Distributed Programming
with Ice

Michi Henning
Mark Spruiell

With contributions by

Dwayne Boone, Brent Eagles, Benoit Foucher,
Marc Laukien, Matthew Newhook, Bernard Normier

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and ZeroC was aware of the trademark claim,
the designations have been printed in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

This documentation is licensed under the Creative Commons Attribution-NoDerivs 2.5 License. You

can find a copy of this license in Appendix J. The Ice software is licensed under different terms. See the
Ice distribution for details on that license.

Copyright © 2003-2008 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Revision 3.3.0, May 2008

This revision of the documentation describes Ice version 3.3.0.

The Ice source distribution makes use of a number of third-party products:

* Berkeley DB, developed by Oracle (http://www.oracle.com)

* bzip2/libbzip2, developed by Julian R. Seward (http://sources.redhat.com/bzip2)

» The OpenSSL Toolkit, developed by the OpenSSL Project (http://www.openssl.org)

» SSLeay, developed by Eric Young (mailto:eay @cryptsoft.com)

* Expat, developed by James Clark (http://www.libexpat.org)

* STLport, developed by the STLport Standard Library Project (http://www.stlport.org)
* mcpp, developed by Kiyoshi Matsui (http://mcpp.sourceforge.net)

See the Ice source distribution for the license agreements for each of these products.

mailto:info@zeroc.com
http://www.oracle.com
http://sources.redhat.com/bzip2
http://www.openssl.org
mailto:eay@cryptsoft.com
http://www.libexpat.org
http://www.zeroc.com
http://www.stlport.org
http://mcpp.sourceforge.net

Contents

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 The Internet Communications Engine (Ice) 4
1.3 Organization of this Book 4
1.4 Typographical Conventions 6
1.5 Source Code Examples 6
1.6 Contacting the Authors 6
1.7 Ice Support 7
Part I Ice Overview 9
Chapter 2 Ice Overview 11
2.1 Chapter Overview 11
2.2 The Ice Architecture 11
2.3 Ice Services 27
2.4 Architectural Benefits of Ice 30
2.5 A Comparison with CORBA 32
Chapter 3 A Hello World Application 37
3.1 Chapter Overview 37
3.2 Writing a Slice Definition 38
3.3 Writing an Ice Application with C++ 38
3.4 Writing an Ice Application with Java 47
3.5 Writing an Ice Application with C# 54
3.6 Writing an Ice Application with Visual Basic 61
3.7 Writing an Ice Application with Python 69
3.8 Writing an Ice Application with Ruby 75
3.9 Summary 78

Part II Slice 79
Chapter 4 The Slice Language 81
4.1 Chapter Overview 81
4.2 Introduction 81
4.3 Compilation 82
4.4 Source Files 85
4.5 Lexical Rules 87
4.6 Modules 90
47 The Ice Module 91
4.8 Basic Slice Types 92
4.9 User-Defined Types 94
4.10 Interfaces, Operations, and Exceptions 101
4.11 Classes 126
4.12 Forward Declarations 142
4.13 Type IDs 143
4.14 Operations on Object 144
4.15 Local Types 146
4.16 Names and Scoping 147
4.17 Metadata 154
4.18 Deprecating Slice Definitions 155
4.19 Using the Slice Compilers 155
4.20 Slice Checksums 157
4.21 A Comparison of Slice and CORBA IDL 158
4.22 Generating Slice Documentation 167
4.23 Summary 173
Chapter 5 Slice for a Simple File System 175
5.1 Chapter Overview 175
5.2 The File System Application 175
5.3 Slice Definitions for the File System 176
5.4 The Complete Definition 178

Part III Language Mappings 181
Part III.A C++ Mapping 183
Chapter 6 Client-Side Slice-to-C++ Mapping 185
6.1 Chapter Overview 185
6.2 Introduction 185
6.3 Mapping for Identifiers 186
6.4 Mapping for Modules 187
6.5 The Ice Namespace 188
6.6 Mapping for Simple Built-In Types 188
6.7 Mapping for User-Defined Types 190
6.8 Mapping for Constants 199
6.9 Mapping for Exceptions 200
6.10 Mapping for Run-Time Exceptions 204
6.11 Mapping for Interfaces 205
6.12 Mapping for Operations 215
6.13 Exception Handling 221
6.14 Mapping for Classes 223
6.15 slice2cpp Command-Line Options 247
6.16 Using Slice Checksums 252
6.17 A Comparison with the CORBA C++ Mapping 253
Chapter 7 Developing a File System Client in C++ 255
7.1 Chapter Overview 255
7.2 The C++ Client 255
7.3 Summary 260
Chapter 8 Server-Side Slice-to-C++ Mapping 261
8.1 Chapter Overview 261
8.2 Introduction 261
8.3 The Server-Side main Function 262
8.4 Mapping for Interfaces 277
8.5 Parameter Passing 280
8.6 Raising Exceptions 281
8.7 Object Incarnation 282
8.8 Summary 288
Chapter 9 Developing a File System Server in C++ 289
9.1 Chapter Overview 289
9.2 Implementing a File System Server 289

9.3 Summary 306

Vi

Part II11.B Java Mapping 309
Chapter 10 Client-Side Slice-to-Java Mapping 311
10.1 Chapter Overview 311
10.2 Introduction 311
10.3 Mapping for Identifiers 312
10.4 Mapping for Modules 313
10.5 The Ice Package 314
10.6 Mapping for Simple Built-in Types 314
10.7 Mapping for User-Defined Types 314
10.8 Mapping for Constants 319
10.9 Mapping for Exceptions 320
10.10 Mapping for Run-Time Exceptions 322
10.11 Mapping for Interfaces 323
10.12 Mapping for Operations 332
10.13 Exception Handling 337
10.14 Mapping for Classes 339
10.15 Customizing the Java Mapping 347
10.16 slice2java Command-Line Options 362
10.17 Using Slice Checksums 363
Chapter 11 Developing a File System Client in Java 365
11.1 Chapter Overview 365
11.2 The Java Client 365
11.3 Summary 369
Chapter 12 Server-Side Slice-to-Java Mapping 371
12.1 Chapter Overview 371
12.2 Introduction 371
12.3 The Server-Side main Function 372
12.4 Mapping for Interfaces 379
12.5 Parameter Passing 382
12.6 Raising Exceptions 383
12.7 Tie Classes 384
12.8 Object Incarnation 387
12.9 Summary 391
Chapter 13 Developing a File System Server in Java 393
13.1 Chapter Overview 393
13.2 Implementing a File System Server 393
13.3 Summary 402

Vii

Part I11.C C# Mapping 403
Chapter 14 Client-Side Slice-to-C# Mapping 405
14.1 Chapter Overview 405
14.2 Introduction 405
14.3 Mapping for Identifiers 406
14.4 Mapping for Modules 407
14.5 The Ice Namespace 408
14.6 Mapping for Simple Built-in Types 408
14.7 Mapping for User-Defined Types 409
14.8 Mapping for Constants 426
14.9 Mapping for Exceptions 427
14.10 Mapping for Interfaces 430
14.11 Mapping for Operations 438
14.12 Exception Handling 442
14.13 Mapping for Classes 444
14.14 C#-Specific Metadata Directives 454
14.15 slice2cs Command-Line Options 455
14.16 Using Slice Checksums 456
Chapter 15 Developing a File System Client in C# 457
15.1 Chapter Overview 457
15.2 The C# Client 457
15.3 Summary 461
Chapter 16 Server-Side Slice-to-C# Mapping 463
16.1 Chapter Overview 463
16.2 Introduction 463
16.3 The Server-Side Main Method 464
16.4 Mapping for Interfaces 470
16.5 Parameter Passing 473
16.6 Raising Exceptions 474
16.7 Tie Classes 476
16.8 Object Incarnation 479
16.9 Summary 483
Chapter 17 Developing a File System Server in C# 485
17.1 Chapter Overview 485
17.2 Implementing a File System Server 485
17.3 Summary 494

viii

Part II1.D Python Mapping 495
Chapter 18 Client-Side Slice-to-Python Mapping 497
18.1 Chapter Overview 497
18.2 Introduction 497
18.3 Mapping for Identifiers 498
18.4 Mapping for Modules 499
18.5 The Ice Module 499
18.6 Mapping for Simple Built-In Types 499
18.7 Mapping for User-Defined Types 501
18.8 Mapping for Constants 506
18.9 Mapping for Exceptions 507
18.10 Mapping for Run-Time Exceptions 509
18.11 Mapping for Interfaces 510
18.12 Mapping for Operations 516
18.13 Exception Handling 521
18.14 Mapping for Classes 522
18.15 Code Generation 528
18.16 Using Slice Checksums 538
Chapter 19 Developing a File System Client in Python 541
19.1 Chapter Overview 541
19.2 The Python Client 541
19.3 Summary 545
Chapter 20 Server-Side Slice-to-Python Mapping 547
20.1 Chapter Overview 547
20.2 Introduction 547
20.3 The Server-Side main Program 548
20.4 Mapping for Interfaces 554
20.5 Parameter Passing 556
20.6 Raising Exceptions 558
20.7 Object Incarnation 559
20.8 Summary 563
Chapter 21 Developing a File System Server in Python 565
21.1 Chapter Overview 565
21.2 Implementing a File System Server 565
21.3 Thread Safety 572
21.4 Summary 573

Part II1.LE Ruby Mapping 575
Chapter 22 Client-Side Slice-to-Ruby Mapping 577
22.1 Chapter Overview 577
22.2 Introduction 577
22.3 Mapping for Identifiers 578
22.4 Mapping for Modules 579
22.5 The Ice Module 579
22.6 Mapping for Simple Built-In Types 579
22.7 Mapping for User-Defined Types 580
22.8 Mapping for Constants 585
22.9 Mapping for Exceptions 586
22.10 Mapping for Run-Time Exceptions 588
22.11 Mapping for Interfaces 588
22.12 Mapping for Operations 595
22.13 Exception Handling 599
22.14 Mapping for Classes 601
22.15 Code Generation 609
22.16 The main Program 614
22.17 Using Slice Checksums 620
Chapter 23 Developing a File System Client in Ruby 623
23.1 Chapter Overview 623
23.2 The Ruby Client 623
23.3 Summary 627
Part II1.F PHP Mapping 629
Chapter 24 Ice Extension for PHP 631
24.1 Chapter Overview 631
24.2 Introduction 631
24.3 Configuration 633
24.4 Client-Side Slice-to-PHP Mapping 637
Chapter 25 Developing a File System Client in PHP 655
25.1 Chapter Overview 655
25.2 The PHP Client 655
25.3 Summary 659

Part IV Advanced Ice 661

Chapter 26 Ice Properties and Configuration 663
26.1 Chapter Overview 663
26.2 Properties 663
26.3 Configuration Files 665
26.4 Setting Properties on the Command Line 667
26.5 The Ice.Config Property 668
26.6 Command-Line Parsing and Initialization 669
26.7 The Ice.ProgramName property 671
26.8 Using Properties Programmatically 672
26.9 Unused Properties 682
26.10 Summary 682

Chapter 27 Threads and Concurrency with C++ 683
27.1 Chapter Overview 683
27.2 Introduction 683
27.3 Library Overview 684
27.4 Mutexes 684
27.5 Recursive Mutexes 691
27.6 Read-Write Recursive Mutexes 694
27.7 Timed Locks 698
27.8 Monitors 703
27.9 Condition Variables 711
27.10 Efficiency Considerations 715
27.11 Threads 716
27.12 Portable Signal Handling 725

27.13 Summary 727

Xi

Chapter 28

Chapter 29

The Ice Run Time in Detail

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10
28.11
28.12
28.13
28.14
28.15
28.16
28.17
28.18
28.19
28.20
28.21
28.22
28.23
28.24
28.25
28.26

Introduction

Communicators

Communicator Initialization
Object Adapters

Object Identity

The Ice: :Current Object
Servant Locators

Server Implementation Techniques
The Ice Threading Model

Proxies

The Ice: :Context Parameter
Connection Timeouts

Oneway Invocations

Datagram Invocations

Batched Invocations

Testing Proxies for Dispatch Type
Location Services

Administrative Facility

The Ice: :Logger Interface

The Ice: :Stats Interface
Location Transparency

Dispatch Interceptors

String Conversion

Developing a Plugin

A Comparison of the Ice and CORBA Run Time
Summary

Asynchronous Programming

29.1
29.2
293
294
29.5

Chapter Overview
Introduction
Using AMI

Using AMD
Summary

729
729
730
735
736
750
753
755
770
806
818
831
840
842
847
849
852
852
861
869
877
878
880
885
892
897
899

901
901
901
904
924
935

Xii

Chapter 30

Chapter 31

Chapter 32

Chapter 33

Facets and Versioning

30.1
30.2
30.3
304
30.5
30.6
30.7
30.8

Introduction

Concept and APIs

The Versioning Problem
Versioning with Facets
Facet Selection
Behavioral Versioning
Design Considerations
Summary

Object Life Cycle

31.1
31.2
31.3
314
31.5
31.6
31.7
31.8
31.9
31.10
31.11
31.12

Chapter Overview

Introduction

Object Existence and Non-Existence

Life Cycle of Proxies, Servants, and Ice Objects
Object Creation

Object Destruction

Removing Cyclic Dependencies

Life Cycle and Parallelism

Object Identity and Uniqueness

Object Life Cycle for the File System Application
Avoiding Server-Side Garbage

Summary

Dynamic Ice

32.1
322
323
324
32.5

Chapter Overview

Streaming Interface

Dynamic Invocation and Dispatch

Asynchronous Dynamic Invocation and Dispatch
Summary

Connection Management

33.1
332
333
334
335
33.6
33.7
33.8

Chapter Overview

Introduction

Connection Establishment
Active Connection Management
Obtaining a Connection
Connection Closure
Bidirectional Connections
Summary

937
937
937
944
950
950
952
954
956

957
957
958
959
964
966
970
987
993
996
998
1025
1035

1037
1037
1037
1071
1088
1095

1097
1097
1097
1098
1103
1104
1107
1108
1113

xiii

Chapter 34 The Ice Protocol 1115
34.1 Chapter Overview 1115
34.2 Data Encoding 1116
34.3 Protocol Messages 1140
34.4 Compression 1150
34.5 Protocol and Encoding Versions 1152
34.6 A Comparison with IIOP 1156

Part V Ice Services 1163

Chapter 35 IceGrid 1165
35.1 Chapter Overview 1165
35.2 Introduction 1166
35.3 IceGrid Architecture 1168
35.4 Getting Started 1172
35.5 Using Deployment 1177
35.6 Well-known Objects 1186
35.7 Templates 1195
35.8 IceBox Integration 1201
35.9 Object Adapter Replication 1204
35.10 Load Balancing 1207
35.11 Sessions 1210
35.12 Registry Replication 1218
35.13 Application Distribution 1223
35.14 Administrative Sessions 1231
35.15 Glacier2 Integration 1238
35.16 XML Reference 1242
35.17 Variable and Parameter Semantics 1272
35.18 Property Set Semantics 1278
35.19 XML Features 1283
35.20 Server Reference 1286
35.21 Administrative Facility Integration 1295
35.22 Securing IceGrid 1303
35.23 Administrative Utilities 1308
35.24 Server Activation 1316
35.25 Solving Problems 1319
35.26 Summary 1322

Xiv

Chapter 36

Chapter 37

Chapter 38

Freeze
36.1
36.2
36.3
36.4
36.5
36.6
36.7
36.8
36.9

Freeze
37.1
37.2
37.3
374
37.5
37.6
37.7
37.8
37.9

Chapter Overview
Introduction
The Freeze Map

Using a Freeze Map in the File System Server

Freeze Evictors

Using the Freeze Evictor in a File System Server

The Freeze Catalog
Backups
Summary

Script

Chapter Overview

Introduction

Database Migration
Transformation Descriptors
Using transformdb
Database Inspection

Using dumpdb

Descriptor Expression Language
Summary

IceSSL

38.1
38.2
383
384
38.5
38.6
38.7
38.8

Chapter Overview

Introduction

Using IceSSL

Configuring IceSSL
Programming with IceSSL
Advanced Topics

Setting up a Certificate Authority
Summary

1325
1325
1326
1326
1348
1374
1390
1411
1412
1413

1415
1415
1415
1416
1422
1436
1444
1455
1459
1462

1465
1465
1465
1468
1471
1483
1498
1506
1511

XV

Chapter 39 Glacier2

Chapter 40

Chapter 41

39.1
39.2
39.3
394
39.5
39.6
39.7
39.8
39.9
39.10
39.11
39.12
39.13

Chapter Overview
Introduction

Using Glacier2
Callbacks

Router Security
Session Management
Dynamic Filtering
Request Buffering
Request Contexts
Firewalls

Advanced Client Configurations
IceGrid Integration
Summary

IceBox

40.1
40.2
40.3
40.4
40.5
40.6

Chapter Overview
Introduction
Developing a Service
Starting IceBox
IceBox Administration
Summary

IceStorm

41.1
41.2
41.3
414
41.5
41.6
41.7
41.8
419
41.10
41.11
41.12
41.13

Chapter Overview
Introduction

Concepts

IceStorm Interface Overview
Using IceStorm

Publishing to a Specific Subscriber
Highly Available IceStorm
IceStorm Administration
Topic Federation

Quality of Service

Delivery Mode

Configuring IceStorm
Summary

1513
1513
1513
1518
1525
1528
1537
1540
1542
1543
1546
1546
1548
1549

1551
1551
1551
1552
1560
1562
1567

1569
1569
1569
1571
1574
1576
1587
1589
1593
1596
1600
1602
1604
1608

XVi

Chapter 42 IcePatch2 1609
42.1 Chapter Overview 1609

42.2 Introduction 1609

42.3 Using icepatch2calc 1610

42.4 Running the Server 1613

42.5 Running the Client 1614

42.6 Object Identities 1617

42.7 The IcePatch2 Client Utility Library 1617

42.8 Summary 1622
Appendixes 1623
Appendix A Slice Keywords 1625
Appendix B Slice API Reference 1627
Appendix C Properties 1629
C.1 Ice Configuration Property 1629

C.2 Ice Trace Properties 1630

C.3 Ice Warning Properties 1633

C4 Ice Object Adapter Properties 1635

C.5 Ice Administrative Properties 1640

C.6 Ice Plugin Properties 1642

C.7 Ice Thread Pool Properties 1645

C.8 Ice Default and Override Properties 1647

C.9 Ice Proxy Properties 1652

C.10 Ice Transport Properties 1654

C.11 Ice Miscellaneous Properties 1657

C.12 IceSSL Properties 1664

C.13 IceBox Properties 1680

C.14 IceBoxAdmin Properties 1683

C.15 IceGrid Properties 1683

C.16 IceGrid Administrative Client Properties 1702

C.17 IceStorm Properties 1703

C.18 Glacier2 Properties 1711

C.19 Freeze Properties 1725

C.20 IcePatch2 Properties 1734

Appendix D Proxies and Endpoints 1737
D.1 Proxies 1737

D.2 Endpoints 1739

XVii

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

The C++ Utility Library

E.1 Introduction

E.2 AbstractMutex

E.3 Cache

E4 CtrlCHandler

E.5 Exception

E.6 generateUUID

E.7 Handle Template

E.8 Handle Template Adaptors
E9 Sharedand SimpleShared
E.10 Threads and Synchronization Primitives
E.11 Time

E.12 Timer and TimerTask

E.13 Unicode and UTF-8 Conversion Functions
E.14 Version Information

The Java Utility Library

F.1 Introduction

F2 The IceUtil Package

F3 The Ice.Util Class

The .NET Utility Library

G.1 Introduction

G.2 Communicator Initialization Methods
G.3 Identity Conversion

G.4 Property Creation Methods

G.5 Proxy Comparison Methods
G.6 Stream Creation

G.7 UUID Generation

G.8 Version Information

Windows Services

H.1 Introduction

H.2 Installing a Windows Service
H.3 The Ice Service Installer

H.4 Manual Installation

H.5 Troubleshooting

Binary Distributions

I.1 Introduction

1.2 Developer Kits

1.3 Guidelines

1749
1749
1749
1752
1755
1756
1756
1757
1760
1765
1766
1766
1766
1769
1770

1771
1771
1771
1774

1777
1777
1777
1777
1778
1778
1778
1778
1778

1781
1781
1782
1782
1788
1796

1799
1799
1799
1800

xviii

Appendix J License Information

Bibliography

J.1
J.2
13
J4
1.5
J.6
1.7
1.8

Definitions

Fair Use Rights

License Grant

Restrictions

Representations, Warranties and Disclaimer
Limitation on Liability

Termination

Miscellaneous

1805
1805
1806
1806
1807
1808
1809
1809
1810

1811

Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

* Although CORBA was available from a variety of vendors, it was rarely
possible to find a single vendor that could provide an implementation for all of

1

Introduction

the environments in a heterogeneous network. Despite much standardization
effort, lack of interoperability between different CORBA implementations
continued to cause problems, and source code compatibility for languages
such as C or C++ was never fully achieved, usually due to vendor-specific
extensions and CORBA'’s lack of a specification for multi-threaded environ-
ments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:

* SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

* While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

* The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

® There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

* Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

® Choose .NET/WCF

The most serious drawback is that it supports only a limited number of
languages and platforms.

® Choose Java RMI
This is a Java-only solution and so does not qualify as middleware.
® Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

* Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can choose a platform
that will run only with limited languages or platforms, you can choose a platform

Introduction

1.2

that is complex and suffering from gradual abandonment, or you can choose a
platform that is inefficient and, due to the lack of standardization, proprietary.

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

* Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a
middleware platform that is more powerful than CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* “Part I: Ice Overview” provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Python, and Ruby.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.

1.3 Organization of this Book

NOTE:

® “Part II: Slice” explains the Slice definition language. After reading this part,
you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

e “Part III: Language Mappings” contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

® “Part IV: Advanced Ice” presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

* “Part V: Ice Services” covers the services provided with Ice, such as IceGrid
(a sophisticated deployment tool), Glacier2 (the Ice firewall solution),
IceStorm (the Ice messaging service), and IcePatch2 (a software patching
service).2

* The Appendixes contain Ice reference material.

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/3.3.0/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/3.3.0/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that

software developers are still inveterate punsters.

http://www.zeroc.com/doc/Ice-3.3.0/manual
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.3.0/reference
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Slice-Reference.html

Introduction

1.4

Typographical Conventions

1.5

This book uses the following typographical conventions:
¢ Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
* File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.

mailto:icebook@zeroc.com

1.7 Ice Support

1.7 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.

http://www.zeroc.com/forums
http://www.zeroc.com/forums

Introduction

Part 1

Ice Overview

Chapter 2
Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate

11

12

Ice Overview

2.2.2

using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:

2.2 The Ice Architecture 13

An Ice object is an entity in the local or a remote address space that can
respond to client requests.

A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 31.

Proxies

Fo

r a client to be able to contact an Ice object, the client must hold a proxy for the

Ice object.1 A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1.

A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.

Ice Overview

ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
* Addressing information that allows the client-side run time to contact the
correct server
* An object identity that identifies which particular object in the server is the
target of a request
* An optional facet identifier that determines which particular facet of an object
the proxy refers to
Section 28.10 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)

2.2 The Ice Architecture 15

® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 28.17). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used