad.

Definitions
The decDouble.h header file defines the decDouble data structure described above. It includes the
decContext.h and and decQuad.h header files, which are both required for use.18 If more than one
of the three decFloats formats are used in a program, it is only necessary to include the smaller or
smallest.

The decDouble.h header file also contains:

• Constants defining aspects of decDouble numbers, including the maximum precision, the
minimum and maximum (adjusted) exponent supported, the bias applied to the exponent, the
length of the number in bytes, and the maximum number of characters in the string form of the
number (including terminator)

• Definitions of the public functions in the decDouble module

• Macros defining conversions to and from the decNumber format. These are macros in order to
avoid a compile-time dependency on the decNumber module; they use decimal64 as a proxy,
and their usage is shown in Example 8 in the User’s Guide (see page 20).

Functions
The decDouble.c source file contains the public functions defined in the header file. These
comprise conversions to and from strings and other formats, arithmetic and logical operations, and
utilities.

The functions are described briefly, below. More details of the operation of each function can be
found in the description of the corresponding function in the decNumber module and details of the
underlying model and arithmetic can be found in the General Decimal Arithmetic Specification.19

In the descriptions below, many parameters are defined as one of the following:
x, y, z (const decDouble *) decimal input arguments to a function

16 This requirement is different from the decimal32, decimal64, and decimal128 modules because they can convert to wider
or narrower formats using the decNumber format as an intermediate step.

17 Except that the widening and narrowing functions are not used by decQuad.
18 The decSingle.h header file also includes decDouble.h, but the decQuad.h header file only includes

decContext.h.
19 See http://speleotrove.com/decimal/#arithmetic for details.

Version 3.68 Module descriptions 53

http://speleotrove.com/decimal/#arithmetic

r (decDouble *) a decimal result argument to a function (which may be the same as an
input argument); unless stated otherwise this is also the return value from the function,
and the result will be canonical

set (decContext *) the context for a function. Only two fields of the context structure are
used: round (the rounding mode) and status (the bits in which are used to indicate any
error, etc.).

Note that the trap field in the context is not used; the decDouble functions do not check for traps after
every operation to avoid the overhead that would incur. The decContextSetStatus function (see
page 27) can be used to explicitly test status to trap.

Note also that the only informational flag set by decNumber is DEC_Inexact; the others are never set
by the decFloats module in order to improve performance and also to avoid the need for passing a
context to many functions.20

In the following list, every function has corresponding decQuad format function (for example,
decQuadAbs(r, x, set)) unless stated, and does not have a corresponding decSingle format
function unless stated.

decDoubleAbs(r, x, set)

Returns the absolute value of x. This has the same effect as decDoublePlus unless x is negative, in
which case it has the same effect as decDoubleMinus. The effect is also the same as
decDoubleCopyAbs except that NaNs are handled normally (the sign of a NaN is not affected, and an
sNaN will set DEC_Invalid_operation) and the result will be canonical.

decDoubleAdd(r, x, y, set)

Adds x and y and places the result in r.

decDoubleAnd(r, x, y, set)

Carries out the digit-wise logical And of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and comprise only
zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoubleCanonical(r, x)

This copies x to r, ensuring that the encoding of r is canonical.

decDoubleClass(x)

This returns the class (enum decClass) of the argument x.

decDoubleClassString(x)

This returns a description of the class of the argument x as a string (const char *).

20 The DEC_Subnormal flag is particularly expensive to maintain.

54 Module descriptions Version 3.68

decDoubleCompare(r, x, y, set)

Compares x and y numerically and places the result in r.

The result may be -1, 0, 1, or NaN (unordered); -1 indicates that x is less than y, 0 indicates that they
are numerically equal, and 1 indicates that x is greater than y. NaN is returned only if x or y is a NaN.

decDoubleCompareSignal(r, x, y, set)

The same as decDoubleCompare, except that a quiet NaN argument is treated like a signaling NaN
(causes DEC_Invalid_operation to be set).

decDoubleCompareTotal(r, x, y)

Compares x and y using the IEEE 754 total ordering (which takes into account the exponent) and
places the result in r. No status is set (a signaling NaN is ordered between Infinity and NaN). The
result will be -1, 0, or 1.

decDoubleCompareTotalMag(r, x, y)

The same as decDoubleCompareTotal except that the absolute values of the two arguments are used
(as though modified by decDoubleCopyAbs).

decDoubleCopy(r, x)

Copies x to r quietly (no status is set). This is a bit-wise operation and so the result might not be
canonical.

decDoubleCopyAbs(r, x)

Copies x to r quietly and sets the sign of r to 0 (no status is set). This is a bit-wise operation and so the
result might not be canonical.

decDoubleCopyNegate(r, x)

Copies x to r quietly and inverts the sign of r (no status is set). This is a bit-wise operation and so the
result might not be canonical.

decDoubleCopySign(r, x, y)

Copies x to r quietly with the sign of r set to the sign of y (no status is set). This is a bit-wise operation
and so the result might not be canonical.

decDoubleDigits(x)

Returns the number of significant digits in x as an unsigned 32-bit integer (uint32_t). If x is a zero
or is infinite, 1 is returned. If x is a NaN then the number of digits in the payload is returned.

decDoubleDivide(r, x, y, set)

Divides x by y and places the result in r.

Version 3.68 Module descriptions 55

decDoubleDivideInteger(r, x, y, set)

Divides x by y and places the integer part of the result (rounded towards zero) in r with exponent=0. If
the result would not fit in r (because it would have more than DECDOUBLE_Pmax digits) then
DEC_Division_impossible is set.

decDoubleFMA(r, x, y, z, set)

Calculates the fused multiply-add x × y + z and places the result in r. The multiply is carried out first
and is exact, so this operation has only the one, final, rounding.

decDoubleFromBCD(r, exp, bcd, sign)

Sets r from an exponent exp (which may indicate a NaN or infinity), a BCD array bcd, and a sign.

exp (int32_t) is an in-range unbiased exponent or a special value in the form returned by
decDoubleGetExponent (listed in decQuad.h).

bcd (const uint8_t *) is an array of DECDOUBLE_Pmax elements, one digit in each byte (BCD8
encoding); the first (most significant) digit is ignored if the result will be a NaN; all are ignored if the
result is infinite. All bytes must be in the range 0–9.

sign (int32_t) is an integer which must be DECFLOAT_Sign to set the sign bit of r to 1, or 0 to set it
to 0.

For speed, the arguments are not checked; no status is set by this function. The content of r is
undefined if the arguments are invalid or out of range (that is, could not be produced by
decDoubleToBCD).

(This function is also available in the decSingle module.)

decDoubleFromInt32(r, i)

Sets r from the signed 32-bit integer i (int32_t). The result is exact; no error is possible.

decDoubleFromNumber(r, dn, set)

This function is implemented as a macro and sets r from a decNumber, dn, using a decimal64 as a
proxy as illustrated in Example 8 in the User’s Guide (see page 20).

To use this macro, the decimal64.h header file must be included (see the text following the example
for more details about compilation).

(This function is also available in the decSingle module.)

decDoubleFromPacked(r, exp, pack)

Sets r from an exponent exp (which may indicate a special value) and a packed BCD array, pack.

exp (int32_t) is an in-range unbiased exponent or a special value in the form returned by
decDoubleGetExponent (listed in decQuad.h).

pack (const uint8_t *) is an array of DECDOUBLE_Pmax packed decimal digits (one digit per four-
bit nibble) followed by a sign nibble, and (for decDouble and decQuad only) prefixed with an extra
pad nibble (which is ignored); the sign nibble must be any of the six sign codes listed in decQuad.h

56 Module descriptions Version 3.68

and described for the decPacked module (see page 67), and digit nibbles must be in the range 0–9.

Like the decDoubleFromBCD function, the first nibble of pack (after the pad nibble, if any) is ignored
if the result will be a NaN, and all are ignored if the result is infinite.

For speed, the arguments are not checked; no status is set by this function. The content of r is
undefined if the arguments are invalid or out of range (that is, could not be produced by
decNumberToPacked, except that all six sign codes are permitted).

(This function is also available in the decSingle module.)

decDoubleFromPackedChecked(r, exp, pack)

Sets r from an exponent exp (which may indicate a special value) and a packed BCD array, pack, with
the input values fully checked.

exp (int32_t) must be an in-range unbiased exponent or a special value in the form returned by
decDoubleGetExponent (listed in decQuad.h).

pack (const uint8_t *) is an array of DECDOUBLE_Pmax packed decimal digits (one digit per four-
bit nibble) followed by a sign nibble, and (for decDouble and decQuad only) prefixed with an extra
pad nibble (which must be zero); the sign nibble must be one of the six sign codes listed in
decQuad.h and described for the decPacked module (see page 67), and digit nibbles must be in the
range 0–9.

The first nibble of pack (after the pad nibble, if any) must be zero if the result will be a NaN, and all
digit nibbles must be zero if the result is infinite.

No status is set by this function. NULL is returned instead of r if an argument is invalid or out of range
(that is, could not be produced by decNumberToPacked, except that all six sign codes are permitted).

(This function is also available in the decSingle module.)

decDoubleFromString(r, string, set)

Sets r from a character string, string (const char *).

The length of the coefficient and the size of the exponent are checked by this routine, so rounding will
be applied if necessary, and this may set status flags (underflow, overflow) will be reported, or
rounding applied, as necessary.

There is no limit to the coefficient length for finite inputs; NaN payloads must be integers with no
more than DECDOUBLE_Pmax-1 digits. Exponents may have up to nine significant digits. The syntax
of the string is fully checked; if it is not valid, the result will be a quiet NaN and an error flag will be
set.

(This function is also available in the decSingle module.)

decDoubleFromUInt32(r, u)

Sets r from the unsigned 32-bit integer u (uint32_t). The result is exact and no error is possible.

decDoubleFromWider(r, dq, set)

Sets r from an instance, dq, of the next-wider format (const decQuad *). This narrowing function

Version 3.68 Module descriptions 57

can cause rounding, overflow, etc., but not Invalid operation (sNaNs are copied and do not signal).

(This function is also available in the decSingle module, but is not available in the decQuad module.)

decDoubleGetCoefficient(x, bcd)

Extracts the coefficient of x as a BCD integer into the array bcd (uint8_t *) and returns the sign as a
signed 32-bit integer (int32_t). The returned value will be DECFLOAT_Sign if x has sign=1 or
otherwise will be 0.

The digits of the coefficent are written, one digit per byte, into DECDOUBLE_Pmax elements of the bcd
array. If x is a NaN the first byte will be zero (the remainder will be the payload), and if it is infinite
then all of bcd will be zero.

(This function is also available in the decSingle module.)

decDoubleGetExponent(x)

Returns the exponent of x as a 32-bit integer (int32_t). If x is infinite or is a NaN (a special value)
the first seven bits of the decDouble are returned, padded with 25 zero bits on the right and with the
most significant (sign) bit set to 0. For example, -sNaN would return 0x7e000000
(DECFLOAT_sNaN). The possible return values for infinities and NaNs are listed in decQuad.h.

(This function is also available in the decSingle module.)

decDoubleInvert(r, x, set)

Carries out the digit-wise logical inversion of x and places the result in r.

The operand must be zero or positive (sign=0), an integer (finite with exponent=0) and comprise only
zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoubleIsCanonical(x)

Returns an unsigned integer (uint32_t) which will be 1 if the encoding of x is canonical, or 0
otherwise.

decDoubleIsFinite(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is neither infinite nor a NaN, or 0
otherwise.

decDoubleIsInfinite(x)

Returns an unsigned integer (uint32_t) which will be 1 if the encoding of x is an infinity, or 0
otherwise.

decDoubleIsInteger(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is finite and has exponent=0, or 0
otherwise.

58 Module descriptions Version 3.68

decDoubleIsLogical(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a valid argument for logical operations
(that is, x is zero or positive (sign=0), an integer (finite with exponent=0) and comprises only zeros
and/or ones), or 0 otherwise.

decDoubleIsNaN(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a NaN (quiet or signaling), or 0
otherwise.

decDoubleIsNegative(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is less than zero and not a NaN, or 0
otherwise.

decDoubleIsNormal(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a normal number (that is, is finite,
non-zero, and not subnormal), or 0 otherwise.

decDoubleIsPositive(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is greater than zero and not a NaN, or 0
otherwise.

decDoubleIsSignaling(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a signaling NaN, or 0 otherwise.

decDoubleIsSignalling(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a signaling NaN, or 0 otherwise. (This
is an alternative spelling of decDoubleIsSignaling.)

decDoubleIsSigned(x)

Returns an unsigned integer (uint32_t) which will be 1 if x has sign=1, or 0 otherwise. Note that
zeros and NaNs may have sign=1.

decDoubleIsSubnormal(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is subnormal (that is, finite, non-zero,
and with magnitude less than 10emin), or 0 otherwise.

decDoubleIsZero(x)

Returns an unsigned integer (uint32_t) which will be 1 if x is a zero, or 0 otherwise.

Version 3.68 Module descriptions 59

decDoubleLogB(r, x, set)

Returns the adjusted exponent of x, according to IEEE 754 rules. That is, the exponent returned is
calculated as if the decimal point followed the first significant digit (so, for example, if x were 123
then the result would be 2).

If x is infinite, the result is +Infinity. If x is a zero, the result is -Infinity, and the
DEC_Division_by_zero flag is set. If x is less than zero, the absolute value of x is used. If x=1, the
result is 0. NaNs are handled (propagated) as for arithmetic operations.

decDoubleMax(r, x, y, set)

If both arguments are numeric (not NaNs) this returns the larger of x and y (compared using
decDoubleCompareTotal, to give a well-defined result).

If either (but not both of) x or y is a quiet NaN then the other argument is the result; otherwise NaNs
are handled as for arithmetic operations.

decDoubleMaxMag(r, x, y, set)

The same as decDoubleMax except that the absolute values of the two arguments are used (as though
modified by decDoubleCopyAbs).

decDoubleMin(r, x, y, set)

If both arguments are numeric (not NaNs) this returns the smaller of x and y (compared using
decDoubleCompareTotal, to give a well-defined result).

If either (but not both of) x or y is a quiet NaN then the other argument is the result; otherwise NaNs
are handled as for arithmetic operations.

decDoubleMinMag(r, x, y, set)

The same as decDoubleMin except that the absolute values of the two arguments are used (as though
modified by decDoubleCopyAbs).

decDoubleMinus(r, x, set)

This has the same effect as 0-x where the exponent of the zero is the same as that of x (if x is finite).
The effect is also the same as decFloatCopyNegate except that NaNs are handled as for arithmetic
operations (the sign of a NaN is not affected, and an sNaN will signal), the result is canonical, and a
zero result has sign=0.

decDoubleMultiply(r, x, y, set)

Multiplies x by y and places the result in r.

decDoubleNextMinus(r, x, set)

Returns the “next” decDouble to x in the direction of -Infinity according to IEEE 754 rules for
nextDown. The only status possible is DEC_Invalid_operation (from an sNaN).

60 Module descriptions Version 3.68

decDoubleNextPlus(r, x, set)

Returns the “next” decDouble to x in the direction of +Infinity according to IEEE 754 rules for nextUp.
The only status possible is DEC_Invalid_operation (from an sNaN).

decDoubleNextToward(r, x, y, set)

Returns the “next” decDouble to x in the direction of y according to proposed IEEE 754 rules for
nextAfter.21

If x=y the result is decDoubleCopySign(r, x, y). If either operand is a NaN the result is as for
arithmetic operations. Otherwise (the operands are numeric and different) the result of adding (or
subtracting) an infinitesimal positive amount to x and rounding towards +Infinity (or -Infinity) is
returned, depending on whether y is larger (or smaller) than x. The addition will set flags, except that if
the result is normal (finite, non-zero, and not subnormal) no flags are set.

decDoubleOr(r, x, y, set)

Carries out the digit-wise logical inclusive Or of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and comprise only
zeros and/or ones; if not, DEC_Invalid_operation is set.

decDoublePlus(r, x, set)

This has the same effect as 0+x where the exponent of the zero is the same as that of x (if x is finite).
The effect is also the same as decFloatCopy except that NaNs are handled as for arithmetic operations
(the sign of a NaN is not affected, and an sNaN will signal), the result is canonical, and a zero result
has sign=0.

decDoubleQuantize(r, x, y, set)

Returns x set to have the same quantum as y, if possible (that is, numerically the same value but
rounded or padded if necessary to have the same exponent as y, for example to round a monetary
quantity to cents). More details and an example are given with the decNumberQuantize function (see
page 38).

decDoubleRadix(x)

Returns an unsigned integer (uint32_t) set to the base used for arithmetic in this module (always
ten).

(This function is also available in the decSingle module.)

decDoubleReduce(r, x, set)

Returns a copy of x with its coefficient reduced to its shortest possible form without changing the
value of the result. This removes all possible trailing zeros from the coefficient (some may remain
when the number is very close to the most positive or most negative number). Infinities and NaNs are
unchanged and no status is set unless x is an sNaN. If x is a zero the result exponent is 0.

21 The nextAfter operation was dropped from the proposed standard during the ballot process.

Version 3.68 Module descriptions 61

decDoubleRemainder(r, x, y, set)

Integer-divides x by y and places the remainder from the division in r. That is, if the same x and y were
given to the decDoubleDivideInteger and decDoubleRemainder functions, resulting in int and rem
respectively, then the identity x = (int × y) + rem holds.

Note that, as for decDoubleDivideInteger, it must be possible to express the intermediate result (int) as
an integer. That is, it must have no more than DECDOUBLE_Pmax digits. If it has too many then
DEC_Division_impossible is raised.

decDoubleRemainderNear(r, x, y, set)

This is the same as decDoubleRemainder except that the nearest integer (or the nearest even integer if
the remainder is equidistant from two) is used for int instead of the result from
decDoubleDivideInteger. Again, that integer must fit.

decDoubleRotate(r, x, y, set)

The result is a copy of x with the digits of the coefficient rotated to the left (if y is positive) or to the
right (if y is negative) without adjusting the exponent or the sign of x.

y is the count of positions to rotate and must be a finite integer (with exponent=0) in the range
-DECDOUBLE_Pmax through +DECDOUBLE_Pmax. NaNs are propagated as usual. If x is infinite the
result is Infinity of the same sign. No status is set unless y is invalid or an operand is an sNaN.

decDoubleSameQuantum(x, y)

Returns an unsigned integer (uint32_t) which will be 1 if the operands have the same exponent or
are both NaNs (quiet or signaling) or both infinite. In all other cases, 0 is returned. No error or status
is possible.

decDoubleScaleB(r, x, y, set)

This calculates x × 10y and places the result in r. y must be an integer (finite with exponent=0) in the
range ±2 × (DECDOUBLE_Pmax + DECDOUBLE_Emax), typically resulting from decDoubleLogB.
Underflow and overflow might occur. NaNs propagate as usual.

decDoubleSetCoefficient(r, bcd, sign)

Sets the coefficient of r from a BCD integer in the array bcd (uint8_t *) and the signed 32-bit
integer (int32_t) sign. bcd must have DECDOUBLE_Pmax elements in the range 0–9, and sign must
be DECFLOAT_Sign to set the sign bit of r to 1, or 0 to set it to 0.

If r is a NaN the first byte of bcd will be ignored (the remainder will be the payload), and if it is
infinite then all of bcd will be ignored (the coefficient will become zero).

For speed, the arguments are not checked; no status is set by this function. The result is undefined if
the arguments are invalid or out of range (that is, could not have been produced by
decDoubleGetCoefficient).

(This function is also available in the decSingle module.)

62 Module descriptions Version 3.68

decDoubleSetExponent(r, set, exp)

Sets the exponent of r from the signed 32-bit integer (int32_t) exp. exp is either an in-range
exponent or a special code as returned by decDoubleGetExponent. If r becomes infinite then its
coefficient is set to zero, if it becomes NaN then the first digit of the coefficient is lost,22 otherwise the
coefficient is unchanged.

For speed, exp is not checked; however, underflow or overflow can result. The result is undefined if
exp is not a value that could have been produced by decDoubleGetExponent.

(This function is also available in the decSingle module.)

decDoubleShift(r, x, y, set)

The result is a copy of x with the digits of the coefficient shifted to the left (if y is positive) or to the
right (if y is negative) without adjusting the exponent or the sign of x. Any digits “shifted in” from the
left or from the right will be 0.

y is the count of positions to shift and must be a finite integer (with exponent=0) in the range
-DECDOUBLE_Pmax through +DECDOUBLE_Pmax. NaNs are propagated as usual. If x is infinite the
result is Infinity of the same sign. No status is set unless y is invalid or an operand is an sNaN.

decDoubleShow(x, tag)

This function uses printf to display a readable rendering of x, showing both the encoding (in
hexadecimal) and the value, and returns nothing (void). The string tag (const char *) is included
in the display and may be used as an identifier for the displayed data.

This function is intended as a debug aid. It is not a programming interface – the format of the
displayed data may change from release to release.

(This function is also available in the decSingle module.)

decDoubleSubtract(r, x, y, set)

Subtracts y from x and places the result in r.

decDoubleToBCD(x, exp, bcd)

Converts x into an exponent exp (int32_t *) and a BCD array bcd (uint8_t *). exp is set to the
value that would be returned by decDoubleGetExponent(x), and bcd and the returned integer
(int32_t) are as from decDoubleGetCoefficient(x, bcd).

(This function is also available in the decSingle module.)

decDoubleToEngString(x, string)

The same as decDoubleToString(x, string) except that if exponential notation is used the exponent will
be a multiple of 3 (“engineering notation”).

(This function is also available in the decSingle module.)

22 A NaN payload has one fewer digit than the coefficient of a finite number.

Version 3.68 Module descriptions 63

decDoubleToInt32(x, set, round)

Returns a signed 32-bit integer (int32_t) which is the value of x, rounded to an integer if necessary
using the explicit rounding mode round (enum rounding) instead of the rounding mode in set.

If x is infinite, is a NaN, or after rounding is outside the range of the result, then
DEC_Invalid_operation is set. The DEC_Inexact flag is not set by this function, even if
rounding ocurred.

decDoubleToInt32Exact(x, set, round)

The same as decDoubleToInt32 except that if rounding removes non-zero digits then the
DEC_Inexact flag is set.

decDoubleToIntegralExact(r, x, set)

Returns the value of x, rounded to an integral value using the rounding mode in set.

If x is infinite, Infinity of the same sign is returned. If x is a NaN, the result is as for other arithmetic
operations. If rounding removes non-zero digits then the DEC_Inexact flag is set.

decDoubleToIntegralValue(r, x, set, round)

Returns the value of x, rounded to an integral value using the explicit rounding mode round (enum
rounding) instead of the rounding mode in set.

If x is infinite, Infinity of the same sign is returned. If x is a NaN, the result is as for other arithmetic
operations. The DEC_Inexact flag is not set by this function, even if rounding ocurred.

decDoubleToNumber(x, dn)

This function is implemented as a macro and sets a decNumber, dn, from x using a decimal64 as a
proxy as illustrated in Example 8 in the User’s Guide (see page 20). The decNumber must have
sufficient space for the digits in x.

To use this macro, the decimal64.h header file must be included (see the text following the example
for more details). A pointer to dn is returned (decNumber *).

(This function is also available in the decSingle module.)

decDoubleToPacked(x, exp, pack)

Converts x into an exponent exp (int32_t *) and a Packed BCD array pack (uint8_t *). exp is set
to the value that would be returned by decDoubleGetExponent(x).

pack receives DECDOUBLE_Pmax packed decimal digits (one digit per four-bit nibble) followed by a
sign nibble and prefixed (for decDouble and decQuad only) with an extra pad nibble (which is 0). The
sign nibble will be DECPMINUS if x has sign=1 or DECPPLUS otherwise. The digit nibbles will be in
the range 0–9.

A signed 32-bit integer (int32_t) is returned; it will be DECFLOAT_Sign if x has sign=1 or otherwise
will be 0.

(This function is also available in the decSingle module.)

64 Module descriptions Version 3.68

decDoubleToString(x, string)

Converts x to a zero-terminated string in the character array string (char *) and returns string. string
must have at least DECDOUBLE_String elements (this count includes the terminator character).

Finite numbers will be converted to a string with exponential notation if the exponent is positive or if
the magnitude of x is less than 1 and would require more than five zeros between the decimal point
and the first significant digit.

Note that strings which are not simply numbers (one of Infinity, -Infinity, NaN, or sNaN) are
possible. A NaN string may have a leading - sign and/or following payload digits. No digits follow
the NaN string if the payload is 0.

(This function is also available in the decSingle module.)

decDoubleToUInt32(x, set, round)

Returns an unsigned 32-bit integer (uint32_t) which is the value of x, rounded to an integer if
necessary using the explicit rounding mode round (enum rounding) instead of the rounding mode in
set.

If x is infinite, is a NaN, or after rounding is outside the range of the result, then
DEC_Invalid_operation is set. The DEC_Inexact flag is not set by this function, even if
rounding ocurred.

Note that -0 converts to 0 and is valid, but all negative numbers are not valid.

decDoubleToUInt32Exact(x, set, round)

The same as decDoubleToUInt32 except that if rounding removes non-zero digits then the
DEC_Inexact flag is set.

decDoubleToWider(x, dq)

Converts x into a structure, dq, of the next-wider format (decQuad *) and returns dq. Widening is
always exact; no status is set (sNaNs are copied and do not signal). The result will be canonical if x is
canonical, but otherwise might not be.

(This function is also available in the decSingle module, but is not available in the decQuad module.)

decDoubleVersion(void)

Returns a pointer to a character string (const char *) which includes the name and the version of
the decNumber package.

(This function is also available in the decSingle module.)

decDoubleXor(r, x, y, set)

Carries out the digit-wise logical exclusive Or of x and y and places the result in r.

The operands must be zero or positive (sign=0), an integer (finite with exponent=0) and comprise only
zeros and/or ones; if not, DEC_Invalid_operation is set.

Version 3.68 Module descriptions 65

decDoubleZero(r)

Sets r to the unsigned integer zero (that is, with the coefficient, the exponent, and the sign all set to 0).

(This function is also available in the decSingle module.)

66 Module descriptions Version 3.68

decPacked module
The decPacked module provides conversions to and from Packed Decimal numbers. Unlike the other
modules, no specific decPacked data structure is defined because packed decimal numbers are usually
held as simple byte arrays, with a scale either being held separately or implied.

Packed Decimal numbers are held as a sequence of Binary Coded Decimal digits, most significant first
(at the lowest offset into the byte array) and one per 4 bits (that is, each digit taking a value of 0–9, and
two digits per byte), with optional leading zero digits. The final sequence of 4 bits (called a “nibble”)
will have a value greater than nine which is used to represent the sign of the number. The sign nibble
may be any of the six possible values:
1010 (0x0a) plus
1011 (0x0b) minus
1100 (0x0c) plus (preferred)
1101 (0x0d) minus (preferred)
1110 (0x0e) plus
1111 (0x0f) plus23

Packed Decimal numbers therefore represent decimal integers. They often have associated with them
a second integer, called a scale. The scale of a number is the number of digits that follow the decimal
point, and hence, for example, if a Packed Decimal number has the value -123456 with a scale of 2,
then the value of the combination is -1234.56.

Definitions
The decPacked.h header file does not define a specific data structure for Packed Decimal numbers.

It includes the decNumber.h header file, to simplify use, and (if not already defined) it sets the
DECNUMDIGITS constant to 32, to allow for most common uses of Packed Decimal numbers. If you
wish to work with higher (or lower) precisions, define DECNUMDIGITS to be the desired precision
before including the decPacked.h header file.

The decPacked.h header file also contains:

• Constants describing the six possible values of sign nibble, as described above.

• Definitions of the public functions in the decPacked module.

Functions
The decPacked.c source file contains the public functions defined in the header file. These provide
conversions to and from decNumber form.

decPackedFromNumber(bytes, length, scale, number)

This function is used to convert a decNumber to Packed Decimal format.

23 Conventionally, this sign code can also be used to indicate that a number was originally unsigned.

Version 3.68 Module descriptions 67

The arguments are:
bytes (uint8_t *) Pointer to an array of unsigned bytes which will receive the number.
length (int32_t) Contains the length of the byte array, in bytes.
scale (int32_t *) Pointer to an int32_t which will receive the scale of the number.
number (decNumber *) Pointer to the input structure. The decNumber structure will not be

altered.

Returns bytes unless the decNumber has too many digits to fit in length bytes (allowing for the sign) or
is a special value (an infinity or NaN), in which cases NULL is returned and the bytes and scale values
are unchanged.

The number is converted to bytes in Packed Decimal format, right aligned in the bytes array, whose
length is given by the second parameter. The final 4-bit nibble in the array will be one of the preferred
sign nibbles, 1100 (0x0c) for + or 1101 (0x0d) for -. The maximum number of digits that will fit in
the array is therefore length×2-1. Unused bytes and nibbles to the left of the number are set to 0.

The scale is set to the scale of the number (this is the exponent, negated). To force the number to a
particular scale, first use the decNumberRescale function (see page 39) on the number, negating the
required scale in order to adjust its exponent and coefficient as necessary.

decPackedToNumber(bytes, length, scale, number)

This function is used to convert a Packed Decimal format number to decNumber form in preparation
for arithmetic or other operations.

The arguments are:
bytes (uint8_t *) Pointer to an array of unsigned bytes which contain the number to be

converted.
length (int32_t) Contains the length of the byte array, in bytes.
scale (int32_t *) Pointer to an int32_t which contains the scale of the number to be

converted. This must be set; use 0 if the number has no associated scale (that is, it is an
integer). The effective exponent of the resulting number (that is, the number of
significant digits in the number, less the scale, less 1) must fit in 9 decimal digits.

number (decNumber *) Pointer to the decNumber structure which will receive the number. It
must have space for length×2-1 digits.

Returns number, unless the effective exponent was out of range or the format of the bytes array was
invalid (the final nibble was not a sign, or an earlier nibble was not in the range 0–9). In these error
cases, NULL is returned and number will have the value 0.

Note that -0 and zeros with non-zero exponents are possible resulting numbers.

68 Module descriptions Version 3.68

Additional options

This section describes some additional features of the decNumber package, intended to be used when
customizing, tuning, or testing the package. If you are just using the package for applications, using
full IEEE arithmetic, you should not need to modify the parameters controlling these features unless
compiling for a big-endian target, in which case the DECLITEND setting will need to be altered.

If any of these parameters is changed, all the decNumber source files being used must be recompiled
to ensure correct operation.

Each parameter is set to a default value in one of the header files, as noted below. The parameters are
only set if undefined, so the defaults can be overridden by compiler command-line definitions (e.g.,
with the option -DDECUSE64=0).

Version 3.68 Additional options 69

Customization parameters
The decNumber package includes four compile-time parameters for customizing its use.

The first parameter controls the layout of the compressed decimal formats (see page 48). The storage
of a number in these formats must follow the byte ordering (“endianness”) of the computing platform;
this parameter determines how the formats are loaded and stored. The parameter is set in the
decNumberLocal.h file, and is:

DECLITEND This must be either 1 or 0. If 1, the target platform is assumed to be little-endian (for
example, AMD and Intel x86 architecture machines are little-endian, where the byte
containing the sign bit of the format is at the highest memory address). If 0, the target
platform is assumed to be big-endian (for example, for IBM System z machines are
big-endian, where the byte containing the sign bit of the format is at the lowest
memory address).

Many compilers provide a compile-time definition for determining the endianness of
the target platform, and DECLITEND can in that case be defined to use the provided
definition.

The decContextTestEndian function can be called to check that the DECLITEND
parameter is set correctly.

A second customization parameter allows the use of 64-bit integers to improve the performance of
certain operations (notably multiplication and the mathematical functions), even when DECDPUN (see
page 71) is less than 5. (64-bit integers are required for the decNumber module when DECDPUN is 5 or
more.) The parameter is set in the decNumberLocal.h file, and is:

DECUSE64 This must be either 1 or 0. If 1, which is recommended, 64-bit integers will be used
for most multiplications and mathematical functions when DECDPUN<=4, and for
most operations when DECDPUN>4. If set to 0, 64-bit integer support is not used
when DECDPUN<=4, and the maximum value for DECDPUN is then 4. Full 64-bit
support is not assumed; only 32×32 to 64 and the inverse (divide) are used; most 32-
bit compilers will be able to handle these efficiently without requiring 64-bit
hardware.

Another customization parameter controls whether the status flags returned by decNumber are
restricted to the five IEEE flags or comprise an extended set which gives more detail about invalid
operations along with some extra flags (this does not affect performance). The parameter is set in the
decContext.h file, and is:

DECEXTFLAG This must be either 1 or 0. If 1, the extended set of flags is used. If 0, only 5 bits are
used, corresponding to the IEEE 754 flags.

The fourth customization parameter enables the inclusion of extra code which implements and
enforces the subset arithmetic defined by ANSI X3.274. This option should be disabled, for best
performance, unless the subset arithmetic is required.

The parameter is set in the decContext.h file, and is:

DECSUBSET This must be either 1 or 0. If 1, subset arithmetic is enabled. This setting includes the
extended flag in the decContext structure and all code which depends on that flag.
Setting DECSUBSET to 0 improves the performance of many operations by 10%–20%.

70 Additional options Version 3.68

Tuning parameters
The decNumber package incorporates two compile-time parameters for tuning the performance of the
decNumber module. These are used to tune the trade-offs between storage use and speed. The first of
these determines the granularity of calculations (the number of digits per unit of storage) and is
normally set to three or to a power of two. The second is normally set so that short numbers (tens of
digits) require no storage management – working buffers for operations will be stack based, not
dynamically allocated. These are:

DECDPUN This parameter is set in the decNumber.h file, and must be an integer in the range 1
through 9. It sets the number of digits held in one unit (see page 30), which in turn
alters the performance and other characteristics of the library. In particular:

• If DECDPUN is 1, conversions are fast, but arithmetic operations are at their
slowest. In general, as the value of DECDPUN increases, arithmetic speed
improves and conversion speed gets worse.

• Conversions between the decNumber internal format and the decimal64 and
other compressed formats are fastest – sometimes by as much as a factor of 4
or 5 – when DECDPUN is 3 (because Densely Packed Decimal encodes digits in
groups of three).

• If DECDPUN is not 1, 3, or a power of two, calculations converting digits to
units and vice versa are slow; this may slow some operations by up to 20%.

• If DECDPUN is greater than 4, either non-ANSI-C-89 integers or library calls
have to be used for 64-bit intermediate calculations.24

The suggested value for DECDPUN is 3, which gives good performance for working
with the compressed decimal formats. If the compressed formats are not being used,
or 64-bit integers are unavailable (see DECUSE64, below), then measuring the effect
of changing DECDPUN to 4 is suggested. If the library is to be used for high precision
calculations (many tens of digits) then it is recommended that measurements be made
to evaluate whether to set DECDPUN to 8 (or possibly to 9, though this will often be
slower).

DECBUFFER This parameter is set in the decNumberLocal.h file, and must be a non-negative
integer. It sets the precision, in digits, which the operator functions will handle
without allocating dynamic storage.25

One or more buffers of at least DECBUFFER bytes will be allocated on the stack,
depending on the function. It is recommended that DECBUFFER be a multiple of
DECDPUN and also a multiple of 4, and large enough to hold common numbers in your
application.

24 The decNumber library currently assumes that non-ANSI-C-89 64-bit integers are available if DECDPUN is greater than
4. See also the DECUSE64 code parameter.

25 Dynamic storage may still be allocated in certain cases, but in general this is rare.

Version 3.68 Additional options 71

Print and testing parameters
The decNumber package includes a compile-time parameter that can be used to prevent the package
using the printf function. This parameter is set in the decNumberLocal.h file, and is:

DECPRINT This must be either 1 or 0. If 1, calls to printf are permitted; if 0, they will not. In
the latter case, the decContextTestEndian will not display a warning message
(even if its argument is 0), and also the functions decSingleShow,
decDoubleShow, and decQuadShow will be excluded from compilation.

The decNumber package also incorporates three compile-time parameters which control the inclusion
of extra code which provides for extra checking of input arguments, etc., run-time internal tracing
control, and storage allocation auditing. These options are usually disabled, for best performance, but
are useful for testing and when introducing new conversion routines, etc. It is recommended that
DECCHECK be set to 1 while developing an application that uses decNumber.

These test settings may all report errors using the printf function, so DECPRINT must be set to 1 if
any of them are used. The parameters are all set in the decNumberLocal.h file, and are:

DECCHECK This must be either 1 or 0. If 1, extra checking code, including input structure
reference checks, will be included in the module. The latter checks that the structure
references are not NULL, and that they refer to valid (internally consistent in the
current context) structures. If an invalid reference is detected, the
DEC_Invalid_operation status bit is set (which may cause a trap), a message may
be displayed using printf, and any result will be a valid number of undefined value.
This option is especially useful when testing programs that construct decNumber
structures explicitly.

Some operations take more than twice as long with this checking enabled, so it is
normally assumed that all decNumbers are valid and DECCHECK is set to 0.

DECALLOC This must be either 1 or 0. If 1, all dynamic storage usage is audited and extra space
is allocated to enable buffer overflow corruption checks. The cost of these checks is
fairly small, but the setting should normally be left as 0 unless changes are being
made to the decNumber.c source file.

DECTRACE This must be either 1 or 0. If 1, certain critical values are traced (using printf) as
operations take place. This is intended for decNumber development use only, so
again should normally be left as 0.

72 Additional options Version 3.68

Appendix A – Library performance

The decNumber module implements arbitrary-precision arithmetic with fully tailorable parameters
(rounding precision, exponent range, and other factors can all be changed at run time). All decNumber
operations can accept arbitrary-length operands. Further, decNumber uses a general-purpose internal
format (tunable at compile time) which therefore requires conversions to and from any external format
(such as strings, BCD, or the IEEE 754 fixed-size decimal encodings).

As a result, the module has significant overheads compared to the dedicated decFloats modules (see
page 52) which work directly on the fixed-size encodings. This appendix compares the performance
of the decNumber module with the decDouble and decQuad implementations of the same operations.
As the tables below show, there is a significant performance advantage in using the decFloats modules
when arbitrary-precision operations are not required.

Description of the tables
In the following tables, timings for each operation are given in processor clock cycles. While generally
a more useful indicator of comparative performance than “wall clock” times, cycle counts vary
considerably with processor architecture. For example, the times below are cycles measured on an
Intel Pentium M processor in an IBM X41T Thinkpad;26 on a Pentium 4 or RISC processor most of the
tests would show significantly higher cycle counts. The compiler used also makes a measurable
difference. Details of the tests and compiler are given in the notes at the end of this appendix.

Throughout the tables, worst-case cycle times are shown for the main operations in the decDouble and
decQuad modules, compared with the same operations using the decNumber module (which requires
conversion of operands and results).

Worst-case timings are quoted because best-case timings are generally trivial special cases (such as
NaN arguments) and “typical” instruction mixes are very application-dependent.

For each operation, the name of the operation is given, along with a brief description of the worst-case
form of the operation. This is the worst case for the decFloats module (in some cases the worst case is
different for the decNumber module).

26 “Intel” and “Pentium” are trade marks of the Intel Corporation. “Thinkpad” is a trade mark of Lenovo.

Version 3.68 Appendix A – Library performance 73

decDouble performance tables

decDouble (64-bit) conversions
 Operation decDouble decNumber
 Encoding to BCD (with exponent)
 16-digit finite

 39 481

 BCD to encoding (with exponent)
 16-digit finite

 46 327

 Encoding to string
 16-digit, with exponent

 84 133

 Exact string to encoding (unrounded)
 16-digit, with exponent

 229 196

 String to encoding (rounded (see page 77))
 16-digit, rounded, with exponent

 266 548

 Widen to decQuad
 16-digit, with exponent

 30 209

 int32 to encoding
 From most negative int

 39 199

 Encoded integer to int32
 To most negative int32

 32 136

 decDouble (64-bit) miscellaneous operations
 Operation decDouble decNumber
 Class (classify datum)
 Negative small subnormal

 37 113

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 25 338

 Count significant digits
 Single digit

 24 122

 Logical And/Or/Xor/Invert (digitwise)
 16-digit

 23 510

 Shift/Rotate
 Rotate 15 digits

 154 583

74 Appendix A – Library performance Version 3.68

 decDouble (64-bit) computations
 Operation decDouble decNumber
 Add (same-sign addition)
 16-digit, unaligned, rounded

 248 848

 Subtract (different-signs addition)
 16-digit, unaligned, rounded, borrow

 288

 Compare
 16-digit, unaligned, mismatch at end

 126 442

 CompareTotal
 16-digit, unaligned, mismatch at end

 149 594

 Divide
 16- by 16-digit (rounded)

 828 1576

 FMA (fused multiply-add)
 16-digit, subtraction, rounded

 785 1683

 LogB (returns a decDouble)
 Negative result

 48 279

 MaxNum/MinNum
 16-digit, unaligned, mismatch at end

 155 656

 Multiply
 16×16-digit, round needed

 362 1305

 Quantize
 16-digit, round all-nines

 112 422

 ScaleB (from decDoubles)
 Underflow

 212 513

 To integral value
 16-digit, round all-nines

 135 709

Version 3.68 Appendix A – Library performance 75

decQuad performance tables

 decQuad (128-bit) conversions
 Operation decQuad decNumber
 Encoding to BCD (with exponent)
 34-digit finite

 53 460

 BCD to encoding (with exponent)
 34-digit finite

 74 307

 Encoding to string
 34-digit, with exponent

 183 239

 Exact string to encoding (unrounded)
 34-digit, with exponent

 297 597

 String to encoding (rounded (see page 77))
 34-digit, rounded, with exponent

 451 956

 Narrow to decDouble
 34-digit, all nines

 140 612

 int32 to encoding
 From most negative int

 44 199

 Encoded integer to int32
 To most negative int32

 32 156

 decQuad (128-bit) miscellaneous operations
 Operation decQuad decNumber
 Class (classify number)
 Negative small subnormal

 53 133

 Copies (Abs/Negate/Sign)
 CopySign, copy needed

 27 380

 Count significant digits
 Single digit

 27 138

 Logical And/Or/Xor/Invert (digitwise)
 34-digit

 27 622

 Shift/Rotate
 Rotate 33 digits

 222 812

76 Appendix A – Library performance Version 3.68

 decQuad (128-bit) computations
 Operation decQuad decNumber
 Add (same-sign addition)
 34-digit, aligned

 433 1180

 Subtract (different-signs addition)
 34-digit, unaligned, rounded, borrow

 457

 Compare
 34-digit, unaligned, mismatch at end

 187 1125

 CompareTotal
 34-digit, unaligned, mismatch at end

 238 778

 Divide
 34- by 34-digit (rounded)

 2018 3172

 FMA (fused multiply-add)
 34-digit, subtraction, rounded

 1622 2707

 LogB (returns a decQuad)
 Negative result

 58 299

 MaxNum/MinNum
 34-digit, unaligned, mismatch at end

 241 857

 Multiply
 34×34-digit, round needed

 821 2235

 Quantize
 34-digit, round all-nines

 209 670

 ScaleB (from decQuads)
 Underflow

 263 553

 To integral value
 34-digit, round all-nines

 233 886

Notes
The following notes apply to all the tables in this appendix.

1. All timings were made on an IBM X41T Tablet PC (Pentium M, 1.5GHz, 1.5GB RAM) under
Windows XP Tablet Edition with SP2; the modules were compiled using GCC version 3.4.4
with optimization settings -O3 -march=i686.

2. The default tuning parameters were used (DECUSE64=1, DECDPUN=3, etc.); some of these
only affect decNumber.

3. Timings include call/return overhead, and for the decNumber module also include the costs of
converting operand(s) to decNumbers and results back to the appropriate format using the
decimal64 or decimal128 module.

4. “BCD” for decNumber is Packed BCD, using the decPacked module; for decFloats it is 8-bit
BCD.

5. The worst case for each operation is not always obvious from the code and is implementation-
dependent (for example, in the decFloats modules, an unaligned add is sometimes faster than an
aligned add). It is possible that there may be unusual cases which are slower than the decFloats

Version 3.68 Appendix A – Library performance 77

counts listed above, although a wide variety of micro-benchmarks have been tried.

6. A string-to-number conversion can theoretically have an arbitrarily large worst case as the string
could contain any number of leading, trailing, or embedded zeros; the timings above measured
cases where the input string’s coefficient had up to eight more digits than the precision of the
destination format.

78 Appendix A – Library performance Version 3.68

Appendix B – Changes

This appendix documents changes since the first (internal) release of this document (Draft 1.50, 21
Feb 2001).

Changes in Draft 1.60 (9 July 2001)

• The significand of a number has been renamed from integer to coefficient, to remove possible
ambiguities.

• The decNumberRescale function has been redefined to match the base specification. In
particular its rhs now specifies the new exponent directly, rather than as a negated exponent.

• In general, all functions now return a reference to their primary result structure.

• The decPackedToNumber function now handles only “classic” Packed Decimal format (there
must be a sign nibble, which must be the final nibble of the packed bytes). This improved
conversion speed by a factor of two.

• Minor clarifications and editorial changes have been made.

Changes in Draft 1.65 (25 September 2001)

• The rounding modes DEC_ROUND_CEILING and DEC_ROUND_FLOOR have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.00 (4 December 2001)

This is the first public release of this document.

• The decDoubleToSingle function will now round the value of the decDouble number if it has
more than 15 digits.

• The decNumberToInteger, decNumberRemainderNear, and decNumberVersion functions
have been added.

• Relatively minor changes have been made throughout to reflect support for the extended
specification.

Changes in Version 2.11 (25 March 2002)

• The header files have been reorganized in order to move private type names (such as Int and
Flag) out of the external interface header files. In the external interface, integer types now use

Version 3.68 Appendix B – Changes 79

the stdint.h names from C99.

• All but one of the compile-time parameters have been moved to the “internal”
decNumberLocal.h header file, and so are described in a new section (see page 69).

• The decNumberAbs, decNumberMax, and decNumberMin functions have been added.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.12 (23 April 2002)

• The decNumberTrim function has been added.

• The decNumberRescale function has been updated to match changed specifications; it now
sets the exponent as requested even for zero values.

• Minor clarifications and editorial changes have been made.

Changes in Version 2.15 (5 July 2002)

The package has been updated to reflect the changes included in the combined arithmetic
specification. These preserve more digits of the coefficient together with extended zero values if
extended in the context is 1. Notably:

• The decNumberDivide and decNumberPower functions do not remove trailing zeros after the
operation. (The decNumberTrim function can be used to effect this, if required.)

• A non-zero exponent on a zero value is now possible and is preserved in a manner consistent
with other numbers (that is, zero is no longer a special case).

• The decPackedToNumber function has been enhanced to allow zeros with non-zero exponents
to be converted without loss of information.

Changes in Version 2.17 (1 September 2002)

• The decNumberFromString, decSingleFromString, and decDoubleFromString functions
will now round the coefficient of a number to fit, if necessary. They also now accept subnormal
values and preserve the exponent of a 0. If an overflow or underflow occurs, the
DEC_Overflow or DEC_Underflow conditions are raised, respectively.

• The package has been corrected to ensure that subnormal values are no more precise than
permitted by IEEE 854.

• The underflow condition is now raised according to the IEEE 854 untrapped underflow criteria
(instead of according to the IEEE 854 trapped criteria). That is, underflow is now only raised
when a result is both subnormal and inexact.

• The DEC_Subnormal condition has been added so that subnormal results can be detected even
if no Underflow condition is raised.

• Minor clarifications and editorial changes have been made.

80 Appendix B – Changes Version 3.68

Changes in Version 2.28 (1 November 2002)

• The decNumberNormalize function has been added, as an operator. This makes the coefficient
of a number as short as possible while maintaining its numerical value.

• The decNumberSquareRoot function has been added. This returns the exact square root of a
number, rounded to the specified precision and normalized.

• When the extended setting is 1, long operands are used without input rounding, to give a
correctly rounded result (without double rounding). The DEC_Lost_digits flag can therefore
only be set when extended is 0.

• Minor editorial changes have been made.

Changes in Version 3.04 (22 February 2003)

The major change in decNumber version 3 is the replacement of the decSingle and decDouble formats
by the three new formats decimal32, decimal64, and decimal128. These formats are now [June 2008]
included in the IEEE-SA 754 standard.

Related and other enhancements include:

• The exponent minimum field, emin, has been added to the decContext structure. This allows the
unbalanced exponents used in the new formats.

• The exponent clamping flag, clamp, has been added to the decContext structure. This provides
explicit exponent clamping as used in the new formats.

• A new condition flag, DEC_Clamped has been introduced. This reports any situation where the
exponent of a finite result has been limited to fit in the available exponent range.

• The header file bcd2dpd.h has been renamed decDPD.h to better describe its function.

• The DECSUBSET tuning parameter has been added. This controls the inclusion of the code and
flags required for subset arithmetic; when set to 0, the performance of many operations is
improved by 10%–20%.

• Double rounding which was possible with certain subnormal results has been eliminated.

• Minor editorial changes have been made.

Changes in Version 3.09 (23 July 2003)

This version implements some minor changes which track changes agreed by the IEEE 754 revision
committee.

• The decNumberQuantize function has been added. Its function is identical to
decNumberRescale except that the second argument specifies the target exponent “by
example” rather than by value.

• The decNumberQuantize and decNumberRescale functions now report
DEC_Invalid_operation rather than DEC_Overflow if the result cannot fit.

• The decNumberToInteger function has been replaced by the decNumberToIntegralValue
function. This implements the new rules for round-to-integral-value agreed by IEEE 754r.
Notably:

Version 3.68 Appendix B – Changes 81

◦ the exponent is only set to zero if the operand had a negative exponent

◦ the Inexact flag is not set.

• The decNumberSquareRoot function no longer normalizes. Its preferred exponent is
floor(operand.exponent/2).

Changes in Version 3.12 (1 September 2003)

This version adds a new function and slightly reorganizes the decimalnn modules.

• The decNumberSameQuantum function has been added. This tests whether two numbers have
the same exponents.

• The decimal128.h, decimal64.h, and decimal32.h header files now check that (if more
than one is included) they are included in order of reducing size. This makes it harder to use a
decNumber structure which is too small.

• . The shared DPD pack/unpack routines have been moved from
decimal32.c to decimal64.c, because the latter is more likely to be used alone.

Changes in Version 3.16 (2 October 2003)

• NaN values may now use the coefficient to convey diagnostic information, and NaN sign
information is propagated along with that information.

• The decNumberQuantize function now allows both arguments to be infinite, and treats NaNs
in the same way as other functions.

Changes in Version 3.19 (21 November 2003)

• The decNumberIsInfinite, decNumberIsNaN, decNumberIsNegative, and decNumberIsZero
functions have been added to simplify tests on numbers. These functions are currently
implemented as macros.

Changes in Version 3.24 (25 August 2004)

• The decNumberMax and decNumberMin functions have been altered to conform to the
maxnum and minnum functions in IEEE 754. That is, a total ordering is provided for numerical
comparisons, and if one operand is a quiet NaN but the other is a number then the number is
returned.

• The decimal64FromString function (and the same function for the other two formats) now uses
the rounding mode provided in the context structure.

Changes in Version 3.25 (15 June 2005)

• Arguments to functions which are “input only” are now decorated with the const keyword to
make the functions easier and safer to call from a C++ wrapper class.

• The performance of arithmetic when DECDPUN<=3 has been improved substantially;
DECDPUN==3 performance is now similar to DECDPUN==4.

82 Appendix B – Changes Version 3.68

• An error in the decNumberRescale and decNumberQuantize functions has been corrected. This
returned 1.000 instead of NaN for quantize(0.9998, 0.001) under a context with precision=3.

Changes in Version 3.32 (12 December 2005)

• The decNumberExp function has been added. This returns e raised to the power of the
operand.

• The decNumberLn and decNumberLog10 functions have been added. These return the
natural logarithm (logarithm in base e) or the logarithm in the base ten of the operand,
respectively.

• The decNumberPower function has been enhanced by removing restrictions; notably it now
allows raising numbers to non-integer powers.

• The DECENDIAN tuning parameter has been added. This allows the compressed decimal
formats (see page 48) to be stored using platform-dependent ordering for better performance
and compatibility with binary formats. This parameter can be set to 0 to get the same (big-
endian) ordering on all platforms, as in earlier versions of the decNumber package.

• The DECUSE64 tuning parameter (see page 70) has been added. This allows 64-bit integers to
be used to improve the performance of operations when DECDPUN<=4. This parameter can be
set to 0 to ensure only 32-bit integers are used when DECDPUN<=4.

• The compressed decimal formats are widely used with the decNumber package, so the initial
setting of DECDPUN has been changed to 3 (from 4), and DECENDIAN and DECUSE64 are both
set to 1 (to use platform ordering and 64-bit arithmetic). These settings significantly improve
the speed of conversions to and from the compressed formats and the speed of multiplications
and other operations.

• Minor clarifications and editorial changes have been made.

Changes in Version 3.37 (22 November 2006)

• The decNumberCompareTotal (total ordering comparison), decNumberIsQNaN, and
decNumberIsSNaN functions have been added.

Changes in Version 3.40 (18 April 2007)

This is a major upgrade to decNumber to add logical and shifting functions together with
generalizations of most of the new functions required by the IEEE 754 standard.

The changes included in this update are:

• Thirty-four new functions have been added to the decNumber module (all names have the prefix
decNumber): And, CompareSignal, CompareTotalMag, CopyAbs, CopyNegate, CopySign,
Class, ClassToString, FMA, FromInt, FromUInt, GetBCD, Invert, IsCanonical, IsFinite,
IsNormal, IsSpecial, IsSubnormal, LogB, MaxMag, MinMag, NextMinus, NextPlus,
NextToward, Or, Radix, Rotate, ScaleB, SetBCD, Shift, ToIntegralExact, ToInt32, ToUInt32,
Xor.

• Two new functions have been added to each of the three decimalNN modules:
decimalNNIsCanonical, decimalNNCanonical.

Version 3.68 Appendix B – Changes 83

• The DECENDIAN setting (in decNumberLocal.h) has been removed to improve performance;
instead, you must set the DECLITEND parameter (see page 70) to 1 if compiling for a little-
endian target, or to 0 if compiling for a big-endian target. If DECCHECK is set to 1 (highly
recommended while testing), any call to decContextDefault will check that DECLITEND is set
correctly.

• The DECEXTFLAG parameter (see page 70) has been added (in decContext.h). This controls
whether the status flags returned by decNumber are restricted to the five IEEE flags or comprise
an extended set which gives more detail about invalid operations along with some extra flags
(this does not affect performance). The default is the extended set of flags, as in earlier versions
of decNumber.

Changes in Version 3.41 (7 May 2007)

• Minor corrections (notably to the descriptions of the FromString functions) and clarifications
have been made.

Changes in Version 3.50 (4 June 2007)

This is a major upgrade to decNumber which adds three new modules (decSingle, decDouble, and
decQuad) with 175 new functions. These modules provide functions which work directly with the
decimal32, decimal64, and decimal128 formats, to provide high performance when arbitrary-precision
calculations are not needed.

In addition to the new modules, the changes included in this update are:

• Two new examples have been added to the User’s Guide, showing how to use the new modules
either stand-alone or in conjunction with the decNumber module.

• Eleven new functions have been added to the decContext module to match those required by the
IEEE 754 standard.

• Synonyms for DEC_INIT_DECIMAL32, etc., have been provided to match the names of the new
modules, called DEC_INIT_DECSINGLE, etc.

• The decClasses enumeration and strings have been moved from decNumber.h to
decContext.h so that they can be used from all modules.

• The DECVERSION constant has been moved from decNumber.h to decNumberLocal.h so
that it can be used from all modules.

• The decNumberNormalize function has been renamed decNumberReduce for clarity (it is still
available in the code and header file under the old name, for compatibility).

• A new appendix comparing the performance of the decNumber module to the new decDouble
and decQuad modules has been added.

• Numerous clarifications and editorial changes have been made.

Changes in Version 3.53 (7 September 2007)

This release of decNumber is a code maintenance release; the problems corrected are:

• decNumberRemainder: the sign of a zero result was occasionally different from that specified

84 Appendix B – Changes Version 3.68

by IEEE 854

• decNumberSquareRoot: several problems related to subnormal results that were not covered by
Hull’s algorithm and also when the input argument was wider than the requested result width

• decNumber and decFloats: under the DEC_ROUND_05UP rounding mode Infinity was being
returned after overflow instead of the number with the greatest possible magnitude

• decQuadDivide: divisions where both operands had more than 27 digits and the result was
extremely close to one (all but the last few digits the same) could return a value slightly larger
than one instead of just less than one; this also affected the decQuadDivideInteger and
remainder functions (but not decDouble or decNumber divisions or remainder)

• decDoubleFromString and decQuadFromString: the restriction that the input string should not
be followed by unaddressable memory has been removed

• numerous code changes have been made to avoid new warnings in recent releases of GCC.

New testcases have been added for all the above cases.

Changes in Version 3.56 (12 October 2007)

This release of decNumber is a code maintenance release primarily to widen the applicability of the
package. The changes are:

• The modules now conform to the C99 strict aliasing rules (that is, no longer cast char *
pointers to int *, etc., because such casts are forbidden in C99).

• As a consequence of the previous change, the decDouble (etc.) structures have been changed
to unions, allowing access through wider integer types as well as by bytes.

• Accesses to memory through an integer type are now always aligned. (Some RISC platforms
reported alignment problems with parts of the code; thanks are due to Nelson Beebe for
identifying and testing these cases.)

• The decContextTestEndian function has been added. This tests that the DECLITEND tuning
parameter (see page 70) is set correctly, and optionally displays a message if it is not. A call to
this function has been added to example1.c. This test is no longer automatic under DECCHECK
(it was inconvenient in some cases).

• The customization and tuning parameters are now only set to default values in the header files if
not already defined. These means that they can be set from the compiler command line if
desired (e.g., with the option -DDECUSE64=0).

• The decDoubleFromPackedChecked function has been added (also for decSingle and
decQuad); this is the same as decDoubleFromPacked except that all input values are checked.

• Edge-case errors in multiply, FMA, and remainder functions have been corrected.

• Minor code changes have been made to improve performance in some areas.

Changes in Version 3.61 (29 July 2008)

This release of decNumber is a code maintenance and performance release. The changes are:

• A fastpath has been added to decDoubleAdd and decQuadAdd for the common case of aligned

Version 3.68 Appendix B – Changes 85

additions with exact results. This typically improves the performance in these cases by 2× or 3×
respectively.

• The performance of decNumberSquareRoot has been improved when the result is exact or
definitely inexact.

• The IEEE 854 names in decContext.h are now supplied with IEEE 754 names too (e.g.,
DEC_IEEE_754_Inexact).

• References to IEEE 854 and the old IEEE 754 standard have been removed and/or changed to
refer to IEEE 754-2008.

• All references to the General Decimal Arithmetic website have been updated to
http://speleotrove.com/decimal (its new location).

• A problem in decFloatSubtract and decFloatQuantize due to the ISCOEFFZERO macro re-using
UBTOUI has been corrected (this only affected compilers that take advantage of C99 strict
aliasing rules). This problem was previously published as an errata to 3.56.

• A buffer in decQuadQuantize was two bytes too short when the coefficient of the first operand
had to be extended with 33 zeros; this is now corrected. This problem was previously published
as an errata to 3.56.

23 March 2009: The document is now formatted using OpenOffice (generated from GML), for
improved PDF files with bookmarks, hot links, etc. There are no technical changes.

Changes in Version 3.68 (23 January 2010)

This release of decNumber is primarily a code maintenance release. The changes are:

• Minor problems in the decNumberLogB, decNumberScaleB, decDoubleIsSigned, and
decQuadIsSigned functions have been corrected. These problems were previously published as
errata to 3.61.

• The decDoubleIsLogical, decDoubleIsNegative, and decDoubleIsPositive functions have
been added (also for decQuad); these test whether the argument is valid for use as an operand to
the logical functions, or is less than zero, or is greater than zero, respectively.

• The DECPRINT compile-time parameter has been added. This may be set to 0 to prevent the
package using the printf function.

86 Appendix B – Changes Version 3.68

http://speleotrove.com/decimal

Index

6
64-bit integers 10, 70

A
abs operation 34, 54
abs operation, quiet 42, 55
addition 34, 36, 40, 54, 63
adjusted exponent 22, 30
aliasing, strict 21, 52
and, logical 35, 54
ANSI standard

for REXX 7
X3.274-1996 7

arbitrary precision 5
arguments

corrupt 32
modification of 32
passed by reference 21

arithmetic
decimal 5
decNumber 34
functions 34
specification 5

auditing, of storage allocation 72

B
base 45
basic format 6
BCD

see Binary Coded Decimal 5, 6
BCD8 encoding 56
big-endian 48, 53, 70
Binary Coded Decimal 5, 6, 43, 46, 67
Binary Coded Decimal

conversion 56, 57, 63, 64
binary integer conversion 42, 43, 46, 56, 57, 64, 65
bits

in a nibble 67
in decNumber 30

bytes

in decDouble 52
in decimal128 48
in decimal32 48
in decimal64 48
in decQuad 52
in decSingle 52

C
canonical form 50, 51, 54
checking, of arguments 32, 72
clamp 81
clamp

in decContext 23
Clamped condition 24
class of numbers 41, 54
classification of numbers 41, 54
code parameter

DECALLOC 72
DECCHECK 72
DECEXTFLAG 70
DECLITEND 70
DECPRINT 72
DECSUBSET 70
DECTRACE 72
DECUSE64 70

coefficient
in decNumber 30
rotating 39
shifting 40

comparison 35-37, 55
compile-time parameters 70-72
compound interest 12
compressed formats 5, 16
constants

naming convention 21
conversion

BCD to decFloat 56, 57
binary integer to decFloat 56, 57
binary integer to number 42, 43
decFloat to BCD 63, 64
decFloat to binary integer 64, 65

Version 3.68 Index 87

decFloat to decNumber 20, 64
decFloat to packed 64
decimal128 to number 50
decimal128 to string 49, 50
decimal32 to number 50
decimal32 to string 49, 50
decimal64 to number 50
decimal64 to string 49, 50
decNumber 33
decNumber to decFloat 20, 56
number to binary integer 46
number to decimal128 50
number to decimal32 50
number to decimal64 50
number to packed 67
number to string 33, 34
packed to decFloat 56, 57
packed to number 68
string to decFloat 57
string to decimal128 49
string to decimal32 49
string to decimal64 49
string to number 33

copying numbers 41, 42, 55
corrupt arguments 32
customization 70
cycle times 73

D
DEC_Clamped condition 24
DEC_Divide_by_zero 60
DEC_Division_impossible 35, 39, 56, 62
DEC_Errors bits 13, 14, 24, 32
DEC_Inexact condition 13, 24
DEC_Invalid_operation condition 38, 39
DEC_Lost_digits condition 24
DEC_ROUND_05UP 22
DEC_ROUND_CEILING 22
DEC_ROUND_DEFAULT 23
DEC_ROUND_DOWN 22
DEC_ROUND_FLOOR 22
DEC_ROUND_HALF_DOWN 22
DEC_ROUND_HALF_EVEN 22
DEC_ROUND_HALF_UP 22
DEC_ROUND_UP 22
DEC_Rounded condition 13, 24
DEC_Subnormal condition 24
DECALLOC code parameter 72
DECBUFFER tuning parameter 71
DECCHECK code parameter 32, 72
decClass enumeration 24, 32
decContext 5, 19

clamp 23

digits 22
emax 22
emin 22
extended 23
module 22
round 22
status 23
traps 23

decContext.h file 24, 70
decContextClearStatus function 25
decContextDefault function 25
decContextGetRounding function 26
decContextGetStatus function 26
decContextRestoreStatus function 26
decContextSaveStatus function 26
decContextSetRounding function 27
decContextSetStatus function 27
decContextSetStatusFromString function 27
decContextSetStatusFromStringQuiet function 28
decContextSetStatusQuiet function 28
decContextStatusToString function 28
decContextTestEndian function 28
decContextTestSavedStatus function 28
decContextTestStatus function 29
decContextZeroStatus function 29
decDouble 6, 9

bytes 52
module 52
performance 74
using 19

decDouble.h file 53
decDoubleAbs function 54
decDoubleAdd function 54
decDoubleAnd function 54
decDoubleCanonical function 54
decDoubleClass function 54
decDoubleClassString function 54
decDoubleCompare function 55
decDoubleCompareSignal function 55
decDoubleCompareTotal function 55
decDoubleCompareTotalMag function 55
decDoubleCopy function 55
decDoubleCopyAbs function 55
decDoubleCopyNegate function 55
decDoubleCopySign function 55
decDoubleDigits function 55
decDoubleDivide function 55
decDoubleDivideInteger function 56
decDoubleFMA function 56
decDoubleFromBCD function 56
decDoubleFromInt32 function 56
decDoubleFromNumber function 56
decDoubleFromPacked function 56
decDoubleFromPackedChecked function 57

88 Index Version 3.68

decDoubleFromString function 57
decDoubleFromUInt32 function 57
decDoubleFromWider function 57
decDoubleGetCoefficient function 58
decDoubleGetExponent function 58
decDoubleInvert function 58
decDoubleIsCanonical function 58
decDoubleIsFinite function 58
decDoubleIsInfinite function 58
decDoubleIsInteger function 58
decDoubleIsLogical function 59
decDoubleIsNaN function 59
decDoubleIsNegative function 59
decDoubleIsNormal function 59
decDoubleIsPositive function 59
decDoubleIsSignaling function 59
decDoubleIsSignalling function 59
decDoubleIsSigned function 59
decDoubleIsSubnormal function 59
decDoubleIsZero function 59
decDoubleLogB function 60
decDoubleMax function 60
decDoubleMaxMag function 60
decDoubleMin function 60
decDoubleMinMag function 60
decDoubleMinus function 60
decDoubleMultiply function 60
decDoubleNextMinus function 60
decDoubleNextPlus function 61
decDoubleNextToward function 61
decDoubleOr function 61
decDoublePlus function 61
decDoubleQuantize function 61
decDoubleRadix function 61
decDoubleReduce function 61
decDoubleRemainder function 62
decDoubleRemainderNear function 62
decDoubleRotate function 62
decDoubleSameQuantum function 62
decDoubleScaleB function 62
decDoubleSetCoefficient function 62
decDoubleSetExponent function 63
decDoubleShift function 63
decDoubleShow function 63
decDoubleSubtract function 63
decDoubleToBCD function 63
decDoubleToEngString function 63
decDoubleToInt32 function 64
decDoubleToInt32Exact function 64
decDoubleToIntegralExact function 64
decDoubleToIntegralValue function 64
decDoubleToNumber function 64
decDoubleToPacked function 64
decDoubleToString function 65

decDoubleToUInt32 function 65
decDoubleToUInt32Exact function 65
decDoubleToWider function 65
decDoubleVersion function 65
decDoubleXor function 65
decDoubleZero function 66
decDPD.h file 49, 53
DECDPUN tuning parameter 30, 32, 71
DECENDIAN tuning parameter 84
DECEXTFLAG code parameter 70
DECEXTFLAG tuning parameter 24, 84
decFloats 5, 6, 9

performance 73
using 19, 20

decFloats modules 52
decimal arithmetic 5

using 9
decimal128 6

bytes 48
module 48
using 17

decimal128.h file 48
decimal128Canonical function 50
decimal128FromNumber function 50
decimal128FromString function 49
decimal128IsCanonical function 51
decimal128ToEngString function 50
decimal128ToNumber function 50
decimal128ToString function 49
decimal32 6

bytes 48
module 48
using 17

decimal32.h file 48
decimal32Canonical function 50
decimal32FromNumber function 50
decimal32FromString function 49
decimal32IsCanonical function 51
decimal32ToEngString function 50
decimal32ToNumber function 50
decimal32ToString function 49
decimal64 6

bytes 48
module 48
using 16

decimal64 numbers 16
decimal64.h file 48
decimal64Canonical function 50
decimal64FromNumber function 50
decimal64FromString function 49
decimal64IsCanonical function 51
decimal64ToEngString function 50
decimal64ToNumber function 50
decimal64ToString function 49

Version 3.68 Index 89

DECLITEND code parameter 70
DECLITEND tuning parameter 48, 53
DECNEG sign bit 32
decNumber 5, 30

bits 30
coefficient 30
digits 30
examples 31
exponent 30
lsu 30
module 30
msu 30
performance 73
sign 30
significand 30
size 30
special values 30
version 47, 65

decNumber.h file 11, 71
decNumberAbs function 34
decNumberAdd function 34
decNumberAnd function 35
decNumberClass function 41
decNumberClassToString function 41
decNumberCompare function 35
decNumberCompareSignal function 35
decNumberCompareTotal function 35
decNumberCompareTotalMag function 35
decNumberCopy function 41
decNumberCopyAbs function 42
decNumberCopyNegate function 42
decNumberCopySign function 42
decNumberDivide function 35
decNumberDivideInteger function 35
decNumberExp function 35
decNumberFMA function 36
decNumberFromInt32 function 42
decNumberFromString function 33
decNumberFromUInt32 function 43
decNumberGetBCD function 43
decNumberInvert function 36
decNumberIsCanonical function 43
decNumberIsFinite function 43
decNumberIsInfinite function 43
decNumberIsNaN function 44
decNumberIsNegative function 44
decNumberIsNormal function 44
decNumberIsQNaN function 44
decNumberIsSNaN function 44
decNumberIsSpecial function 45
decNumberIsSubnormal function 45
decNumberIsZero function 45
decNumberLn function 36
decNumberLocal.h file 21, 70-72

decNumberLog10 function 36
decNumberLogB function 36
decNumberMax function 36
decNumberMaxMag function 37
decNumberMin function 37
decNumberMinMag function 37
decNumberMinus function 37
decNumberMultiply function 37
decNumberNextMinus function 37
decNumberNextPlus function 37
decNumberNextToward function 37
decNumberNormalize

see decNumberReduce 45
decNumberOr function 38
decNumberPlus function 38
decNumberPower function 38
decNumberQuantize function 38
decNumberRadix function 45
decNumberReduce function 45
decNumberRemainder function 39
decNumberRemainderNear function 39
decNumberRescale function 39
decNumberRotate function 39
decNumberSameQuantum function 40
decNumberScaleB function 40
decNumberSetBCD function 46
decNumberShift function 40
decNumberSquareRoot function 40
decNumberSubtract function 40
decNumberToEngString function 34
decNumberToInt32 function 46
decNumberToIntegralExact function 41
decNumberToIntegralValue 81
decNumberToIntegralValue function 41
decNumberToString function 33
decNumberToUInt32 function 46
decNumberTrim function 46
decNumberUnit type 31, 71
decNumberVersion function 47
decNumberXor function 41
decNumberZero function 47
DECNUMDIGITS constant 16, 17, 31

set by decimal128.h 48
set by decimal32.h 48
set by decimal64.h 48
set by decPacked.h 67

decPacked 6
module 67
using 18

decPacked.h file 67
decPackedFromNumber function 67
decPackedToNumber function 68
DECPRINT code parameter 72
decQuad 6, 9

90 Index Version 3.68

bytes 52
decNumber use 20
module 52
performance 76
using 19, 20

decQuad.h file 53
decQuadAbs function 54
decQuadAdd function 54
decQuadAnd function 54
decQuadCanonical function 54
decQuadClass function 54
decQuadClassString function 54
decQuadCompare function 55
decQuadCompareSignal function 55
decQuadCompareTotal function 55
decQuadCompareTotalMag function 55
decQuadCopy function 55
decQuadCopyAbs function 55
decQuadCopyNegate function 55
decQuadCopySign function 55
decQuadDigits function 55
decQuadDivide function 55
decQuadDivideInteger function 56
decQuadFMA function 56
decQuadFromBCD function 56
decQuadFromInt32 function 56
decQuadFromNumber function 56
decQuadFromPacked function 56
decQuadFromPackedChecked function 57
decQuadFromString function 57
decQuadFromUInt32 function 57
decQuadGetCoefficient function 58
decQuadGetExponent function 58
decQuadInvert function 58
decQuadIsCanonical function 58
decQuadIsFinite function 58
decQuadIsInfinite function 58
decQuadIsInteger function 58
decQuadIsLogical function 59
decQuadIsNaN function 59
decQuadIsNegative function 59
decQuadIsNormal function 59
decQuadIsPositive function 59
decQuadIsSignaling function 59
decQuadIsSignalling function 59
decQuadIsSigned function 59
decQuadIsSubnormal function 59
decQuadIsZero function 59
decQuadLogB function 60
decQuadMax function 60
decQuadMaxMag function 60
decQuadMin function 60
decQuadMinMag function 60
decQuadMinus function 60

decQuadMultiply function 60
decQuadNextMinus function 60
decQuadNextPlus function 61
decQuadNextToward function 61
decQuadOr function 61
decQuadPlus function 61
decQuadQuantize function 61
decQuadRadix function 61
decQuadReduce function 61
decQuadRemainder function 62
decQuadRemainderNear function 62
decQuadRotate function 62
decQuadSameQuantum function 62
decQuadScaleB function 62
decQuadSetCoefficient function 62
decQuadSetExponent function 63
decQuadShift function 63
decQuadShow function 63
decQuadSubtract function 63
decQuadToBCD function 63
decQuadToEngString function 63
decQuadToInt32 function 64
decQuadToInt32Exact function 64
decQuadToIntegralExact function 64
decQuadToIntegralValue function 64
decQuadToNumber function 64
decQuadToPacked function 64
decQuadToString function 65
decQuadToUInt32 function 65
decQuadToUInt32Exact function 65
decQuadVersion function 65
decQuadXor function 65
decQuadZero function 66
decSingle 6, 9

bytes 52
module 52

decSingle.h file 53
decSingleFromBCD function 56
decSingleFromNumber function 56
decSingleFromPacked function 56
decSingleFromPackedChecked function 57
decSingleFromString function 57
decSingleFromWider function 57
decSingleGetCoefficient function 58
decSingleGetExponent function 58
decSingleRadix function 61
decSingleSetCoefficient function 62
decSingleSetExponent function 63
decSingleShow function 63
decSingleToBCD function 63
decSingleToEngString function 63
decSingleToNumber function 64
decSingleToPacked function 64
decSingleToString function 65

Version 3.68 Index 91

decSingleToWider function 65
decSingleVersion function 65
decSingleZero function 66
DECSUBSET code parameter 70
DECSUBSET tuning parameter 24
DECTRACE code parameter 72
DECUSE64 code parameter 70
DECUSE64 tuning parameter 10
Densely Packed Decimal 48, 49, 52, 53, 71
Densely Packed Decimal

coding and decoding 48
development aids 72
digits

in a decFloat 55
in decContext 22
in decNumber 30

division 35, 39, 55, 56
DPD

see Densely Packed Decimal 48, 52
dynamic storage 21, 32, 71, 72

auditing 72

E
e 35, 36
emax

in decContext 22
emin 81
emin

in decContext 22
endian 48, 53, 70
engineering notation 34, 50, 63
error handling 23
error handling

active 14
passive 13
with signal 14

example 9
active error handling 14
compound interest 12
compressed formats 16
decimal64 numbers 16
decNumber 31
decPacked module 18
decQuad module 19, 20
Example 1 11
Example 2 12
Example 3 13
Example 4 14
Example 5 16
Example 6 18
Example 7 19
Example 8 20
passive error handling 13

simple addition 11
special values 31

exceptional conditions 23
exclusive or, logical 41, 65
exp operation 35
exponent

adjusted 22, 30
adjusting 40
checking 40
in decNumber 30
maximum 22
minimum 22
scaling 40
setting 38, 39

exponentiation 35, 38
extended

in decContext 23

F
features, extra 69
file

header 5
source 5

fized-size representations 5
FMA

see fused multiply-add 36
functions

arithmetic 34
conversions 33
logical 34
mathematical 34
naming convention 21
utilities 41

fused multiply-add operation 36, 56

G
General Decimal Arithmetic 5, 53

H
header file 5

decContext 24
decDouble 53
decDPD 49, 53
decimal128 48
decimal32 48
decimal64 48
decNumber 32
decNumberLocal 21, 71, 72
decPacked 67
decQuad 53
decSingle 53

92 Index Version 3.68

I
inclusive or, logical 38, 61
Inexact condition 13, 24
infinite results 32
infinity 30
initializing numbers 33, 47
int data type 21
integer rounding 41, 64
integers

64-bit 21, 52
unaligned 21, 52

invert, logical 36, 58

L
little-endian 48, 53, 70
ln operation 36
log10 operation 36
logarithm

base 10 36
base e 36
exponent 36
natural 36

logB operation 36
LogB operation 60
logical

and 35, 54
exclusive or 41, 65
functions 34
inclusive or 38, 61
invert 36
or 38, 61, 65
xor 41

long data type 21
longjmp function 14
Lost digits condition 24
lsu, in decNumber 30

M
mathematical functions 34
max operation 36, 60
maximum exponent 22
maxmag operation 37, 60
min operation 37, 60
minimum exponent 22
minmag operation 37, 60
minus operation 37, 60
minus operation

quiet 42, 55
modification of arguments 32
module 21

decContext 22
decDouble 52
decimal128 48

decimal32 48
decimal64 48
decNumber 30
decPacked 67
decQuad 52
decSingle 52
naming convention 21
reentrancy 21, 52
unaligned integers 21, 52

monadic operators 34
msu, in decNumber 30
multiplication 36, 37, 60

N
naming convention

constants 21
functions 21
modules 21

NaN 30
diagnostic 30
quiet 30
results 32
signaling 30

narrowing decFloat 57
negation 37, 42, 55
negative, testing for 59
nibble 56, 57, 64, 67
normal values 22, 44, 45
normalizing numbers 45, 61, 81

O
options, extra 69
or, logical 38, 41, 61, 65

P
packed BCD 56, 57

checking 57
Packed Decimal 5, 6, 67
parameters

compile-time 69
tuning 32, 71

performance 73
cycles 73
decDouble 74
decQuad 76
notes 77
tables 73

performance tuning 71
plus operation 38, 61
positive, testing for 59
power operator 38
prefix

abs 34

Version 3.68 Index 93

minus 37
plus 38

printf a decFloat 63
printf function 11, 28, 72
proxies 48, 53

Q
quantizing 38, 40, 61

to integral 41, 64
quiet NaN 30

R
radix 45, 61
reduce operation 45, 61
reentrant modules 21, 52
references, to arguments 21
remainder 39, 62
rescaling 38-40
results

rounding of 24
undefined 32

root, square 40
rotating 39, 62
round

in decContext 22
see rounding 30

round enumeration 24
round-to-integer operation 41, 64
Rounded condition 13, 24
rounding

detection of 24
enumeration 22
to decimal places 38
to integer 38, 41, 64
using decNumberPlus 38

S
scale 6, 67
scale

by powers of ten 40, 62
checking 40
setting 38, 39

scientific notation 33, 49
setjmp function 14, 15
shifting 40, 63
showing a decFloat 63
SIGFPE

implementation issues 10
signal 14, 15, 23

sign
copying 42, 55
DECNEG bit 32
in decNumber 30

signal
function 14, 15
handler 14

signaling NaN 30
significand

in decNumber 30
see coefficient 30

size, of decNumber 30
source file 5

decContext 25
decDouble 53
decimal128 49
decimal32 49
decimal64 49
decNumber 32
decPacked 67
decQuad 53
decSingle 53

special values 23, 30, 31
special values

in decNumber 30
specification

arithmetic 5
speed of operations 32, 71
square root operation 40, 81, 82
status

in decContext 23
stdint.h file 10
stdio.h file 11
storage allocation 72

auditing 72
strict aliasing 21, 52
Subnormal condition 24
subnormal values 22, 30, 33, 41, 44, 45, 80
subset arithmetic, enabling 70
subtraction 40, 63

T
test aids 63, 72
testing decFloats 58, 59, 62
testing numbers 43-45
trailing zeros, removing 45, 46, 61
traps 23

in decContext 23
trimming numbers 46
tuning parameter 21, 71

DECBUFFER 71
DECDPUN 32, 71
DECEXTFLAG 24
DECLITEND 48, 53
DECSUBSET 24

94 Index Version 3.68

U
unaligned integers 21, 52
undefined results 32
unit

in decNumber 30
size of 30, 32, 71

User's Guide 9
utilities

decNumber 41

V
value of a number 30
version, of decNumber 47, 65

W
widening decFloats 65

X
xor, logical 41

Z
zero

decDouble 66
decNumber 31, 47
decQuad 66
setting 47, 66
testing for 45, 59

zero decNumber 31
zeros, removing trailing 45, 46, 61

.

.c (source) files 5

.h (header) files 5

/
// comments in C programs 9

Version 3.68 Index 95

	Overview
	Library structure
	Relevant standards

	User’s Guide
	Notes on running the examples
	Example 1 – simple addition
	Example 2 – compound interest
	Example 3 – passive error handling
	Example 4 – active error handling
	Example 5 – compressed formats
	Example 6 – Packed Decimal numbers
	Example 7 – Using the decQuad module
	Example 8 – Using decQuad with decNumber

	Module descriptions
	decContext module
	Definitions
	Functions
	decContextClearStatus(context, status)
	decContextDefault(context, kind)
	decContextGetRounding(context)
	decContextGetStatus(context)
	decContextRestoreStatus(context, status, mask)
	decContextSaveStatus(context, mask)
	decContextSetRounding(context, rounding)
	decContextSetStatus(context, status)
	decContextSetStatusFromString(context, string)
	decContextSetStatusFromStringQuiet(context, string)
	decContextSetStatusQuiet(context, status)
	decContextStatusToString(context)
	decContextTestEndian(quiet)
	decContextTestSavedStatus(status, mask)
	decContextTestStatus(context, mask)
	decContextZeroStatus(context)

	decNumber module
	Definitions
	Functions
	Conversion functions
	decNumberFromString(number, string, context)
	decNumberToString(number, string)
	decNumberToEngString(number, string)

	Arithmetic and logical functions
	decNumberAbs(number, rhs, context)
	decNumberAdd(number, lhs, rhs, context)
	decNumberAnd(number, lhs, rhs, context)
	decNumberCompare(number, lhs, rhs, context)
	decNumberCompareSignal(number, lhs, rhs, context)
	decNumberCompareTotal(number, lhs, rhs, context)
	decNumberCompareTotalMag(number, lhs, rhs, context)
	decNumberDivide(number, lhs, rhs, context)
	decNumberDivideInteger(number, lhs, rhs, context)
	decNumberExp(number, rhs, context)
	decNumberFMA(number, lhs, rhs, fhs, context)
	decNumberInvert(number, rhs, context)
	decNumberLn(number, rhs, context)
	decNumberLogB(number, rhs, context)
	decNumberLog10(number, rhs, context)
	decNumberMax(number, lhs, rhs, context)
	decNumberMaxMag(number, lhs, rhs, context)
	decNumberMin(number, lhs, rhs, context)
	decNumberMinMag(number, lhs, rhs, context)
	decNumberMinus(number, rhs, context)
	decNumberMultiply(number, lhs, rhs, context)
	decNumberNextMinus(number, rhs, context)
	decNumberNextPlus(number, rhs, context)
	decNumberNextToward(number, lhs, rhs, context)
	decNumberOr(number, lhs, rhs, context)
	decNumberPlus(number, rhs, context)
	decNumberPower(number, lhs, rhs, context)
	decNumberQuantize(number, lhs, rhs, context)
	decNumberRemainder(number, lhs, rhs, context)
	decNumberRemainderNear(number, lhs, rhs, context)
	decNumberRescale(number, lhs, rhs, context)
	decNumberRotate(number, lhs, rhs, context)
	decNumberSameQuantum(number, lhs, rhs)
	decNumberScaleB(number, lhs, rhs, context)
	decNumberShift(number, lhs, rhs, context)
	decNumberSquareRoot(number, rhs, context)
	decNumberSubtract(number, lhs, rhs, context)
	decNumberToIntegralExact(number, rhs, context)
	decNumberToIntegralValue(number, rhs, context)
	decNumberXor(number, lhs, rhs, context)

	Utility functions
	decNumberClass(number, context)
	decNumberClassToString(number, context)
	decNumberCopy(number, source)
	decNumberCopyAbs(number, source)
	decNumberCopyNegate(number, source)
	decNumberCopySign(number, source, pattern)
	decNumberFromInt32(number, i)
	decNumberFromUInt32(number, u)
	decNumberGetBCD(number, bcd)
	decNumberIsCanonical(number)
	decNumberIsFinite(number)
	decNumberIsInfinite(number)
	decNumberIsNaN(number)
	decNumberIsNegative(number)
	decNumberIsNormal(number)
	decNumberIsQNaN(number)
	decNumberIsSNaN(number)
	decNumberIsSpecial(number)
	decNumberIsSubnormal(number)
	decNumberIsZero(number)
	decNumberRadix()
	decNumberReduce(number, rhs, context)
	decNumberSetBCD(number, bcd, n)
	decNumberToInt32(number, context)
	decNumberToUInt32(number, context)
	decNumberTrim(number)
	decNumberVersion()
	decNumberZero(number)

	decimal32, decimal64, and decimal128 modules
	Definitions
	Functions
	decimal64FromString(decimal64, string, context)
	decimal64ToString(decimal64, string)
	decimal64ToEngString(decimal64, string)
	decimal64FromNumber(decimal64, number, context)
	decimal64ToNumber(decimal64, number)
	decimal64Canonical(decimal64, source)
	decimal64IsCanonical(decimal64)

	decFloats modules
	Definitions
	Functions
	decDoubleAbs(r, x, set)
	decDoubleAdd(r, x, y, set)
	decDoubleAnd(r, x, y, set)
	decDoubleCanonical(r, x)
	decDoubleClass(x)
	decDoubleClassString(x)
	decDoubleCompare(r, x, y, set)
	decDoubleCompareSignal(r, x, y, set)
	decDoubleCompareTotal(r, x, y)
	decDoubleCompareTotalMag(r, x, y)
	decDoubleCopy(r, x)
	decDoubleCopyAbs(r, x)
	decDoubleCopyNegate(r, x)
	decDoubleCopySign(r, x, y)
	decDoubleDigits(x)
	decDoubleDivide(r, x, y, set)
	decDoubleDivideInteger(r, x, y, set)
	decDoubleFMA(r, x, y, z, set)
	decDoubleFromBCD(r, exp, bcd, sign)
	decDoubleFromInt32(r, i)
	decDoubleFromNumber(r, dn, set)
	decDoubleFromPacked(r, exp, pack)
	decDoubleFromPackedChecked(r, exp, pack)
	decDoubleFromString(r, string, set)
	decDoubleFromUInt32(r, u)
	decDoubleFromWider(r, dq, set)
	decDoubleGetCoefficient(x, bcd)
	decDoubleGetExponent(x)
	decDoubleInvert(r, x, set)
	decDoubleIsCanonical(x)
	decDoubleIsFinite(x)
	decDoubleIsInfinite(x)
	decDoubleIsInteger(x)
	decDoubleIsLogical(x)
	decDoubleIsNaN(x)
	decDoubleIsNegative(x)
	decDoubleIsNormal(x)
	decDoubleIsPositive(x)
	decDoubleIsSignaling(x)
	decDoubleIsSignalling(x)
	decDoubleIsSigned(x)
	decDoubleIsSubnormal(x)
	decDoubleIsZero(x)
	decDoubleLogB(r, x, set)
	decDoubleMax(r, x, y, set)
	decDoubleMaxMag(r, x, y, set)
	decDoubleMin(r, x, y, set)
	decDoubleMinMag(r, x, y, set)
	decDoubleMinus(r, x, set)
	decDoubleMultiply(r, x, y, set)
	decDoubleNextMinus(r, x, set)
	decDoubleNextPlus(r, x, set)
	decDoubleNextToward(r, x, y, set)
	decDoubleOr(r, x, y, set)
	decDoublePlus(r, x, set)
	decDoubleQuantize(r, x, y, set)
	decDoubleRadix(x)
	decDoubleReduce(r, x, set)
	decDoubleRemainder(r, x, y, set)
	decDoubleRemainderNear(r, x, y, set)
	decDoubleRotate(r, x, y, set)
	decDoubleSameQuantum(x, y)
	decDoubleScaleB(r, x, y, set)
	decDoubleSetCoefficient(r, bcd, sign)
	decDoubleSetExponent(r, set, exp)
	decDoubleShift(r, x, y, set)
	decDoubleShow(x, tag)
	decDoubleSubtract(r, x, y, set)
	decDoubleToBCD(x, exp, bcd)
	decDoubleToEngString(x, string)
	decDoubleToInt32(x, set, round)
	decDoubleToInt32Exact(x, set, round)
	decDoubleToIntegralExact(r, x, set)
	decDoubleToIntegralValue(r, x, set, round)
	decDoubleToNumber(x, dn)
	decDoubleToPacked(x, exp, pack)
	decDoubleToString(x, string)
	decDoubleToUInt32(x, set, round)
	decDoubleToUInt32Exact(x, set, round)
	decDoubleToWider(x, dq)
	decDoubleVersion(void)
	decDoubleXor(r, x, y, set)
	decDoubleZero(r)

	decPacked module
	Definitions
	Functions
	decPackedFromNumber(bytes, length, scale, number)
	decPackedToNumber(bytes, length, scale, number)

	Additional options
	Customization parameters
	Tuning parameters
	Print and testing parameters

	Appendix A – Library performance
	Description of the tables
	decDouble performance tables
	decQuad performance tables
	Notes

	Appendix B – Changes
	Changes in Draft 1.60 (9 July 2001)
	Changes in Draft 1.65 (25 September 2001)
	Changes in Version 2.00 (4 December 2001)
	Changes in Version 2.11 (25 March 2002)
	Changes in Version 2.12 (23 April 2002)
	Changes in Version 2.15 (5 July 2002)
	Changes in Version 2.17 (1 September 2002)
	Changes in Version 2.28 (1 November 2002)
	Changes in Version 3.04 (22 February 2003)
	Changes in Version 3.09 (23 July 2003)
	Changes in Version 3.12 (1 September 2003)
	Changes in Version 3.16 (2 October 2003)
	Changes in Version 3.19 (21 November 2003)
	Changes in Version 3.24 (25 August 2004)
	Changes in Version 3.25 (15 June 2005)
	Changes in Version 3.32 (12 December 2005)
	Changes in Version 3.37 (22 November 2006)
	Changes in Version 3.40 (18 April 2007)
	Changes in Version 3.41 (7 May 2007)
	Changes in Version 3.50 (4 June 2007)
	Changes in Version 3.53 (7 September 2007)
	Changes in Version 3.56 (12 October 2007)
	Changes in Version 3.61 (29 July 2008)
	Changes in Version 3.68 (23 January 2010)

	Index

