Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin with the first record and then read through the entire table to find the relevant rows. The larger the table, the more this costs. If the table has an index for the columns in question, MySQL can quickly determine the position to seek to in the middle of the data file without having to look at all the data. If a table has 1,000 rows, then this is at least 100 times faster than reading sequentially. Note that if you need to access most of the rows, it is faster to read sequentially, because this minimizes disk seeks.
Most MySQL indexes (PRIMARY KEY
,
UNIQUE
, INDEX
, and
FULLTEXT
) are stored in B-trees. Exceptions
are that indexes on spatial column types use R-trees, and that
MEMORY
tables also support hash indexes.
Strings are automatically prefix- and end-space compressed. See
Sección 13.1.4, “Sintaxis de CREATE INDEX
”.
In general, indexes are used as described in the following
discussion. Characteristics specific to hash indexes (as used in
MEMORY
tables) are described at the end of
this section.
Indexes are used for these operations:
To find the rows matching a WHERE
clause
quickly.
To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally uses the index that finds the smallest number of rows.
To retrieve rows from other tables when performing joins.
To find the MIN()
or
MAX()
value for a specific indexed column
key_col
. This is optimized by a
preprocessor that checks whether you are using
WHERE
on all key
parts that occur before key_part_#
=
constant
key_col
in the index. In this case, MySQL does a single key lookup
for each MIN()
or
MAX()
expression and replace it with a
constant. If all expressions are replaced with constants,
the query returns at once. For example:
SELECT MIN(key_part2
),MAX(key_part2
) FROMtbl_name
WHEREkey_part1
=10;
To sort or group a table if the sorting or grouping is done
on a leftmost prefix of a usable key (for example,
ORDER BY
). If all key
parts are followed by key_part1
,
key_part2
DESC
, the key is
read in reverse order. See
Sección 7.2.10, “Cómo optimiza MySQL ORDER BY
”.
In some cases, a query can be optimized to retrieve values without consulting the data rows. If a query uses only columns from a table that are numeric and that form a leftmost prefix for some key, the selected values may be retrieved from the index tree for greater speed:
SELECTkey_part3
FROMtbl_name
WHEREkey_part1
=1
Suppose that you issue the following SELECT
statement:
mysql> SELECT * FROM tbl_name
WHERE col1=val1 AND col2=val2;
If a multiple-column index exists on col1
and
col2
, the appropriate rows can be fetched
directly. If separate single-column indexes exist on
col1
and col2
, the
optimizer tries to find the most restrictive index by deciding
which index finds fewer rows and using that index to fetch the
rows.
If the table has a multiple-column index, any leftmost prefix of
the index can be used by the optimizer to find rows. For
example, if you have a three-column index on (col1,
col2, col3)
, you have indexed search capabilities on
(col1)
, (col1, col2)
, and
(col1, col2, col3)
.
MySQL cannot use a partial index if the columns do not form a
leftmost prefix of the index. Suppose that you have the
SELECT
statements shown here:
SELECT * FROMtbl_name
WHERE col1=val1; SELECT * FROMtbl_name
WHERE col2=val2; SELECT * FROMtbl_name
WHERE col2=val2 AND col3=val3;
If an index exists on (col1, col2, col3)
,
only the first of the preceding queries uses the index. The
second and third queries do involve indexed columns, but
(col2)
and (col2, col3)
are not leftmost prefixes of (col1, col2,
col3)
.
A B-tree index can be used for column comparisons in expressions
that use the =
, >
,
>=
, <
,
<=
, or BETWEEN
operators. The index also can be used for
LIKE
comparisons if the argument to
LIKE
is a constant string that doesn't start
with a wildcard character. For example, the following
SELECT
statements use indexes:
SELECT * FROMtbl_name
WHEREkey_col
LIKE 'Patrick%'; SELECT * FROMtbl_name
WHEREkey_col
LIKE 'Pat%_ck%';
In the first statement, only rows with 'Patrick' <=
are
considered. In the second statement, only rows with
key_col
< 'Patricl''Pat' <=
are considered.
key_col
<
'Pau'
The following SELECT
statements do
not use indexes:
SELECT * FROMtbl_name
WHEREkey_col
LIKE '%Patrick%'; SELECT * FROMtbl_name
WHEREkey_col
LIKEother_col
;
In the first statement, the LIKE
value begins
with a wildcard character. In the second statement, the
LIKE
value is not a constant.
MySQL 5.0 performs an additional LIKE
optimization. If you use ... LIKE
'%
and
string
%'string
is longer than three
characters, MySQL uses the Turbo Boyer-Moore
algorithm to initialize the pattern for the string
and then employs this pattern to perform the search more
quickly.
A search using
employs indexes if
col_name
IS
NULLcol_name
is indexed.
Any index that does not span all AND
levels
in the WHERE
clause is not used to optimize
the query. In other words, to be able to use an index, a prefix
of the index must be used in every AND
group.
The following WHERE
clauses use indexes:
... WHEREindex_part1
=1 ANDindex_part2
=2 ANDother_column
=3 /*index
= 1 ORindex
= 2 */ ... WHEREindex
=1 OR A=10 ANDindex
=2 /* optimized like "index_part1
='hello'" */ ... WHEREindex_part1
='hello' ANDindex_part3
=5 /* Can use index onindex1
but not onindex2
orindex3
*/ ... WHEREindex1
=1 ANDindex2
=2 ORindex1
=3 ANDindex3
=3;
These WHERE
clauses do
not use indexes:
/*index_part1
is not used */ ... WHEREindex_part2
=1 ANDindex_part3
=2 /* Index is not used in both AND parts */ ... WHEREindex
=1 OR A=10 /* No index spans all rows */ ... WHEREindex_part1
=1 ORindex_part2
=10
Sometimes MySQL does not use an index, even if one is available.
One circumstance under which this occurs is when the optimizer
estimates that using the index would require MySQL to access a
very large percentage of the rows in the table. (In this case, a
table scan is likely to be much faster, since it requires fewer
seeks.) However, if such a query uses LIMIT
to only retrieve some of the rows, MySQL uses an index anyway,
because it can much more quickly find the few rows to return in
the result.
Hash indexes have somewhat different characteristics than those just discussed:
They are used only for equality comparisons that use the
=
or <=>
operators (but are very fast). They are
not used for comparison operators such as
<
that find a range of values.
The optimizer cannot use a hash index to speed up
ORDER BY
operations. (This type of index
cannot be used to search for the next entry in order.)
MySQL cannot determine approximately how many rows there are
between two values (this is used by the range optimizer to
decide which index to use). This may affect some queries if
you change a MyISAM
table to a
hash-indexed MEMORY
table.
Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can be used to find rows.)
Ésta es una traducción del manual de referencia de MySQL, que puede encontrarse en dev.mysql.com. El manual de referencia original de MySQL está escrito en inglés, y esta traducción no necesariamente está tan actualizada como la versión original. Para cualquier sugerencia sobre la traducción y para señalar errores de cualquier tipo, no dude en dirigirse a mysql-es@vespito.com.