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Chapter 1
Introduction

1.1

Introduction

Since the mid-nineties, the computing industry has been using object-oriented
middleware platforms, such as DCOM [3] and CORBA [4]. Object-oriented
middleware was an important step forward toward making distributed computing
available to application developers. For the first time, it was possible to build
distributed applications without having to be a networking guru: the middleware
platform took care of the majority of networking chores, such as marshaling and
unmarshaling (encoding and decoding data for transmission), mapping logical
object addresses to physical transport endpoints, changing the representation of
data according to the native machine architecture of client and server, and auto-
matically starting servers on demand.

Yet, neither DCOM nor CORBA succeeded in capturing a majority of the
distributed computing market, for a number of reasons:

* DCOM was a Microsoft-only solution that could not be used in heterogeneous
networks containing machines running a variety of operating systems.

* DCOM was impossible to scale to large numbers (hundreds of thousands or
millions) of objects, largely due to the overhead of its distributed garbage
collection mechanism.

* Although CORBA was available from a variety of vendors, it was rarely
possible to find a single vendor that could provide an implementation for all of

1
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the environments in a heterogeneous network. Despite much standardization
effort, lack of interoperability between different CORBA implementations
continued to cause problems, and source code compatibility for languages
such as C or C++ was never fully achieved, usually due to vendor-specific
extensions and CORBA'’s lack of a specification for multi-threaded environ-
ments.

* Both DCOM and CORBA suffered from excessive complexity. Becoming
proficient and designing for and programming with either platform was a
formidable task that took many months (or, to reach expert level, many years)
to master.

® Performance issues have plagued both platforms through their respective
histories. For DCOM, only one implementation was available, so shopping
around for a better-performing implementation was not an option. While
CORBA was available from a number of vendors, it was difficult (if not
impossible) to find standards-compliant implementations that performed well,
mainly due to the complexity imposed by the CORBA specification itself
(which, in many cases, was feature-rich beyond need).

* In heterogeneous environments, the coexistence of DCOM and CORBA was
never an easy one either: while some vendors offered interoperability prod-
ucts, interoperability between the two platforms was never seamless and diffi-
cult to administer, resulting in disconnected islands of different technologies.

DCOM was superseded by the Microsoft .NET platform [11] in 2002. While
.NET offers more powerful distributed computing support than DCOM, it is still a
Microsoft-only solution and therefore not an option for heterogeneous environ-
ments. On the other hand, CORBA has been stagnating in recent history and a
number of vendors have left the market, leaving the customer with a platform that
is no longer widely supported; the interest of the few remaining vendors in further
standardization has waned, with the result that many defects in the CORBA speci-
fications are not addressed, or addressed only years after they are first reported.
Simultaneously with the decline of DCOM and CORBA, a lot of interest arose
in the distributed computing community around SOAP [26] and web
services [27]. The idea of using the ubiquitous World Wide Web infrastructure and
HTTP to develop a middleware platform was intriguing—at least in theory, SOAP
and web services had the promise of becoming the lingua franca of distributed
computing on the Internet. Despite much publicity and many published papers,
web services have failed to deliver on that promise: as of this writing, very few
commercial systems that use the web services architecture have been developed.
There are a number of reasons for this:



* SOAP imposes very serious performance penalties on applications, both in
terms of network bandwidth and CPU overhead, to the extent that the tech-
nology is unsuitable for many performance-critical systems.

* While SOAP provides an “on-the-wire” specification, this is insufficient for
the development of realistic applications because the abstraction levels
provided by the specifications are too low. While an application can cobble
SOAP messages together, doing so is tedious and error-prone in the extreme.

* The lack of higher-level abstractions prompted a number of vendors to
provide application development platforms that automate the development of
SOAP-compliant applications. However, these development platforms,
lacking any standardization beyond the protocol level, are by necessity propri-
etary, so applications developed with tools from one vendor cannot be used
with middleware products from other vendors.

® There are serious concerns [15] about the architectural soundness of SOAP
and web services. In particular, many experts have expressed concerns about
the inherent lack of security of the platform.

* Web services is a technology in its infancy. Little standardization has taken
place so far [27], and it appears that it will be years before standardization
reaches the level of completeness that is necessary for source code compati-
bility and cross-vendor interoperability.

As a result, developers who are looking for a middleware platform are faced with
a number of equally unpleasant options:

® Choose .NET/WCF

The most serious drawback is that it supports only a limited number of
languages and platforms.

® Choose Java RMI
This is a Java-only solution and so does not qualify as middleware.
® Choose CORBA

The most serious drawbacks are the high degree of complexity of an aging
platform, coupled with ongoing vendor attrition.

* Choose Web Services

The most serious drawbacks are the severe inefficiencies and the need to use
proprietary development platforms, as well as security issues.

These options look very much like a no-win scenario: you can choose a platform
that will run only with limited languages or platforms, you can choose a platform
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1.2

that is complex and suffering from gradual abandonment, or you can choose a
platform that is inefficient and, due to the lack of standardization, proprietary.

The Internet Communications Engine (Ice)

1.3

It is against this unpleasant background of choices that ZeroC, Inc. decided to
develop the Internet Communications Engine, or Ice for short.! The main design
goals of Ice are:

* Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

* Provide a full set of features that support development of realistic distributed
applications for a wide variety of domains.

* Avoid unnecessary complexity, making the platform easy to learn and to use.

* Provide an implementation that is efficient in network bandwidth, memory
use, and CPU overhead.

* Provide an implementation that has built-in security, making it suitable for use
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a
middleware platform that is more powerful than CORBA, without making all of
CORBA’s mistakes.”

Organization of this Book

This book is divided into four parts and a number of appendixes:

* “Part I: Ice Overview” provides an overview of the features offered by Ice and
explains the Ice object model. After reading this part, you will understand the
major features and architecture of the Ice platform, its object model and
request dispatch model, and know the basic steps required to build a simple
application in C++, Java, C#, Visual Basic, Python, and Ruby.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.



1.3 Organization of this Book

NOTE:

® “Part II: Slice” explains the Slice definition language. After reading this part,
you will have detailed knowledge of how to specify interfaces and types for a
distributed application.

e “Part III: Language Mappings” contains a sub-part for each of the language
mappings. After reading the relevant sub-part, you will know how to imple-
ment an application in your language of choice.

® “Part IV: Advanced Ice” presents many Ice features in detail and covers
advanced aspects of server development, such as properties, threading, object
life cycle, object location, persistence, and asynchronous as well as dynamic
method invocation and dispatch. After reading this part, you will understand
the advanced features of Ice and how to effectively use them to find the
correct trade-off between performance and resource consumption as appro-
priate for your application requirements.

* “Part V: Ice Services” covers the services provided with Ice, such as IceGrid
(a sophisticated deployment tool), Glacier2 (the Ice firewall solution),
IceStorm (the Ice messaging service), and IcePatch2 (a software patching
service).2

* The Appendixes contain Ice reference material.

This entire manual is also available online as a set of HTML pages at
http://www.zeroc.com/doc/3.3.0/manual.

You can always find the latest version of the manual at
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by
Ice and its services at http://www.zeroc.com/doc/3.3.0/reference.

You can always find the latest version of this reference at
http://www.zeroc.com/Slice-Reference.html.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that

software developers are still inveterate punsters.


http://www.zeroc.com/doc/Ice-3.3.0/manual
http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.3.0/reference
http://www.zeroc.com/Slice-Reference.html
http://www.zeroc.com/Slice-Reference.html
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1.4

Typographical Conventions

1.5

This book uses the following typographical conventions:
¢ Slice source code appears in Lucida Sans Typewriter.
* Programming-language source code appears in Courier.
* File names appear in Courier.
* Commands appear in Courier Bold.

Occasionally, we present copy of an interactive session at a terminal. In such
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash).
Output presented by the system is shown in Courier, and input is presented in
Courier Bold, for example:

S echo hello
hello

Slice and the various programming languages often use the same identifiers.
When we talk about an identifier in its generic, language-independent sense, we
use Lucida Sans Typewriter. When we talk about an identifier in its language-
specific (for example, C++ or Java) sense, we use Courier.

Source Code Examples

1.6

Throughout the book, we use a case study to illustrate various aspects of Ice. The
case study implements a simple distributed hierarchical file system, which we
progressively improve to take advantage of more sophisticated features as the
book progresses. The source code for the case study in its various stages is
provided with the distribution of this book. We encourage you to experiment with
these code examples (as well as the many demonstration programs that ship with
Ice).

Contacting the Authors

We would very much like to hear from you in case you find any bugs (however
minor) in this book. We also would like to hear your opinion on the contents, and
any suggestions as to how it might be improved. You can contact us via e-mail at
mailto:icebook @zeroc.com.


mailto:icebook@zeroc.com

1.7 Ice Support

1.7 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit
our developer forums at http://www.zeroc.com/forums to see if another developer
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however,
that we can provide only limited free support in our forums. For guaranteed
response and problem resolution times, we highly recommend purchasing
commercial support.


http://www.zeroc.com/forums
http://www.zeroc.com/forums
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Ice Overview

2.1

Chapter Overview

2.2

In this chapter, we present a high-level overview of the Ice architecture.

Section 2.2 introduces fundamental concepts and terminology, and outlines how
Slice definitions, language mappings, and the Ice run time and protocol work in
concert to create clients and servers. Section 2.3 briefly presents the object
services provided by Ice, and Section 2.4 outlines the benefits that result from the
Ice architecture. Finally, Section 2.5 presents a brief comparison of the Ice and
CORBA architectures.

The Ice Architecture

2.2.1

Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice
provides tools, APIs, and library support for building object-oriented client—server
applications. Ice applications are suitable for use in heterogeneous environments:
client and server can be written in different programming languages, can run on
different operating systems and machine architectures, and can communicate

11
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2.2.2

using a variety of networking technologies. The source code for these applications
is portable regardless of the deployment environment.

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no
exception. However, the amount of new jargon used by Ice is minimal. Rather
than inventing new terms, we have used existing terminology as much as possible.
If you have used another middleware technology, such as CORBA, in the past,
you will be familiar with most of what follows. (However, we suggest you at least
skim the material because a few terms used by Ice do differ from the corre-
sponding CORBA terminology.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for
the duration of a request:

* Clients are active entities. They issue requests for service to servers.

* Servers are passive entities. They provide services in response to client
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue
requests and only respond to requests. Instead, servers often act as a server on
behalf of some client but, in turn, act as a client to another server in order to
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only
request service from an object. Instead, clients are frequently client—server
hybrids. For example, a client might start a long-running operation on a server; as
part of starting the operation, the client can provide a callback object to the server
that is used by the server to notify the client when the operation is complete. In
that case, the client acts as a client when it starts the operation, and as a server
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client—server
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:
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An Ice object is an entity in the local or a remote address space that can
respond to client requests.

A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still
a single Ice object.

Each Ice object has one or more inferfaces. An interface is a collection of
named operations that are supported by an object. Clients issue requests by
invoking operations.

An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server;
out-parameters are initialized by the server and passed to the client. (The
return value is simply a special out-parameter.)

An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object
model assumes that object identities are globally unique, that is, no two
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as
UUIDs [14], only identities that do not clash with any other identity within
your domain of interest. However, there are architectural advantages to using
globally unique identifiers, which we explore in Chapter 31.

Proxies

Fo

r a client to be able to contact an Ice object, the client must hold a proxy for the

Ice object.1 A proxy is an artifact that is local to the client’s address space; it
represents the (possibly remote) Ice object for the client. A proxy acts as the local

1.

A proxy is the equivalent of a CORBA object reference. We use “proxy” instead of “reference”
to avoid confusion: “reference” already has too many other meanings in various programming
languages.
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ambassador for an Ice object: when the client invokes an operation on the proxy,
the Ice run time:

1. Locates the Ice object

. Activates the Ice object’s server if it is not running
. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

AN B~ W N

. Returns any out-parameters and the return value to the client (or throws an
exception in case of an error)
A proxy encapsulates all the necessary information for this sequence of steps to
take place. In particular, a proxy contains:
* Addressing information that allows the client-side run time to contact the
correct server
* An object identity that identifies which particular object in the server is the
target of a request
* An optional facet identifier that determines which particular facet of an object
the proxy refers to
Section 28.10 provides more information about proxies.

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls
that allow you to convert a proxy to its stringified form and vice versa. This is
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing
information, it can create a proxy “out of thin air” by supplying that information.
In other words, no part of the information inside a proxy is considered opaque; a
client needs to know only an object’s identity, addressing information, and (to be
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the
address at which its server runs. The address is completely specified by:

* a protocol identifier (such TCP/IP or UDP)
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® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the
addressing information in the proxy to contact the server; the identity of the object
is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it
may specify an identity together with an object adapter identifier. An object that is
accessible using only its identity is called a well-known object. For example, the
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified
form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a
location service (see Section 28.17). In turn, the location service uses the object
identity or the object adapter identifier as the key in a lookup table that contains
the address of the server and returns the current server address to the client. The
client-side run time now knows how to contact the server and dispatches the client
request as usual.

The entire process is similar to the mapping from Internet domain names to IP
address by the Domain Name Service (DNS): when we use a domain name, such
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP
address behind the scenes and, once the correct IP address is known, the IP
address is used to connect to the server. With Ice, the mapping is from an object
identity or object adapter identifier to a protocol-address pair, but otherwise very
similar. The client-side run time knows how to contact the location service via
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is
known as binding. Not surprisingly, direct binding is used 