The following list indicates some of the ways that the mysqld server uses memory. Where applicable, the name of the system variable relevant to the memory use is given:
The key buffer (variable key_buffer_size
)
is shared by all threads; other buffers used by the server
are allocated as needed. See
Sección 7.5.2, “Afinar parámetros del servidor”.
Each connection uses some thread-specific space:
A stack (default 64KB, variable
thread_stack
)
A connection buffer (variable
net_buffer_length
)
A result buffer (variable
net_buffer_length
)
The connection buffer and result buffer are dynamically
enlarged up to max_allowed_packet
when
needed. While a query is running, a copy of the current
query string is also allocated.
All threads share the same base memory.
Only compressed MyISAM
tables are memory
mapped. This is because the 32-bit memory space of 4GB is
not large enough for most big tables. When systems with a
64-bit address space become more common, we may add general
support for memory mapping.
Each request that performs a sequential scan of a table
allocates a read buffer (variable
read_buffer_size
).
When reading rows in an arbitrary sequence (for example,
following a sort), a random-read
buffer (variable
read_rnd_buffer_size
) may be allocated in
order to avoid disk seeks.
All joins are executed in a single pass, and most joins can
be done without even using a temporary table. Most temporary
tables are memory-based (HEAP
) tables.
Temporary tables with a large record length (calculated as
the sum of all column lengths) or that contain
BLOB
columns are stored on disk.
If an internal heap table exceeds the size of
tmp_table_size
, MySQL 5.0 handles this
automatically by changing the in-memory heap table to a
disk-based MyISAM
table as necessary. You
can also increase the temporary table size by setting the
tmp_table_size
option to
mysqld, or by setting the SQL option
SQL_BIG_TABLES
in the client program. See
Sección 13.5.3, “Sintaxis de SET
”.
Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the result set size. See Sección A.4.4, “Dónde almacena MySQL los archivos temporales”.
Almost all parsing and calculating is done in a local memory
store. No memory overhead is needed for small items, so the
normal slow memory allocation and freeing is avoided. Memory
is allocated only for unexpectedly large strings; this is
done with malloc()
and
free()
.
For each MyISAM
table that is opened, the
index file is opened once; the data file is opened once for
each concurrently running thread. For each concurrent
thread, a table structure, column structures for each
column, and a buffer of size 3 *
are allocated (where
N
N
is the maximum row length, not
counting BLOB
columns). A
BLOB
column requires five to eight bytes
plus the length of the BLOB
data. The
MyISAM
storage engine maintains one extra
row buffer for internal use.
For each table having BLOB
columns, a
buffer is enlarged dynamically to read in larger
BLOB
values. If you scan a table, a
buffer as large as the largest BLOB
value
is allocated.
Handler structures for all in-use tables are saved in a cache and managed as a FIFO. By default, the cache has 64 entries. If a table has been used by two running threads at the same time, the cache contains two entries for the table. See Sección 7.4.8, “Cómo abre y cierra tablas MySQL”.
A FLUSH TABLES
statement or
mysqladmin flush-tables command closes
all tables that are not in use at once and marks all in-use
tables to be closed when the currently executing thread
finishes. This effectively frees most in-use memory.
FLUSH TABLES
does not return until all
tables have been closed.
ps and other system status programs may
report that mysqld uses a lot of memory. This
may be caused by thread stacks on different memory addresses.
For example, the Solaris version of ps counts
the unused memory between stacks as used memory. You can verify
this by checking available swap with swap -s
.
We test mysqld with several memory-leakage
detectors (both commercial and open source), so there should be
no memory leaks.
Ésta es una traducción del manual de referencia de MySQL, que puede encontrarse en dev.mysql.com. El manual de referencia original de MySQL está escrito en inglés, y esta traducción no necesariamente está tan actualizada como la versión original. Para cualquier sugerencia sobre la traducción y para señalar errores de cualquier tipo, no dude en dirigirse a mysql-es@vespito.com.