
curl_multi_socket(3) libcurl Manual curl_multi_socket(3)

NAME
curl_multi_socket − reads/writes available data

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket(CURLM * multi_handle, curl_socket_t sockfd);

CURLMcode curl_multi_socket_all(CURLM *multi_handle);

DESCRIPTION
Alternative versions ofcurl_multi_perform() that allows the application to pass in one of the file descrip-
tors/sockets that have been detected to have "action" on them and let libcurl perform. This allows libcurl to
not have to scan through all possible file descriptors to check for action. When the application has detected
action on a socket handled by libcurl, it should callcurl_multi_perform() with the sockfd argument set to
the socket with the action.

These functions inform the application about updates in the socket (file descriptor) status by doing none,
one or multiple calls to the curl_socket_callback given with the CURLMOPT_SOCKETFUNCTION
option tocurl_multi_setopt(3). They update the status with changes since the previous time this function
was called.

If you want to force libcurl to (re-)check all its internal sockets and transfers instead of just a single one,
you callcurl_multi_socket_all(3) instead.

An application should callcurl_multi_timeout(3) to figure out how long it should wait for socket actions −
at most − before doing the timeout action: call thecurl_multi_socket(3) function with thesockfd argument
set to CURL_SOCKET_TIMEOUT.

The socketcallback function uses a prototype like this

int curl_socket_callback(CURL *easy, /* easy handle */
curl_socket_t s, /* socket */
int action, /* see values below */
void *userp); /* "private" pointer */

The callback MUST return 0.

Theaction (third) argument to the callback has one of five values:

CURL_POLL_NONE (0)
register, not interested in readiness (yet)

CURL_POLL_IN (1)
register, interested in read readiness

CURL_POLL_OUT (2)
register, interested in write readiness

CURL_POLL_INOUT (3)
register, interested in both read and write readiness

CURL_POLL_REMOVE (4)
deregister

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you should call

libcurl 7.16.0 21 Dec 2005 1



curl_multi_socket(3) libcurl Manual curl_multi_socket(3)

curl_multi_perform again, before you wait for more actions on libcurl’s sockets. You don’t hav eto do it
immediately, but the return code means that libcurl may have more data available to return or that there may
be more data to send off before it is "satisfied".

NOTE that this only returns errors etc regarding the whole multi stack. There might still have occurred
problems on individual transfers even when this function returns OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Add easy handles

4. Call curl_multi_socket_all() first once

5. Setup a "collection" of sockets to supervise when your socket callback is called.

6. Use curl_multi_timeout() to figure out how long to wait for action

7. Wait for action on any of libcurl’s sockets

8, When action happens, call curl_multi_socket() for the socket(s) that got action.

9. Go back to step 6.

AV AILABILITY
This function was added in libcurl 7.16.0

SEE ALSO
curl_multi_cleanup(3), curl_multi_init(3), curl_multi_fdset(3), curl_multi_info_read(3)

libcurl 7.16.0 21 Dec 2005 2


