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Abstract

High Level Architecture constitutes a modern approach to distributed
simulation of complex systems. In this bachelor thesis, we discuss ex-
tending CERTI, an open-source Run-Time Infrastructure, with binding
to previously unsupported Java language. In addition, we investigate
ways of simplifying the process of adding support for new languages
by using automated code generation. We test the extension by modifi-
cating the OpenRADAR to use the Flight Gear simulator data while
utilizing the Virtual Air middleware.
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1 Introduction

Computer simulation has become a natural part of the system design
process. It is also commonly used to verificate and validate theories,
to study the behavior of complex systems and to analyze possible
outcomes of strategies. [31] defines simulation as “the process of
designing a model of a real or imagined system and conducting
experiments with that model.”

This generally entails the representation of key characteristics and
behaviors with their subsequent analysis and evaluation. Increasing
the interest in simulation brings up questions related to interoper-
ability and portability. Several standards are used to maintain these
features in simulation applications.

In this thesis we focus on a specific part of computer simulation
called distributed simulation and practical aspects of adopting it in
production environment. We address the issue of extending the exist-
ing software platform CERTI, implementing High Level Architecture
standard, with binding to previously unsupported Java language. In
addition, we explore ways of simplifying the process of adding new
language support by using automated code generation.

Next we describe foundations of modern simulation techniques.
A brief introduction to High Level Architecture, its terminology and
its history then follows in chapter 3. Chapter 4 addresses Run-Time
Infrastructure and provides information about CERTI architecture.
Chapter 5 discusses one of the practical outcomes of this thesis –
Java LibRTI, including the reasoning behind Java binding and its
creation and a brief description of architecture design. Chapter 6
in turn examines the message generator used for automated code
generation. Results of the testing are presented in chapter 7 and our
final thoughts and remarks are contained in chapter 8.
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2 Distributed Simulation and its Technologies

Demands of the modern science and business are shifting from simu-
lation of individual and isolated systems towards simulation of highly
complex and/or parallel systems often not running in real-time. This
shift is reflected also by architectures of simulation frameworks which
focus on loosely coupled systems executing units of simulation.

One of the reasons for such trend is that “every time we wish to
build a simulation to represent a complex activity, it makes sense to
first build smaller simulations to represent individual entities and
then to make these smaller simulations interact with each other to cre-
ate the desired larger simulation while spreading the computational
load. It also makes sense that if we build simulations at a later date,
then these simulations can interact with other existing simulations as
required.” [24]

Assuring this kind of compatibility between simulations is an-
other important aspect. Standards related to interoperation1 between
them emerged. To name a few: Aggregate Level Simulation Protocol
[14], Distributed Interactive Simulation [26], High Level Architecture
(covered in greater detail in chapter 3) and Test and Training Enabling
Architecture [17].

To sum up, “distributed simulation is concerned with the execu-
tion of simulations on loosely coupled systems where interactions
take much more time [...] and occur less often.” [15] They are usually
used to simulate system of systems which is highly elaborated and
the disadvantages of this complexity are compensated with issuing
standards allowing better interoperation.

1. M&S Interoperability as defined by US Department of Defense – “The ability of
a model or simulation to provide services to and accept services from other models
and simulations, and to use the services so exchanged to enable them to operate
effectively together.” [32]
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3 High Level Architecture

Our work is focused on High Level Architecture (HLA) – one of
the architectures commonly used nowadays. In this chapter we will
discuss what HLA is, its structure and advantages. We will also define
terminology used throughout the thesis and look at a brief history.

“The HLA is a software architecture for creating computer models
or simulations out of component models or simulations. The HLA
has been adopted by the United States Department of Defense (DoD)
for use by all its modeling and simulation activities. The HLA is also
increasingly finding civilian application” [19].

In other words, it is a general purpose architecture for distributed
computer simulation systems. In addition, it provides a flexible frame-
work for creating simulation and interfaces to live systems. It is also
used to facilitate the interoperability of different models and units of
simulations. Likewise, HLA has important role in reusability of the
code implementing it.

While being mainly a software architecture in these days it has no
reference implementation. [24] There are three main components that
comprise HLA:

• Framework and Rules [1]

• Object Model Template (OMT) Specification [3]

• Federate Interface Specification [2]

The Framework and Rules is the collection of rules that must be
obeyed by a HLA compliant simulation. Rules must be unchanged
across all the simulation units as they address the abstract behavior
and define the overall architecture. They include manners of the
interaction, the design principles and responsibilities of components.

The Object Model Template (OMT) Specification describes the
structure of the objects transferred between the units of simulation,
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3. HIGH LEVEL ARCHITECTURE

all interactions managed by the unit and visible outside the unit. [25]
The Federate Interface Specification addresses the interface by

which the federate is connected to Run-Time Infrastructure (RTI). RTI
is the data distribution mechanism in HLA simulation described in
greater detail in chapter 4.

3.1 Terminology

To properly define the structure of HLA powered simulation it is
important to mention the terminology commonly used in connection
with HLA. This nomenclature is also being used throughout this
thesis.

In HLA a federate is a single simulation – a basic unit, a compo-
nent, of the result system. “A federate may take the form of an aircraft
wing or missile or it may take the form of a complete squadron. The
level of aggregation of federates is determined by the developer to
meet the required need. A federate is also the unit of software reuse.”
[24]

There is no limitation on a purpose of the federates. They may be
simulation models, data collectors, simulators, autonomous agents or
just passive viewers. [30]

If we connect multiple federates via one RTI and use a common
OMT the resulting compound is called the federation. A session in
which a group of federates participate is then called federation execu-
tion.

During such execution objects and interactions are transferred
between federates. Every object represents a collection of data fields
called attributes which are used for communication. Analogically
every interaction representing the events sent between simulation has
data fields called parameters.
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3. HIGH LEVEL ARCHITECTURE

3.2 Evolution of High Level Architecture

HLA evolved from its predecessor Distributed Interactive Simulation
(DIS – described in standards of IEEE 1278 family – “IEEE Standards
for Modeling and Simulation: Distributed Interactive Simulation”).
DIS had its roots in SIMNET (SIMulation NETworking – Defense
Advanced Research Projects Agency funded project from year 1983
[21]) and it was designed to support loosely coupled training exercises.
It is oriented to local area networks and has difficulties with scaling
to WANs. [24]

HLA shares some of its characteristics while it advances several
aspects of simulations. It supports enhanced data distribution and
time management. Additionally it does allow faster-than-real-time
simulations and event-stepped war-games. Systems interacting can
include “simulations which simulate objects which are hierarchical
aggregates of individual entities (platoons, companies, or battalions)
all the way to high-fidelity engineering models which run much slo-
wer than real time and simulate individual subsystems with very high
accuracy.” [16] HLA is also meant to be more flexible and scalable
than DIS by allowing developers to have their own interpretation
of its components. However, unless all federates agree on a single
interpretation and single FOM they are not able to interoperate even
though they are HLA compliant.

First attempt to create a standard presenting this new approach
was HLA 1.0 in 1996 issued by Defense Modeling and Simulation
Office that started with initial definition drafts the year earlier. It
was mainly targeted on defense applications but with a considerable
potential in other fields. Two years later HLA 1.3 came, under super-
vision of US Department of Defense, with several improvements and
clarification of some ambiguous parts. HLA 1.3 standard went under
examination of Simulation Interoperability Standards Organization
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3. HIGH LEVEL ARCHITECTURE

and in 2004 Dynamic Link Compatible (DLC) HLA API 1 Standard for
the HLA Interface Specification Version 1.3 was born [28]. Additional
description of DLC API can be found in section 4.1.

IEEE started to recognize HLA and founded a commission for
preparation of international open HLA standard. The standard was
developed using IEEE processes with strong focus on verifiability of
compliance. It was targeted on both defense and non-defense applica-
tion. The effort culminated in September of 2000 when IEEE issued
1516 standard Standard for Modelling and Simulation High Level
Architecture with several components namely Framework and Rules,
Federate Interface Specification, Object Model Template [1] Specifi-
cation and Guidelines for Federation Architecture and Design. This
standard was later revised by SISO as well [27].

“The [IEEE 1516.1] standard did not define the levels of concur-
rency and reentrancy that an RTI shall support. This led to differences
in RTI implementations and limits federate portability.” [29] That was
one of the reasons why evolution continued and IEEE has on March
25, 2010 approved IEEE 1516-2010 series of standards with many bug
fixes and new features. HLA 1516-2010 revision is referred to as “HLA
Evolved” and it provides for example, proper fault tolerance support
and fault handling and signaling. It contains encoding helpers uni-
fying data manipulation which caused a lot of problems in previous
HLA incarnations. [20]

HLA, in both IEEE 1516 and 1.3 version, is the subject of the
NATO standardization agreement (STANAG 4603) for modeling and
simulation: Modeling And Simulation Architecture Standards For
Technical Interoperability: High Level Architecture. [12]

1. API – Application Programming Interface
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4 Run-Time Infrastructure

HLA itself is a high level standard. It is focused on describing the
system from the point of an architect which is different than that of
a software engineer. It does not describe the actual implementation
details but more the abstract model of the simulation. There is no
network protocol specification, no message format and no encoding
details.

Software part of HLA is known as the Run-Time Infrastructure.
It is a middleware that supports the HLA simulation with neces-
sary services and provides essential building ground for the software
developers. Currently there are several RTIs available both on com-
mercial and non-commercial basis. The brief overview of actively
developed RTIs can be found in table 4.1.

Modern RTIs tend to conform to IEEE 1516 [1] and/or HLA 1.3 [28]
interface specifications. However, it is always up to the developer to
specify implementation details. This loose definition is the reason why
the interoperability between different RTIs from different vendors is
not guaranteed.

Most of the RTIs use a centralized structure which helps to facili-
tate time management and data distribution services. While Central
RTI Component overseers the simulation and manages requests re-
garding communication of components, Local RTI Component ex-
ists in one instance for each federate and provides federate-specific
functions and services. Deviations from this model are plausible in
simulations where services bounded to centralized architecture are
not necessary.
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4. RUN-TIME INFRASTRUCTURE
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4. RUN-TIME INFRASTRUCTURE

4.1 Dynamic Link Compatible API

The lack of common ground in the RTI implementations caused any
potential migration of an application to another RTI to be difficult.
APIs were not fully specified and switching RTI vendors also meant
recompiling and relinking the code. To address the problem SISO
has developed in year 2004 a complementary HLA API specification
called Dynamic Link Compatible (DLC) API (1.3 version is available
at [28] whereas IEEE 1516 at [27]).

DLC defines several constraints on both RTI and the federate in
order to guarantee the possibility of switching RTI without recompil-
ing the whole application. Today, both major interface specifications
exist in DLC flavor and thanks to them the developers can build
application independent on specific RTI.

SISO DLC partially addressed the issue with encoding. “The en-
coding/decoding of data for consistency with the IEEE Std 1516.1
specification requires significant programming by developers.” [29]
That was the reason of including encoding helpers 1 right into the API.
Unfortunately, they were originally included only in Java versions
and none were provided for C++ API.

4.2 CERTI

Our thesis targets CERTI which is an open-source RTI distributed
under GNU General Public License 2 with libraries licensed with GNU
Lesser General Public License to allow use in proprietary applications
[23]. Development started at ONERA Laboratories in 1996 and the
first version was available by the end of year 1997. It is under active
development since and it has attracted an active community with the

1. Encoding helpers – functions dedicated to lessen programming burden on
federate developer
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4. RUN-TIME INFRASTRUCTURE

Figure 4.1: CERTI architecture

transformation to open-source development model in year 2002 [5].
CERTI is partly compliant with both HLA 1.3 and HLA 1516 and

currently supports five language bindings specifically C++, Matlab,
Fortran 90, Python and Java [5]. The support of the last one is the part
of this thesis content. Supported platforms contains various flavors of
Linux, Microsoft Windows, Solaris, FreeBSD and IRIX.

CERTI is designed in a very modular way. It has centralized struc-
ture and follows the client-server architecture as seen on figure 4.1.
As a result, simulation using CERTI is scalable and can be easily dis-
tributed. All the main components communicate by sending messages
through sockets on TCP network.

LibRTI is a library linked with each federate using DLC interface
(for description of DLC see section 4.1). Purpose of LibRTI is to trans-
form HLA service calls into messages sent to RTI Ambassador (RTIA)
and receive responses in form of callbacks. Obviously the LibRTI

12



4. RUN-TIME INFRASTRUCTURE

needs to contain all the necessary implementation of data structures
and logic for sending and parsing messages.

Each federate connects to an RTIA. It is a process which exists
in one instance for each federate. Its role is to satisfy some requests
immediately, while forwarding some requests to RTI Gateway (RTIG)
[13]. RTIA as Local RTI Component has important role in facilitating
federate specific services.

Last main component of CERTI architecture is RTIG. RTIG is re-
sponsible for administering the simulation and routing messages
between federates. There is only one instance of RTIG in simulation
and it is also the central point. This simplifies the implementation
of some HLA services such as the creation and destruction of feder-
ation execution or maintaining distribution of object classes. Single
RTIG may handle several federations but the federation itself must be
linked to single RTI.

13



5 Java LibRTI

In this chapter we address the necessity of extending CERTI with new
language bindings and analyze the process of their creation. Moreover,
we propose an architecture of such binding and demonstrate it on
concrete implementation of Java LibRTI nicknamed jCERTI.

To utilize the CERTI framework in the federate one needs to use
LibRTI. Implementing it in non-supported language is a non-trivial
task. Considering large amount of HLA services or messages sent
between LibRTI and RTIA one must take a fair amount of effort.

However, it is very important to support multiple languages as it
gives freedom to developers of federates. Every language has some
advantages and disadvantages and the final choice must consider
them with the purpose of the federate in the scope. What is more,
the code on which the federate is based is very often already existent.
Developer has to use existing libraries, portions of code or sometimes
just architectures and concept that are not present in all languages.

All in all, there is a strong motivation to implement LibRTI in
multiple languages. CERTI is programmed mostly in C++ and it has
existing bindings to Matlab, Fortran 90 and Python. We decided to
explore the possible ways of simplifying the process of adding new
language support and to add a new binding to Java.

5.1 Analysis of the Problem

An important part of the new language support development is
an analysis of possible routes. In this case there are two possible
paradigms that had to be analyzed in order to fully evaluate their
outcomes.

One obvious option is to implement a simple wrapper around
existing C++ version of LibRTI. This can be done with some automa-

14



5. JAVA LIBRTI

tion using specialized tools i.e. SWIG [10]. This approach has several
advantages. There is variety of supported target languages out of
the box after some initial work on specification. On the other hand,
wrapping has reported some performance issues in several languages.
Java, for example, uses Java Native Interface for calling native code
which has significant slowdown factor when used in all major virtual
machines [22]. Other than that, generated code does not comply to
any specific DLC without some additional work.

Another way to approach the support of a new language is to
recreate a part of the CERTI from the scratch. There are obviously no
setbacks related to performance as it runs as fast as possible when
properly programmed. In addition, the resulting code is clean and
it respects the coding style associated with the language. However,
other problems arise from decentralization of the code. There is a
unique set of bugs for each new implementation, difficult distribution
of changes in network protocols, etc.

During the development process the pros and cons of each of
the paradigms were carefully reviewed and we decided to follow
the latter one. The challenge was to compensate drawbacks of this
approach. We explored the possible ways to cope with this issue and
we describe our solution, the message generator, in chapter 6.

Additionally, it was important to decide what needs to be repro-
grammed in order to achieve our goals. Clearly implementing LibRTI
was essential. In contrast, new RTIG programmed in Java would be a
redundant effort with no significant positive outcomes. The question
was: should there be a new RTIA programmed in Java or should we
use the existing one?

Communication between LibRTI and RTIA process was originally
done with UNIX socket. From the Java point of view, there is no native
way to support this type of sockets so it would be better to include
RTIA in Java LibRTI. However, UNIX sockets are not supported on

15



5. JAVA LIBRTI

all platforms and they had to be changed to TCP sockets in order to
support Microsoft Windows anyway. After transforming the commu-
nication to TCP sockets the answer was simple: use the existing C++
version of RTIA process as reprogramming it from the scratch would
not bring any advantages.

5.2 Java SISO DLC 1.3

Another very important objective that was essential to keep in mind
while implementing jCERTI was compliance with standard. One of
the request for Java LibRTI was compliance with SISO DLC version
1.3 [28].

It consists of interfaces describing the data structures and RTI
ambassador specification. As a result, Java application using DLC
does not have to be recompiled when switching RTI. The only thing
developer has to do is to change the Java classpath to correspond
preferred RTI.

During the implementation this behavior was highly valued and
breaking it was not an option since it was the main reason of choosing
the use of DLC. Therefore, our effort was to keep the binary compati-
bility with other RTIs as much as possible.

First step when implementing the DLC 1.3 was to program the
data structures. Data structures are used in communication between
ambassadors. They are almost always present when executing call-
backs or calling RTIA functions. Our implementation is stored in
package certi.rti.impl as suggested in DLC guidelines [28].

Second step was implementation of RTI ambassador interface
which standardizes the function names corresponding to HLA ser-
vices. Our implementation of RTI Ambassador in LibRTI builds the
message based on requested HLA service and sends it over the socket
to linked RTIA process.

16



5. JAVA LIBRTI

Figure 5.1: jCERTI architecture

Implementing DLC 1.3 interface specification brought up several
issues to the development of jCERTI. For example, in Java and C++
DLC APIs handles are represented by types with different ranges.
This fact itself theoretically hinders compatibility between C++ and
Java code strictly implementing DLC 1.3 interfaces. However, the
problem would become visible only with extremely high numbers
used as handles and rational handle allocation on the CERTI side
effectively prevents this type of complications.

17



5. JAVA LIBRTI

Figure 5.2: HLA Service Call lifecycle in jCERTI

5.3 Architecture

Our Java LibRTI was designed in a modular way to support maintain-
ability and allow generated code to be easily deployed. It was based
on some preliminary work done in 2007 by Yannick Bisiaux, Ronan
Bossard and Samuel Reese. Overall architecture is shown as diagram
in figure 5.1.

Federate code communicates with RTI Ambassador which ex-
ports available functions via HLA DLC 1.3 interface. RTI Ambassador
processes the requests and communicates with other parts of CERTI
architecture. The process of distribution of these requests and can be
observed on figure 5.2. To put it in the nutshell parameters on DLC
methods are converted into messages and then serialized on buffer
into the byte stream. After that stream is sent to RTIA process through
the TCP socket. At that point when the response to the service call is
received, it is then parsed and distributed back to federate code.

Over time, RTI Ambassador receives callbacks from RTIA process
and forwards them to federate ambassador. Federate ambassador is
a part of federate code and it is mainly responsible for processing
callbacks with data.

18



5. JAVA LIBRTI

5.3.1 RTI Ambassador

RTI Ambassador is the main part of the jCERTI. Most of the methods
in it are specified by interface whose implementation is required by
DLC 1.3. As previously mentioned RTI ambassador is responsible for
receiving HLA Service Calls and for subsequent transformation of
the service calls parameters into messages. Additionally it translates
callbacks during time advancements and communicates directly with
federate ambassador.

Linking between standard-defined service calls and CERTI speci-
fied messages is based on semantics. Therefore, RTI ambassador code
can not be automatically generated without explicit linking data.

5.3.2 Messages

Message classes are responsible for proper serialization and deseri-
alization of data to/from buffer. Every message represents logical
record of information transferred between RTIA and LibRTI. In each
instance of message class there is holds data fields relevant to the
specific message.

In jCERTI there is about 150 messages. All message classes code is
generated from specification file. More detailed description of genera-
tor can be found in chapter 6.

5.3.3 Message Buffer

Message buffer is the class that is used to build the message from the
ground up on the low level and send it over the socket. In addition, it
facilitates parsing messages with different endianess 1 from the socket.
Basically it is the lowest level of abstraction over the actual sockets
and it transforms the complex structures to the series of bytes and
vice versa. Message buffer is mainly used by the serialization and

1. Endianess – ordering of bytes in word
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5. JAVA LIBRTI

deserialization code inside message classes, but it can also be used ad
hoc by federate code to serialize RTI related structures into series of
bytes, if necessary.

5.3.4 Data Structures

In core DLC data structures resemble the standard Java collections
with very few specific functions. Unfortunately, by the time the DLC
was proposed Java did not contain the generics or any other more
sophisticated ways to treat the data. That is the reason why DLC uses
its own way which can be nowadays considered somewhat clumsy.

Internal data structures transferred over sockets in CERTI were
mapped to the DLC structures. This was done by a very transparent
way by overriding the write method in Message buffer. This way
the DLC structure is distributed from the federate through the am-
bassador to the message serialization code and finally to message
buffer and vice versa after receiving the message as seen on figure
5.2. Message buffer is always responsible for proper serialization and
deserialization of the structure.

5.3.5 Logging

During development process we decided to use at least some level
of logging to allow users debug their federates and check the RTI
side of the simulation. We decided to use Java Logging API through
the jCERTI code. Debugging aspect of logging is very important
considering multi-layered complex system responsible for simulation.
Without logging incorporated into LibRTI there would be little or no
control over RTI part of simulation.

It is also beneficial to be able to set level of logging. Importance
of such customization becomes apparent in production environment.
To allow such configuration we introduced property file containing,
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5. JAVA LIBRTI

among others, verbosity setting. On the most verbose mode logging
can serve as message log.

5.3.6 Technical Notes

To maintain compatibility with C++ code jCERTI had to close every
connection with closing message. The closing message was supposed
to end communication between LibRTI and RTIA process and it had
no corresponding HLA Service Call. In spite of clear and rational se-
mantics this requested behavior turned to be a challenge. Main reason
was the fact that Java language does not have destructor concept as
some other languages e.g. C++.

The solution we have chosen was the use of Java Virtual Ma-
chine hook. VM hook allows attaching sleeping thread to the virtual
machine and start the execution on the time VM termination. This
way we were able to build the thread acting as destructor, sending
messages and closing connections.
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6 Messages Generator

The number of messages transferred between the LibRTI and RTIA
process is as high as 144. However, the messages are very similar to
each other and they share the common base. They can be described
by much simpler rules and a very little amount of data such as the
name and the type of a field transferred.

That is the main idea behind the generator: one writes the message
specification and let the script do the work and generate the actual
code. This approach has one major advantage. To support a new
language it is sufficient to just write a simple generator and use the
common message specification. Moreover, the maintenance of the
code is centralized and there is a proper distribution of changes in
message specifications so one does not have to change each language
separately.

We use the generator to generate the code of all messages in
jCERTI. Flexibility of this paradigm was put to test during the devel-
opment process when structure of the messages had to be changed to
reflect changes in C++ code. After the release of CERTI 3.3.3 overhaul
of RTIA and LibRTI communication was commenced. The target was
all the communication between CERTI components to be generated
from specification files. jCERTI was at first developed for version 3.3.3
and only later evolved into support of RTIA process with generated
code.

Figure 6.1: Generator principle
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6.1 Generator Architecture

Overall idea of generator is inspired by the Google Protocol Buffers
which are “Google’s language-neutral, platform-neutral, extensible
mechanism for serializing structured data.” [6] On the other hand,
our generator is lightweight and suits our requirements well. Google
Protocol Buffers takes specification file as input and compiles it into
requested language. Java, C++ or Python developers can use this
mechanism for serializing data in similar fashion as XML but without
additional overhead caused by markup.

The base and C++ message file generator were written by Eric
Noulard in Python [5] to maintain C++ code generation. They use the
Python PLY module [8] to generate abstract syntax tree 1(AST) from
the specification file, the form of which can be seen in a listing 6.1.

Specification file uses simple format to describe messages as small
logical record of information. Every message contains a series of type-
name pairs with additional modifiers. Type of data determines the
way how the data are transferred over the socket in particular message.
Order of the fields transferred is the same as in the specification file..

Listing 6.1: Sample specification file snippet

message M_Person {
required s t r i n g objectName
required bool s t a t u s
opt iona l s t r i n g email

}

Required keyword precedes the field that is always present in the
message. It notes basic atomic component of the message.

In contrast, optional keyword notes that the field is streamed first

1. "The structure of an AST is basically a simplification of the underlying grammar
of the programming language, e.g., by generalization or by suppressing chain rules."
[18]
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6. MESSAGES GENERATOR

as a boolean value, representing whether the field is present. If the
the boolean value is true then the actual field follows.

Third interesting modifier, which is not present in snippet, is re-
peated. It represents an array of values preceded with integer – the
size of the array.

Last keyword combined, also not included in sample, expresses
the structure of the message and groups contained fields into one
semantic whole. For example by utilizing combined keyword we are
able to transfer handle/value pairs together. In combination with
previous modifier whole collections of data can be transferred.
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7 Testing

Testing provides basic level of quality assurance and protects codebase
from major regressions. Importance of testing rises with complexity
of system where manual checks usually fail. From the beginning
of the jCERTI development process testing was considered to be a
very important part. Thanks to our testing some bugs were found
in both jCERTI and CERTI itself. Besides, certain level of testing was
important to check functionality of generator.

7.1 Sample Federates

During the first phases of development we started to test jCERTI by
using simple test federates. They were specifically designed to send
and receive data to test and demonstrate data distribution services.
After initial testing we decided to build sample suite to be bundled
with jCERTI on release. The suite was also meant to provide example
federates for interested developers.

Sample suite, namely two federates uav-send and uav-receive, is
inspired with similar federates by Petr Gotthard included in PyHLA
repository [9]. Complexity of the federates is reduced on purpose and
code is simple and well commented. That makes them suitable for
introduction to federate programming in Java.

7.2 Testing with OpenRADAR

To test the functionality of jCERTI in more advanced way we decided
to modify the OpenRADAR, an open-source application using stan-
dard Air Traffic Control (ATC) 1 symbolics, to use the Flight Gear

1. ATC – service provided by ground-based controllers who direct aircraft on the
ground and in the air
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Figure 7.1: Virtual Air simulation

data while utilizing the VirtualAir middleware. Simply put the Open-
RADAR is virtual radar application used to visualize the situation on
Flight Gear Multiplayer Server (FGMS). Diagram of this simulation
can be seen in figure 7.2

Default behavior of OpenRADAR was to connect to FGMS. For
our purposes we needed to replace the FGMS data fetcher with our
code that fetched the data from VirtualAir backbone and pushed them
to visualization pipeline. Architecture of OpenRADAR allowed us to
do it in straightforward manner and we implemented the necessary
code

Data structure used for aircraft’s world position is defined via
AviationSimNet specification [4]. Current state of the project allows
multiple instances of FlightGear to exist and interact while being
visualized by OpenRADAR. Demo simulation is captured in figure
7.2. White arrow point towards the location of a virtual plane.

Based on these observations we believe that other flight simulator
such as X-Plane and Microsoft Flight Simulator with appropriate
interfaces would be suitable as data providers [11].
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8 Conclusion and Future Prospects

In this thesis, we present a new approach to extending CERTI archi-
tecture with previously unsupported language bindings. The method
used supports fast and manageable bug fixing and patch distribu-
tion across the whole architecture. Using python based automated
code generator makes it possible to introduce new languages more
efficiently than before.

While this thesis aims primarily at High Level Architecture, we
believe the outcomes may be applied across the modern architectures
facilitating distributed simulation.

One of the practical outcomes of this thesis is the publicly available
Java LibRTI – jCERTI. Its functionality was demonstrated by the modi-
fications to the virtual radar screen software that made interoperation
with flight simulator possible.

Java LibRTI was an anticipated extension of the existing CERTI
platform and it is now available from source code repository [7],
compatible with the soon-to-be-released CERTI version 3.4.0.

We see many possibilities for future work. One of the options is
to extend current jCERTI codebase with unit tests that can be used to
facilitate continuous integration. jCERTI would use expanded support
of IEEE 1516 interface specification at least to the same extent as the
C++ version. Another obvious direction for future work is implement-
ing LibRTI in another language (i. e. .NET platform). This would give
developers the freedom to choose an appropriate language for their
HLA compliant applications using CERTI.
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