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e, AN Introduction to Glide

Voodoo Graphicsisthe first video subsystem that enables personal computers and low cost video game
platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped 3D images,
the Voodoo Graphics subsystem provides accel eration for advanced 3D features including true-
perspective texture mapping with trilinear mipmapping and lighting, detail and projected texture
mapping, texture anti-aliasing, and high precision subpixel correction. In addition, it supports general
purpose 3D pixel processing functions, including triangle-based Gouraud shading, depth buffering, alpha
blending, and dithering.

The Glide Rasterization Library isaset of low level rendering functions that serve as a software “micro-
layer” to the Voodoo Graphics family of graphics hardware, including the 3Dfx Interactive Texelfx ™
and the Pixelfx™ special purpose chips. Glide permits easy and efficient implementation of 3D rendering
libraries, games, and drivers.

Why Glide?
Glide serves three primary purposes:

It relieves programmers from hardware specific issues such as timing, maintaining register shadows,
and working with hard-coded register constants and offsets.

It defines an abstraction of the Voodoo Graphics hardware to facilitate ease of software porting.

It acts as addlivery vehicle for sample source code providing in-depth hardware-specific
optimizations for the Voodoo Graphics hardware.

By abstracting the low level details of interfacing with the Voodoo Graphics hardware into a set of C-
callable functions, Glide allows developersto avoid working with hardware registers and memory
directly, enabling faster development and lower probability of bugs. Glide also handles mundane and
error prone chores such asinitialization and shutdown.

Glideis but one part of the 3Dfx Interactive Software Developer’s Kit (SDK), which is designed to assist
developersin creating tools and titles that are optimized for the Voodoo Graphics hardware. Other
components of the SDK include the Game Controller Interface (GCI) Library and the Texture Utility
Software (TexUS™).

Glideis not afull featured graphics API such as OpenGL ™, PHIGS, or the Autodesk CDK ™: it does not
provide high level 3D graphics operations such as transformations, display list management, or light
source shading. Glide specifically implements only those operations that are natively supported by the
Voodoo Graphics hardware. In general, Glide does not implement any functions that do not directly
access a Voodoo Graphics subsystem’s memory or registers.

The Glide Utility Library contains utility routines create fog tables, extensions that do significant pre-
processing befare calling Glide routines to access the graphics system, and obsol ete routines that are
provided for interim compatibility as Glide development continues.

Copyright O 1995- 1997 3Dfx Interactive, Inc. 1
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The Glide library can be linked with an application with or without debugging aids. The debug version
has error checking and parameter validation, which may cause performance degradation. When an
application isinitially developed and debugged it should use the debugging version of Glide. After
development is complete the release build of Glide is employed for optimum performance.

Voodoo Graphics

The Voodoo Graphics subsystem sits on the PCI system bus of the host computer. The entry-level system
configuration consists of two 3Dfx Interactive proprietary ASICs, Texelfx and Pixelfx, and memory.
Figure 1.1 shows the entry level configuration as well as several ways to expand the system and enhance
graphics performance. Increasing the number of Texelfx ASICs decreases the number of passes required
to perform various texture mapping techniques. Systems with more than one Voodoo Graphics subsystem
can utilize scanline interleaving to achieve the highest possible rendering performance.

Glide and the Voodoo Graphics hardware supports arich set of rendering techniques, including

Gouraud shading. The programmer providesinitia red, green, blue, and alpha values for each vertex.
Glide calculates the associated gradients and the hardware automatically iterates the color across the
defined triangle.

Texture mapping. The programmer providesinitial texture values s/w, t/w, and L/w for each vertex
and Glide computes the gradients. The hardware performs the proper iteration and perspective
correction for true-perspective texture mapping. During each iteration of row/column walking, a
division is performed by 1/w to correct for perspective distortion.

Texture mapping with lighting. Texture-mapped rendering can be combined with Gouraud shading to
introduce lighting effects during the texture mapping process. The programmer suppliesinitial color
and texture values, Glide cal cul ates the appropriate gradients, and the hardware performs the proper
calculations to implement the lighting models and texture lookups. A texel is either modulated
(multiplied by), added, or blended to the Gouraud shaded color. The selection of color modulation or
addition is programmable.

Texture space decompression. Texture map compression uses a patent-pending “narrow channel”
YAB compression scheme that maps 24-bit RGB values to an 8-bit YAB format with little lossin
precision.

Depth buffering. VVoodoo Graphics supports hardware-accel erated, depth-buffered rendering with no
performance penalty. The depth buffer isimplemented in frame buffer memory: 2 Mbyte systems can
utilize a 640x480 double buffered display buffer and a 16-bit z buffer. To eliminate many of the z
aliasing problems typically encountered with 16-bit z buffer systems, the Voodoo Graphics subsystem
allows afloating point representation of the 1/w parameter to be used as the depth component.

2 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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Figure 1.1 Voodoo Graphics system configurations.

The Pixelfx chip interfaces with the host computer, the linear frame buffer, and the display monitor, and implements

basic 3D primitives including Gouraud shading, alpha blending, depth buffering, dithering, and fog. The TMU

(located on the Texelfx chip) implements texture mapping, including true-perspective, detail, and projected texture

mapping, bilinear and trilinear filtering, and level-of-detail mipmapping.

(a) The basic configuration has one Pixelfx chip and one TMU. The advanced texture mapping techniques of detail texture
mapping, projected texture mapping, and trilinear texture filtering are two-pass operations, but there is no performance
penalty for point-sampled or bilinear-filtered texture mapping with mipmapping.

(b) A two TMU configuration allows single pass detail texture mapping, projected texture mapping, or trilinear filtering.

(c) Three TMUs can be chained together to provide single pass rendering of all supported advanced texture mapping features,
including projected texture mapping.

(d) For the highest possible rendering performance, multiple Voodoo Graphics subsystems can be chained together utilizing
scanline interleaving to effectively double the rendering rate of a single subsystem.
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Pixel blending. The hardware supports alpha blending functions that blend incoming source pixels
with current destination pixels with no performance penalty. Alpha buffering is supported, but is
mutually exclusive with depth buffering and triple buffering. Note that alpha buffering is required
only if destination alphais used in apha blending; alpha blending modes that do not use destination
alpha can be used with depth buffering and triple buffering.

Fog. The Voodoo Graphics subsystem supports a 64-entry lookup table to support atmospheric
effects such as fog and haze. When enabled, a 14-hit floating point representation of 1/w is used to
index into the 64-entry lookup table and interpol ate between entries. The output of the lookup tableis
avaluethat represents the level of blending to be performed between a reference fog color and the
incoming pixel.

Chroma-keying. \ oodoo Graphics supports a chroma-key operation used for transparent object
effects. When enabled, an outgoing pixel is compared with the chroma-key register. If amatchis
detected, the outgoing pixel isinvalidated in the pixel pipeline, and the frame buffer is not updated.

Color dithering. Numeric operations are performed on 24-bit colors within the Voodoo Graphics
subsystem. However, the final stage of the pixel pipeline dithers the color from 24 bitsto 16 bits
before storing it in the display buffer. The 16-bit color dithering allows for the generation of photo-
realistic images without the additional cost of atrue color frame buffer storage area.

4 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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The Rendering Engine

The Voodoo Graphics hardware has a very flexible lighting and texture mapping pipeline to support all of
the features described above. Glide abstracts it into three distinct units: the texture combine unit, the
color and al pha combine units, and the special effects unit. The basic architecture isillustrated in Figure
1.2.

Figure 1.2 The pixel pipeline.

The rendering engine is structured as a pipeline through which each pixel drawn to the screen must pass. The
individual stages of the pixel pipeline modify or invalidate individual pixels based on mode settings. The input to the
pixel pipeline can come from one of four sources: a texture value, an iterated RGBA value, a constant RGBA value,
or data for a frame buffer write. Pixels that pass the chroma-key test go to the color combine unit where a user-
specified lighting function is applied. The special effects unit further modifies the pixel with alpha and depth testing,
fog, and alpha blending operations. The final 24-bit color value is then dithered to 16 bits and written to the frame

buffer.
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About This Manual

The Glide 2.2 Programming Guide attempts to introduce a knowledgeable graphics programmer to the
capabilities of the Voodoo Graphics subsystem through the Glide interface. The subroutines are
introduced in alogical progression: initialization and termination requirements are first, then ssimple
rendering capabilities, followed by more and more complex functions. The audience for this manual is
the application programmer who just took delivery on a VVoodoo Graphics subsystem and wants to port
existing applications or develop new applications in Glide. The experienced Glide programmer will use
the Glide Reference Manual to research specific Glide functions, but will reach for this manual when
trying out new features.

Chapter 2, Glide in Style, describes data types, data formats, and the programming model used in Glide
and the Voodoo Graphics subsystem.

Chapter 3, Getting Started, describes the display buffers and the initialization and termination
reguirements for Glide and the graphics hardware and includes a very simple but complete program that
clears the screen.

Chapter 4, Rendering Primitives, describes the functions that draw points, lines, triangles, and convex
polygons in both aliased and anti-aliased forms. In addition, clipping and backface culling are discussed.

Chapter 5, Color and Lighting, describes the functions that control the Voodoo Graphics color and apha
combine unit, which can produce effects that run the gamut from simple Gouraud shading to diffuse
ambient lighting with specular highlights and other complex lighting models.

Chapter 6, Using the Alpha Component, describes the various ways to utilize the alpha channel: alpha
blending, alpha buffering, and alpha testing.

Chapter 7, Depth Buffering, presents two techniques for depth buffering.

Chapter 8, Special Effects, describes other special rendering effects that can be produced in the pixel
pipeline: atmospheric effects like fog, haze, and smoke; multi-pass alpha-blended fog; transparent objects
implemented with chroma-keying; and alpha masking.

Chapter 9, Texture Mapping, describes the texture pipeline and texture mapping while Chapter 10,
Managing Texture Memory, describes the process of downloading textures into texture memory.

Chapter 11, Accessing the Linear Frame Buffer, describes the Glide functions that provide a path for
reading and writing the frame buffer directly.

Chapter 12, Housekeeping Routines, and Chapter 13, Glide Utilities, describes the routinesin Glide and
the Glide Utilities Library that haven’t been discussed already.

Chapter 14, Programming Tips and Technigues, give some hints about how to head off trouble and get
the best performance from your Voodoo Graphics hardware.

The Glide Programming Guide concludes with two appendices, one containing a non-trivial example,
and the other summarizing the Glide constants used to set state variables. Thereis also a Glossary of
frequently used terms and a comprehensive Index.

6 Copyright O 1995- 1997 3Dfx Interactive, Inc.
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In this Chapter
You will learn about;:

v the naming conventions for functions, types, and constants

v the notational conventions that designate functions, types, variables, parameters, and constants in this
manual

v the state machine model that Glide uses to minimize bandwidth to the hardware and increase
graphics performance

v thefunctions that save and restore Glide state
Vv the Grvertex structure that holds the coordinates and parameters that define a vertex

v the constraints and properties of numerical data representing geometric, color, and texture
coordinates

Naming and Notational Conventions

Functions are divided into families consisting of routines related in their duties. All Glide functions are
prefixed with gr; al Glide Utility functions use gu as the prefix. The Glide prefix isimmediately
followed by the family name, for example grDrawTriangle() and grDrawPolygon() are both parts of the
grDraw family. Glide uses the mixed caps convention for function names. When function names appear
in the text of this manual, they will be shown in bold face type. Actual function names end with ‘()’;
function family names do not.

The internal name for the Voodoo Graphics subsystem is“SST-1"or “SST”. Some function names, type
definitions, and constants within Glide reflect thisinternal name, which is easier to type than Voodoo
Graphics. For example, grSstWinOpen() initializes the hardware.

Constants are named values that are defined in gl i de.h. The names of constants use all uppercase |etters,
asin MAX_NUM SST and GR_TEXTUREFI LTER BI LI NEAR and will be shown in Couri er font when they
appear in the text of this manual.

C specifications for functions and data types will be displayed in shaded rectangles throughout this
manual. Glide type definitions are shown in Helvetica type to distinguish them from the C keywords and
primitive types. Glide makes use of enumerated types for function arguments in order to restrict them to
the defined set of values. Enumerated types end with _t, asin GrColorFormat_t.

Glide variable names and function arguments will be italicized in both the C specifications and the text.

Code segments use Cour i er font.

Copyright O 1995- 1997 3Dfx Interactive, Inc. 9
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The State Machine Model

Glideis state based: rendering “modes’ can be set once and then remain in effect until reset. Parameter
values like areference value for depth comparisons and a specific depth test are set once and will be used
whenever depth testing is enabled (until they are given new values). The state machine model allows
users to set modes and reference values only when they change, minimizing the host-to-hardware
transfers.

For example, one of the state variables Glide maintainsis the “ current mipmap”, used during texture
mapping. A mipmap is a collection of hierarchically defined texture maps that are loaded into the texture
memory that supports the TMUs. A stateless model would not retain information about the contents of
the texture memory, so each rendering operation would have to include a texture memory address.

Sending redundant state information can lead to noticeabl e performance degradation. For example, if a
system is attempting to render 200,000 triangles per second and the “current mipmap” is sent as a 4-byte
address, bandwidth associated with updating this single state variable can amount to 800K B/sec.
Compound thiswith all of the other state information necessary and the amount of unnecessary data sent
across the system bus can become overwhelming.

Two library functions are used to save and restore state.

void grGlideGetState( GrState * state )
void grGlideSetState( const GrState *state )

grGlideGetState() makes a copy of the current state of the current Voodoo Graphics subsystem in a
GrState structure state provided by the user. The saved state can be restored at some later time with
grGlideSetState(). These routines save and restore all Glide state, and therefore are expensive to use. If
only asmall subset of Glide state needs to be saved and restored, these routines should not be used.

Specifying Vertices

Voodoo Graphicsis arendering engine. The user configures the texture and pixel pipelines (see Figure
1.2) and then sends streams of vertices representing points, lines, triangles, and convex polygons. (In
fact, the hardware renders only triangles; Glide converts points and lines to triangles and triangul ates
polygons as needed.)

Vertices are specified in the Grvertex data structure, shown below and defined in gl i de.h. Up to ten
parameters can be used to specify a point:

the geometric coordinates (x, y, z, w) where x and y indicate a screen location, z indicates depth, and
w is the homogeneous coordinate

the color components (r, g, b, a)
the texture coordinates (s, )

Note that the Grvertex structure has a spot for z, but actually usesits reciprocal (ooz, for “one over z").
Similarly, 1/w is stored in the variable oow. And, s/w and t/w are stored in the structure (as sow and tow)
rather than s and ¢, because the scaled values are the ones actually used by the Voodoo Graphics system.
These values need to be computed only once for each vertex, regardless of how many trianglesinclude
the vertex.

The Grvertex structure also includes a small array of GrTmuVvertex data structures, one for each TMU
present in the system, and each of the array elements contains private oow, sow, and fow variables. Each
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TMU and the Pixelfx chip each have their own copy of 1/w, s/w, and #/w. Normally, they will all be the
same. However, projected textures have a different w value than non-projected textures. Projected
textures iterate g/w where w is the homogeneous distance from the eye and ¢ is the homogeneous
distance from the projected source.

typedef struct {
float oow; /* Uw*/
float sow; * slw texture coordinate */
float tow; [* tlw texture coordinate */

} GrTmuVertex;

typedef struct {
float x, y, z; * x, y, z of screen space. Z isignored */
float ooz; /* alinear function of 1/z (used for z buffering) */
float oow; /* 1w (used for w buffering) */
float r, g, b, a; [* red, green, blue, and alpha ([0..255.0]) */
GrTmuVertex tmuvtx[ GLIDE_NUM_TMUJ;

} GrVertex;

Every vertex must specify values for x and y, but the other parameters are optional and need only be set if
the rendering configuration requires them. Table 2.1 lists some typical rendering operations and the
vertex parameters they use.

Table 2.1 Vertex parameter requirements depend on the rendering function being performed.

The x and y coordinates must be specified for every vertex, regardless of the rendering function being performed.
The other parameters stored in the GrVertex structure are optional and need to be supplied only if required for the
desired computation. The table below details the values required by the rendering functions implemented by Glide
and the Voodoo Graphics hardware.

Rendering function required variables | expected values see Chapter
all vertices, all rendering functions | x, y —2048 to +2047 4
Gouraud shading r,g, b 0to 255.0 5
alpha blending/testing a 0t0 255.0 6
non-projected texture mapping tmuvtx[0].oow, | Lw wherew isin the range [1..65535] 9
tmuvix[0] .sow, slw where s isin the range [0..256.0]
tmuvix[0] .tow tlw where ¢ is in the range [0..256.0]
projected texture mapping tmuvtx[0].oow, 1w where 1/w isin the range [-4096..61439] 9

tmuvtx[0] .sow, slw where s/w isin the range [-32768..32767]
tmuvix[0] .tow tlw where t/w isin the range [-32768..32767]

tmuvix[1].0ow, q/w where g/w isin the range [-4096..61439]
slw where s/w isin the range [-32768..32767]
tlw where t/w isin the range [-32768..32767]

tmuvix[1].sow,
tmuvtx[1].tow

linear z buffering 00z 1/z where 1/z isin the range [0..65535] 7
w buffering oow 1/w where w isin the range [ 1..65535] 7
fog with iterated alpha a [0..255.0] 8
fog with iterated z 00z 1/z where 1/z isin the range [0..65535] 8
fog with table oow 1/w where w isin the range [1..65535] 8
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Numerical Data

The Voodoo Graphics hardware can accept vertex datain either fixed point or floating point formats.
However, Glide provides only afloating point interface, since RISC and Pentium processors are
optimized for floating point calculations. If you are porting a fixed point application to the Voodoo
Graphics system, plan to convert al your datato floating point representation as part of the porting
process.

The Grvertex structure contains single-precision, |EEE 754 32-bit floating point values.

Geometric Coordinates

Thex and y coordinates are specified in pixel unitsin the range [-2048..2047]. The pixel coordinate (0.5,
0.5) represents the exact center of thefirst visible pixel on the screen.

The ooz coordinate should be assigned a value that islinear in screen space. That is, it should be alinear
function of 1/w that can be scaled and translated such that it increases or decreases with distance from the
viewer. The valid range for ooz valuesis[0..65535]. To minimize z aliasing this range should be mapped
to the smallest possible range of eye coordinates. For example, if w eye coordinates are within the range
[2..15] and 1/w isin the range [1/2..1/15] then the mapping would be approximately

1/z = 151214.6/w — 10080.9
where w iseyew and ooz isthe value iterated in the Voodoo Graphics subsystem.

The w coordinate is a scaled positive depth value used during perspective projection, perspective texture
mapping, and depth buffering. Some graphics systems do not use homogeneous coordinates; in these
instances the z depth value can be used in lieu of the w coordinate, assuming that the z value is positively
increasing into the screen. The range of w is[1..65535].

Glide and Voodoo Graphics actually use the reciprocal of the homogeneous coordinate, 1/w. The valid
range for 1/w is [-4096..61439]. Normally, the homogeneous coordinate is clipped to a positive range of
[1, far] and so itsreciprocal isin the range [1..1/far]. Negative values should be avoided.

Each TMU and the Pixelfx chip each have their own L/w. Normally, the valuesin all the chips will be the
same. However, projected textures have a different w value than non-projected textures. Projected
textures iterate g/w where w is the homogeneous distance from the eye and ¢ is the homogeneous
distance from the projected source. In this case, g/w has avalid range of [4096..61439].

The L/w value in Pixelfx is used only for fog calculations and w buffering, and is not used for texture
mapping. It can be scaled differently than the 1/w values sent to the TMUs. The fog table spans arange in
L/w from [1/65535..1]. If w buffering is enabled, the w buffer spansarange in 1/w from