

 1

HP-CERTI: Towards a high Performance, high Availability Open Source RTI
for Composable Simulations (04F-SIW-014)

Martin Adelantado*, Jean-Loup Bussenot, Jean-Yves Rousselot, Pierre Siron, Marc Betoule*

ONERA-CT
French Aerospace Research Agency

Information Modeling and processing Department (DTIM)
*Long Term Design and System Integration Department (DPRS)

2, Avenue Edouard Belin
31055 Toulouse Cedex

France

Phone: +33 (0) 5 62 25 26 61
Fax: +33 (0) 5 62 25 25 93
Email: Adelantado@cert.fr

Keywords:
Composable simulations, High Level Architecture, RTI, SSI operating systems

ABSTRACT: Composing simulations of complex systems from already existing simulation components remains a
challenging issue. Motivations for composable simulation include generation of a given federation driven by
operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully
distributed simulations, can be considered as an interoperability standard for composing simulations from existing
components. Requirements for constructing such complex simulations are quite different from those discussed for
distributed simulations. Although interoperability and reusability remain essential, both high performance and
availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a
High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3
specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides
an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI,
allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for
clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Run-
time Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA
(High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation
Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry
of Defense.

1. Introduction

While HLA initially began as a freely downloadable
software in an attempt to promote a new distributed

simulation technology, it has subsequently been
commercialized by several companies. Recently, the
distributed simulation community claims that
developing an open-source RTI would be essential to
promote adoption of HLA outside of the current

 2

defense oriented user-base, and to achieve an
increased responsiveness to user requirements [3].

Among already existing non-commercial RTIs,
CERTI is a C++ implementation of the HLA 1.3
specification designed initially for internal use at
ONERA (French Aerospace Research Agency), and
has subsequently been made available as an open-
source RTI to the simulation community (GPL and
LGPL licenses). Current CERTI software architecture
is based on three levels of communicating processes.
The first process is the RTIG, a global centralized
manager transferring messages between several RTIA
(RTI Ambassador) processes over the network. The
second level is provided by the RTIA which is run
locally to each federate, and communicates over TCP
or UDP with the RTIG. Finally, the third level
comprises the federate code which is exposed to the
HLA interface through the libRTI. Communications
between libRTI and RTIA are supported by Unix
sockets.

While HLA was initially designed to support fully
distributed simulation applications, it provides a
promising framework for composing not necessarily
distributed simulations, from existing reusable
components.

Simulation composability allows then to construct
federations from a set of communicating components
according to the needs of the decision makers.
Composability provides a means to construct
integrated simulation platforms with increased
coverage of decision support. In such simulation
applications, distribution becomes a means to achieve
high performance computing, while remaining a
constraint since existing components are reused.

To face the aforementioned performance and
availability requirements, ONERA is currently
designing the HP-CERTI package, an optimized
version of CERTI, including two main development
issues. The first one, named SHM-CERTI, deals with
a shared memory communication scheme between
RTIG and RTIAs, in order to achieve high
performance simulation of federations running on the
same shared memory execution platform. The
objective of the second issue is to increase both
availability and performance of composable
simulations running on high performance cluster
platforms. To achieve these objectives, CERTI is
deployed through the control of a SSI (Single System
Image) operating system, named Kerrighed and
designed by IRISA (Information Technology and
Random Systems Research Institute), Rennes, France.
Kerrighed takes benefit of the underlying hardware
performance by providing global management of all
cluster resources including processor, memory and
disk. Moreover, its dynamic resource management

policies make cluster configuration changes
transparent to the applications and guarantee system
availability despite node failures. Since the standard
host operating system interface is kept, applications
can be executed on Kerrighed without being modified.
Kerrighed is implemented as a set of Linux modules
and is downloadable under an Open Source license
(GPL).

In this paper, we first discuss motivations for
composable simulations and both high performance
and availability requirements. The next section briefly
provides essential background on both CERTI and
Kerrighed operating system. In the fourth section, we
describe the communication architecture of SHM-
CERTI focusing on the underlying communication
protocols between RTIG - RTIAs. Section 5 explains
how Kerrighed-CERTI is deployed over the Kerrighed
SSI operating system. In section 6, we discuss
preliminary comparative performance results using a
four processor shared memory computer and a cluster
of eight biprocessor nodes connected through a high
speed Myrinet network, under Linux Red Hat
operating system. Finally, conclusion and further
works are discussed.

2. Motivations for high performance,

high availability composable
simulations

Modeling and fast-time simulation (FTS) are
nowadays very commonly used in several industrial
fields such as energy, factories, economic or
transportation systems. This is a consequence of the
critical need to know in an early stage of development,
the answers to "what if?" questions. For example, In
the air/ground traffic management system domain,
stakeholders and policy makers involved in or affected
by the decision making process are asked to make
decisions , draw policy directions and operate in a
quite complicated environmental, institutional and
operational setting. Therefore, policy makers, airport
authorities, air traffic services providers, terminal
operators and other stakeholding groups that are
involved in ground/air operations, often face
challenging decision making problems with strong
interdependencies and often conflicting objectives.
These problems have been addressed both by
individual actors and major industry actors such as the
European Commission, Eurocontrol or the FAA.

In response to these decision making requirements,
new integrated M&S tools infrastructures are
necessary. They have to be able to support both high
level political decision (strategic level decision
making) related to airside, landside, and airspace
planning, as well as operations (tactical/operational
level decision making) with respect to a variety of

 3

measures of traffic effectiveness (capacity, delay,
quality of service, environmental issues, safety).
Requirements for such kind of decision making tools
include reusability of existing models and tools,
interoperability between components and
composability allowing to rapidly compose
simulations and simulation environments both
statically (design time) and dynamically (run-time). In
[12], composability has been defined as "the capability
to select and assemble components in various
combinations into complete, validated simulation
environments to satisfy specific user requirements
across a variety of application domains, levels of
resolution and time scales".

Although HLA has been proposed to facilitate reuse
and interoperability of existing federates, distribution
of elementary components, potentially worldwide,
constitutes a dramatic drawback regarding execution
performances of large scale simulations
communicating through wide area networks.
Typically, high performance is needed to face the
requirements of the operational decision making
process. For example, slot management or aircraft
departure sequence optimization are well known use
cases that would be assisted by real time simulation
tools.

Our vision of dynamically composable simulations
driven by the end user requirements, is based on the
assumption that HLA can probably be used as an
interoperability standard, and then facilitates reuse of
available components devoid of proprietary
constraints [5], [6], [7]. Nevertheless, such a vision of
operational integrated platforms for constructing
decision support systems based on M&S through the
HLA middleware requires to significantly increase the
execution performances of HLA federations, focusing
on the communication performances of the associated
RTI.

3. Technical Background

3.1. CERTI Architecture

CERTI is an open source implementation of the HLA
1.3 specifications, freely downloadable from
http://www.cert.fr/CERTI web site.

Motivations for designing CERTI within our French
governmental agency, have already been explained
elsewhere [1], [2]. In this section, we focus on the
main architecture of the Run-time Infrastructure built
around a set of communicating processes, and
depicted in figure 1. Additional information describing
the communication protocol between processes, will
be provided in section four. CERTI is a distributed
system written in C++ language, involving three main

components: a local process RTIA (RTIAmbassador),
a centralized process RTIG (RTIGateway) and the
libRTI library which has to be linked with each
participating federate.

Each federate process locally interacts with its local
RTIA through Unix-domain sockets. The RTIA
process exchanges messages over the network with the
RTIG process, through TCP and UDP sockets,
allowing then various distributed algorithms needed
by the RTI services, to be run.

The main function devoted to the RTIG is to manage
the communications between the RTIAs and
consequently between federates. Communications
between two federates are supported by two TCP
connections: one connection is established between
the requesting RTIA and the RTIG, while the second
one involves the RTIG and the receiving RTIA.
CERTI follows then a centralized architectural
approach, in order to significantly simplify the
underlying implementation of several HLA services.

Figure 1: CERTI architecture

The libRTI library contains the HLA services calls
which are packaged as messages to be sent to the
RTIA. Each service execution waits then for a
response from the RTIA process, providing the output
parameters. The conventional tick primitive has been
included allowing then the execution of the RTI
initiated services. Finally, the CPU resource allocation
policy between both federate and associated RTIA, is
managed by the target operating system.

3.2. Kerrighed Single System Image Operating
System

Clusters are now accepted as an alternative to parallel
architectures for high performance computing.

Federate 1

libRTI

RTIA 1

Federate 2

libRTI

RTIA 2

Federate 3

libRTI

RTIA 3

RTIG

HLA Interface

Unix socket

TCP socket

WAN

 4

Moreover, several applications that were traditionally
executed on multiprocessor machines are now
executed on clusters. In the area of scientific
computing, several parallel programming models have
been proposed, while parallel applications use either
multithreading or message-passing libraries such as
MPI or PVM. Executing parallel applications on a
cluster is not easy, because there is no obvious
solution to support multithreaded execution when
memory is distributed on all nodes. Secondly, high
performance depends on efficient placement and load-
balancing strategies to take full advantage of all the
resources of the cluster.

To face these requirements, Kerrighed has been
designed by IRISA, as a single system image (SSI)
operating system for a cluster [8], [9], [10], [11]. Such
a system should offer the same interface as a
traditional operating system for a SMP machine to
designers. Kerrighed is built as an extension to the
Linux operating system and is independent from the
cluster interconnection network. For more details,
please refer to the www.kerrighed.org web site.

4. SHM-CERTI Communication

Architecture

In this section, we will focus on the communication
architecture of the SHM-CERTI, since the software
architecture of the RTI itself remains unchanged. Both
SHM-CERTI and CERTI are written in C++ language.
Notice that from a software development point of
view, a single open source package has to be designed,
in order to facilitate the development of further
releases.

4.1. Main communication mechanisms

In the SHM-CERTI architecture, TCP socket based
communications between the RTIG and RTIAs are
replaced by shared memory segments, which are
created by the RTIG process and attached by both
RTIG and requesting RTIA. In order to simplify the
communication protocol during the simulation main
loop, joining and resigning a federation involve two
Unix messages files, shared by the RTIG and all the
RTIAs. The first one, named RTIAs_to_RTIG is used
by each RTIA when it requests a joining operation.
The requesting federate waits then the shared memory
ID from the RTIG, through the second messages file,
named RTIG_to_RTIAs. Once segment accessing and
attaching operations have been successfully performed
by both clients, data exchanges between RTIG and the
incoming RTIA, follow a shared memory based
communication scheme.

Conversely, when a given RTIA is intended to resign a
federation, the RTIG "invalidates" the corresponding
shared memory segment, without destroying it. More
precisely, the RTIG maintains a list of all already
accessed and attached shared memory segments that
can be then reused when a federate joins a federation.
Invalidation of shared memory segments avoids
accessing and attaching unnecessary operations during
the simulation execution.

4.2. Data structures and messages format

The main data structures and format of messages
exchanged by the CERTI components have remained
unchanged in order to reduce the cost of the migration
process. Typically, each HLA service call involves a
corresponding message based on two components, the
header part and the body part. The former identifies
the service call, while the latter encodes the
corresponding parameters.

To ensure communications through attached shared
memory segments, the following structured type has
been defined:

typedef struct {
 SharedMemory RTIG_to_RTIA;
 SharedMemory RTIA_to_RTIG;

} SHM;

The SharedMemory type is defined as follows:

typedef struct {
 char status;
 HeaderStruct Header;
 MessageBody Body;

} SharedMemory;

HeaderStruct, respectively MessageBody, types
obviously corresponds to the header part, respectively
the body part of the basic messages.

When an incoming RTIA requests a joining operation,
the RTIG attach a given shared memory segment at a
pointer to a SHM type variable. Therefore, the
RTIG_to_RTIA buffer is used to support
communications from the RTIG to the RTIA, whilst
the RTIA_to_RTIG buffer ensures data exchanges
from the RTIA to the RTIG. The status flag of the
SharedMemory structure indicates the current state
(empty/full) of the corresponding shared memory. The
synchronisation protocol between both users of the
shared memory (RTIA and RTIG) is based on an
adequate management of the status flag, ensuring that
when the U1 user writes a message in the U1_to_U2
buffer, subsequent write operations are blocked until
the message has been read by the U2 user.

 5

4.3. The simulation main loops

This subsection addresses the main difficulties that
have been encountered to migrate the CERTI to the
SHM-CERTI. A better understanding of the main
simulation loops of both RTIA and RTIG is then
necessary. In this subsection, we focus on the RTIG,
the RTIA main loop being quite similar. A simplified
algorithm of the CERTI RTIG main simulation loop is
the following:

While (!END_SIMULATION)
 Wait for an incoming message

from a given RTIA (select)
Read the incoming message (read)
Process the message
Broadcast the response to the corresponding
 RTIAs (write)

Endwhile

The select method is used to select a given
communication request or to establish a new
connection with a joining federate. Methods read and
write allow to read (respectively write) the header and
the body of every message corresponding to a given
HLA service. In most cases, processing a given
message leads then the RTIG to send several messages
to the participating RTIAs. The simplified algorithm
of the SHM-CERTI main loop becomes the following:

Attach both RTIAs_to_RTIG and RTIG_to_RTIAs
messages files

Blocked wait for the first joining RTIA

While (!END_SIMULATION)
 Check a new RTIA is joining or resigning
 If (an RTIA is joining)
 Find a free shared memory segment
 Send the corresponding ID
 Else
 If (an RTIA is resigning)

Invalidate the
corresponding segment

 Endif
 Endif

Unblocked wait for a message in a given
RTIA_to_RTIG shared memory segment
If (a message is available)

Read the incoming message (read)
Process the message
Broadcast the response to the
corresponding RTIAs (write)

 Endif
Endwhile

The Unblocked wait for a message method checks if
there is an RTIA_to_RTIG shared buffer with the
status flag set to full, indicating that an incoming
message is available. The read and write methods are
overloaded methods performing the synchronization
protocol briefly discussed in section 4.2.

When the read method successfully read an available
message, the status flag is set to empty. In a same
way, when the write method successfully writes a
message, the status flag is set to full.

Two versions of both read and write methods are
available. The blocked read, respectively blocked
write, method waits for an incoming message,
respectively waits for the corresponding shared
memory buffer becomes empty, and reads,
respectively writes, the message. Conversely, the
unblocked read returns the message if it is available
and the value 0 otherwise. The unblocked write writes
the message if the shared memory buffer is empty and
returns 0 otherwise.

4.4. Communication protocol example

In this subsection, an example of the shared memory
communication protocol is proposed. This example is
based on the exchange of messages involved in the
UpdateAttributesValue RTIAmbassador service and
ReflectAttributesValue FEDAmbassador callback.
Notice that message delivery conditions to the
federate, are not represented, since they strongly
depend on time management. Finally, in figure 2,
depicting the communication protocol, the UAV
acronym is used for UpdateAttributesValue,
respectively the RAV acronym for
ReflectAttributesValue.

Figure 2: Example of communication protocol

RAV

ACK
T4

RAV
T5 ACK

RTIA1 RTIG RTIA2

UAV
UAV T1 T2

T3

T6

 6

This communication protocol involves two RTIAs
invoking concurrent UAV services to the RTIG. In the
following, we discuss the corresponding processing
steps from both RTIG and RTIAs side, showing then
that the communication protocol is deadlock free. For
a better understanding of the explanation, remember
that two shared memory segments, SEG1 and SEG2,
are involved. SEG1 is attached by both RTIG and
RTIA1 to the memory buffer SHM1, while SEG2 is
attached by both RTIG and RTIA2 to the memory
buffer SHM2 (Figure 3).

Each memory buffer is a structure composed of two
items, RTIA_to_RTIG and RTIG_to_RTIA.

Figure 3: Shared memory segments and buffers

At time T1, RTIA1 invokes an UAV request to the
RTIG through the RTIA1_to_RTIG shared memory
buffer. The status flag of the buffer is set to full and
the RTIA1 process waits then for an acknowledge
message from RTIG. At time T2, the RTIA2 invokes
accordingly an UAV request to the RTIA2_to_RTIG
shared memory buffer. In the same way, RTIA2 will
wait for an acknowledge message from the RTIG. At
this time, the status flag of both RTIG_to_RTIA1 and
RTIG_to_RTIA2, remains set to empty. Conversely,
the status flag of both RTIA1_to_RTIG and
RTIA2_to_RTIG have been set to full.

The RTIG process finds then the RTIA1_to_RTIG
status flag full, and reads the incoming message. It
sets the flag to empty, but the RTIA1 is waiting for an
acknowledge message from the RTIG. It process
accordingly the message and finally invokes the RAV
service by writing the corresponding message into the
RTIG_to_RTIA2 memory buffer.

At time T3, the RTIA2 process finds an UAV message
in the RTIG_to_RTIA2 memory buffer and inserts it
within a list of incoming message. It waits then for an
acknowledge message of its RAV request from the
RTIG.

At time T4, the RTIA1 process receives the
acknowledge message from the RTIG in the
RTIG_to_RTIA1 memory buffer, returning then to its
main loop. In the same way, the RTIG process
discovers an incoming message in the
RTIA2_to_RTIG memory buffer, corresponding to the
UAV service invocation of the RTIA2.

It process then the message accordingly and finally
writes the responding message RAV into the
RTIG_to_RTIA1 memory buffer, at time T5. Finally,
the RTIG sends the acknowledge message of the UAV
service previously invoked by the RTIA2. At time T6,
the acknowledge message is received by the RTIA2
trough the RTIG_to_RTIA2 buffer. The RTIA2
returns then to its own main loop and delivers the
stored messages to the federate when a tick() service is
invoked.

5. Deploying CERTI over Kerrighed

Operating System

As explained in section 3.2 Kerrighed SSI is attractive
to achieve high availability of parallel or distributed
applications, since it has to be considered as a
distributed operating system dedicated to clusters, that
provides process migration mechanisms to support
load balancing. The SSI supports either the message
passing programming model or the shared memory
model. Notice that Kerrighed is able to dynamically
migrate either processes or threads from a given
cluster node to another target node. In our context of
work, the distributed application is the CERTI Run-
time infrastructure, built around RTIG, RTIAs and
federates processes..

.The process migration mechanism is implemented as
an internal operating system mechanism, fully
transparent to users. This mechanism involves few
Linux kernel modifications. More precisely, the
process migration mechanism is based on the Linux
kernel function do_fork allowing to restart the process
on the destination node. A detailed technical
description of the design of Kerrighed process
migration is beyond the scope of this paper.
Additional information can be found elsewhere [13].

Deploying a given application under the Kerrighed
SSI operating system is straightforward. From a end
user point of view, once the SSI is installed, two main
directives are available. The krgreboot directive loads
the Kerrighed SSI as well as the modified kernel

SHM1 SHM2

RTIA1 RTIA2

RTIA1_to_RTIG

RTIG_to_RTIA1 RTIA2_to_RTIG

RTIG_to_RTIA2

RTIG

 7

modules. Conversely, the krgremove directive unloads
the SSI operating system. While CERTI is running on
a cluster over the Kerrighed control, the SSI is able to
share memory among corresponding processes and
threads. Moreover, it optimizes resource utilization by
implementing load balancing. It is important to
understand that the Kerrighed-CERTI package, part of
the HP-CERTI initiative, aims at achieving high
availability of resources rather than high
performances.

6. Preliminary Performance Results

In this section we discuss some preliminary
performance results related to SHM-CERTI
implementation of HLA. Performances provided by
Kerrighed SSI operating system are not yet available.
Furthermore, performances increase of CERTI
deployed over Kerrighed are mainly expected from the
ability of the SSI to dynamically migrate processes
among available processor of a cluster, in order to
optimize load balancing. The experimentation
platform is made up of a Dell PowerEdge 6600
machine with four Xeon processors, 1.4 GHertz speed
each and 8 Gbyte of shared memory, under Linux
2.4.18 kernel. Preliminary performance results have
been obtained from the DMSO benchmarks running
under the socket based CERTI and the SHM-CERTI.

6.1. Latency benchmark

This benchmark program measures RTI performance
in terms of the elapsed time it takes to send and
receive an attribute update. The latency is measured as
a two-way latency by having the reflecting federates
return the initial objects timestamp. The one-way
latency is computed then by dividing the elapsed time
by two. Comparative results have been obtained by
running two federates and changing the
updated/reflected attribute size from 128 bytes to 2048
bytes. Figure 4 shows two comparative results
including mean latency and standard deviation, when
10 000 updates/reflects are performed (-u option).

 Socket CERTI SHM-CERTI

 Mean (ms) SD Mean (ms) SD

128 0.574 0.775 0.351 0.496

512 0.591 0.286 0.339 0.335

1024 0.577 0.365 0.456 0.478

2048 0.709 0.405 0.682 0.463

Figure 4: CERTI latency benchmark

These latency results can be compared with those
obtained with the DMSO RTI-NG V6 under the same
software/hardware configuration (figure 5)

 RTI-NG V6

 Mean (ms) SD

 128 0.541 0.031

 512 0.551 0.070

 1024 0.589 0.051

 2048 0.681 0.108

Figure 5: RTI-NG latency benchmark

6.2. Timadvance benchmark

This benchmark program measures RTI performance
in terms of the rate at which time advance requests are
processed. Results have been obtained with two
federates, 20 timestep cycles (-c option) and 10 000
TimaAdvanceRequest per cycle. Figure 6 shows the
mean grants/sec and the associated standard deviation,
when lookahead varies from 0.1 to 10. These
timeadvance benchmark results can be compared with
those obtained with the DMSO RTI-NG V6 under the
same software/hardware configuration (figure 7)

 Socket CERTI SHM-CERTI

 Mean SD Mean SD

0.1 4494.45 541.262 5110.32 927.939

1 3356.11 497.207 4303.63 1099.12

10 3917.24 367.424 6408.9 234.555

Figure 6: CERTI timeadvance benchmark

 RTI-NG V6

 Mean SD

 0.1 756.457 131.858

 1 987.606 188.879

 10 792.233 205.943

Figure 7: RTI-NG timeadvance benchmark

 8

6.3. Throughput benchmark

This benchmark program measures RTI performance
in terms of the elapsed time it takes to perform a
specified number of attribute update service call. The
number of updates received is also tracked to
determine whether the RTI drops any updates. Figure
8 gives the experimental results obtained for two
participating federates, 20 cycles (-c option) and
10000 updates per cycle (-u option), when the attribute
size varies from 128 bytes to 2048 bytes. Results
include mean UAVs/sec and standard deviation.

 Socket CERTI SHM-CERTI

 Mean SD Mean SD

128 3828.55 307.13 4421.802 204.66

512 3679.741 239.36 4116.422 176.45

1024 3279.397 246.11 3678.043 41.56

2048 2526.201 142.08 4455.867 413.74

Figure 8: CERTI throughput benchmark

Finally, figure 9 shows the throughput benchmark
results obtained with the RTI-NG V6.

 RTI-NG V6

 Mean SD

 128 4916.593 139.56

 512 3902.945 76.21

 1024 3347.505 772.87

 2048 2005.916 3.01

Figure 9: RTI-NG throughput benchmark

7. Conclusion and further steps

The future of HLA, as a widely adopted standard,
depends on its ability to evolve in order to meet the
current expectations of a growing simulation
community. Motivations of the HP-CERTI initiative,
is to actively participate in this effort, according to two
main directions. First of all, making available HP-
CERTI as a open-source RTI to the simulation
community allows increased responsiveness to user
needs and reduces cost of entry. Secondly, HP-CERTI
allows facing the execution performance requirements
of real-time decision support systems based on M&S.

Therefore, HLA becomes a promising candidate for
both statically and dynamically composing complex
simulations within integrated platforms.

In this paper, we have discussed the two main
components of the HP-CERTI package. The first one
is based on an optimization of the communication
protocol between RTIAs and RTIG through extensive
use of shared memory. The second one offers higher
availability of execution resources when the RTI is
deployed under the control of the Kerrighed SSI
operating system.

Future work includes both optimization and
generalization. An obvious optimization would be to
replace the socket based communications between
libRTI and RTIA, by shared memory based
exchanges. Nevertheless, preliminary performance
measurements showed that message exchanges
between the federate and its RTIA are not a
bottleneck. An interesting generalization would be to
keep both communication supports, TCP sockets and
shared memory, within the RTI architecture. Such an
HLA implementation would allow constructing large
scale and fully distributed simulations, based on
components (clusters of federates) sharing the same
execution platform.

8. Acknowledgements

This work is carried out in the context of the COCA
(High Performance Distributed Simulation and
Models Reuse) Project, sponsored by the DGA/STTC
(Délégation Générale pour l'Armement/Service des
Stratégies Techniques et des Technologies
Communes) of the French Ministry of Defense. Our
partners in the COCA project, Capgemini company
and IRISA are also kindly acknowledged.

9. References

[1] P. Siron, “Design and Implementation of a HLA RTI
Prototype at ONERA”, Fall Simulation Interoperability Workshop,
Orlando, September 13-18, 1998

[2] B. Breholee, P. Siron “CERTI: Evolutions of the ONERA
RTI Prototype”, Fall Simulation Interoperability Workshop,
Orlando, September 8-13, 2002

[3] D. Stratton, J. Miller, S. Parr, "Developing an Open Source
RTI Community", Spring Simulation Interoperability Workshop,
Arlington (VA) , April 18 – 22, 2004

[4] A. Tolk, "Composable Mission Spaces and M&S
Repositories – Applicability of Open Standards", Spring Simulation
Interoperability Workshop, Arlington (VA), April 18 – 22, 2004

[5] M. Adelantado, "Modeling and Simulation of Air Trafic
Management Systems to Support the Decision Making Process:
Present and Future Issues", SCS Advanced Simulation Technologies
Conference, Business and Industry Symposium, Arlington (VA),
April 18 – 22, 2004

 9

[6] M. Adelantado, J. Latour, A. Vincent, P. Bonnet,
"Distributed Simulation for Acquisition and Analysis of Future
Operational Concepts", AIAA Journal of Aerospace Computing,
Information and Communication, January 2004

[7] M. Adelantado, "Rapid Prototyping of Airport Advanced
Operational Systems and Procedures through Distributed
Simulation", SCS Journal on Transactions of the Society for
Modeling and Simulation International, Special Issue on Simulation
of Air Traffic, January 2004

[8] C. Morin, P. Gallard, R. Lottiaux, G. Vallée, "Towards an
Efficient Single System Image Cluster Operating System", in Future
Generation Computer Systems, 20(2), January 2004

[9] P. Gallard, C. Morin, "Dynamic Streams for Efficient
Communications between Migrating Processes in a Cluster", in
Parallel processing Letters, 13(4), December 2003

[10] G. Vallée, R. Lottiaux, L. Rolling, J-Y. Berthou, I. Dutka-
Malhen, C. Morin, "A Case for Single System Image Cluster
Operating Systems: Kerrighed Approach", in Parallel Processing
Letters, 13(2), June 2003

[11] D. Margery, G. Vallée, R. Lottiaux, C. Morin, J-Y.
Berthou, "Kerrighed: a SSI Cluster OS Running OpenMP", in Proc.
5th European Workshop on OpenMP, September 2003

[12] M. D. Petty, E. W. Weisel, "A Composability lexicon",
Proceedings of the Spring Interoperability Workshop, Orlando (FL),
March 30 – April 4, 2003

[13] G. Vallée, C. Morin, J-Y. Berthou, I. Dutka Malen, R.
Lottiaux, "Efficient Process Migration based on Gobelins
Distributed Shared Memory", Internal Report n° 4518, INRIA, July
2002

Author Biography

MARTIN ADELANTADO was graduated from a
French High School for Engineers in Computer
Science (ENSEEIHT) in 1979, and received his
doctorate in 1981. He is an ONERA (French
Aeronautics and Space Research Agency) Senior
Scientist and works at the Aeronautics Systems
Research Unit of the Long Term Design and Systems
Integration Department (DPRS/SAE). He received his
"Habilitation à diriger des Recherches" French
diploma in May 2004. His fields of interest include
simulation, real-time systems, distributed systems and
M&S of complex systems. He is currently in charge of
the design and the development of a set of modeling
and simulation tools for fast prototyping of both air
and ground traffic systems.

PIERRE SIRON was graduated from a French High
School for Engineers in Computer Science
(ENSEEIHT) in 1980, and received his doctorate in
1984. He is currently a Research Engineer at ONERA
and he works in parallel and distributed systems and
computer security. He is a member of the Design and
Validation of Computer Systems research unit. He
received his "Habilitation à diriger des Recherches"
French diploma in January 2003.

MARC BETOULE is currently student at ENSAE, a
French High School for Engineers in Aerospace
Sciences (Ecole Nationale Supérieure de
l'Aéronautique et de l'Espace), Toulouse.

