
cfengine reference
Edition 2.1.16 for version 2.1.16

Mark Burgess
Faculty of Engineering, Oslo University College, Norway

Copyright c© 2004 Mark Burgess
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the author
instead of in the original English.
This manual corresponds to CFENGINE Edition 2.1.16 for version 2.1.16 as last updated
11 August 2005.

Chapter 1: Introduction to reference manual 1

1 Introduction to reference manual

The purpose of the cfengine reference manual is to collect together and document the raw
facts about the different components of cfengine. Once you have become proficient in the
use of cfengine, you will no longer have need of the tutorial. The reference manual, on the
other hand, changes with each version of cfengine. You will be able to use it online, or in
printed form to find out the details you require to implement configurations in practice.

1.1 Installation

In order to install cfengine, you should first ensure that the following packages are installed.

OpenSSL Open source Secure Sockets Layer for encryption.
URL: http://www.openssl.org

BerkeleyDB (version 3.2 or later)
Light-weight flat-file database system.
URL: http://www.sleepycat.com

The preferred method of installation is then
tar zxf cfengine-x.x.x.tar.gz

cd cfengine-x.x.x

./configure

make

make install

This results in binaries being installed in ‘/usr/local/sbin’. Since this is not necessarily
a local file system on all hosts, users are encouraged to keep local copies of the binaries on
each host, inside the cfengine trusted work directory.

1.2 Work directory

In order to achieve the desired simplifications, it was decided to reserve a private work area
for the cfengine tool-set. In cfengine 1.x, the administrator could choose the locations of
configuration files, locks, and logging data independently. In cfengine 2.x, this diversity
has been simplified to a single directory which defaults to ‘/var/cfengine’ (similar to
‘/var/cron’):

/var/cfengine

/var/cfengine/bin

/var/cfengine/inputs

/var/cfengine/outputs

The installation location ‘/usr/local/sbin’ is not necessarily a local file system, and
cannot therefore be trusted to a) be present, and b) be authentic on an arbitrary system.

Similarly, a trusted cache of the input files must now be maintained in the ‘inputs’
subdirectory. When cfengine is invoked by the scheduler, it reads only from this directory.
It is up to the user to keep this cache updated, on each host. This simplifies and consolidates
the cfengine resources in a single place. The environment variable CFINPUTS still overrides
this default location, as before, but in its absence or when called from the scheduler, this
becomes the location of trusted files. A special configuration file ‘update.conf’ is parsed and
run before the main configuration is parsed, which is used to ensure that the currently caches

http://www.openssl.org
http://www.sleepycat.com

2 GNU cfengine

policy is up-to-date. This has private classes and variables. If no value is set for CFINPUTS,
then the default location is the trusted cfengine directory ‘/var/cfengine/inputs’.

The ‘outputs’ directory is now a record of spooled run-reports. These are mailed to the
administrator, as previously, or can be copied to another central location and viewed in an
alternative browser..

1.3 Cfengine hard classes

A single class can be one of several things:

• The name of an operating system architecture e.g. ultrix, sun4, etc. This is referred
to as a hard class.

• The unqualified name of a particular host. If your system returns a fully qualified
domain name for your host, cfagent truncates it at the first dot.

• The name of a user-defined group of hosts.
• A day of the week (in the form Monday, Tuesday, Wednesday, ..).
• An hour of the day (in the form Hr00, Hr01 ... Hr23).
• Minutes in the hour (in the form Min00, Min17 ... Min45).
• A five minute interval in the hour (in the form Min00_05, Min05_10 ... Min55_00)
• A day of the month (in the form Day1 ... Day31).
• A month (in the form January, February, ... December).
• A year (in the form Yr1997, Yr2004).
• An arbitrary user-defined string.
• The IP address octets of any active interface (in the form ipv4_192_0_0_1,

ipv4_192_0_0, ipv4_192_0, ipv4_192).

To see all of the classes define on a particular host, run
host# cfagent -p -v

as a privileged user. Note that some of the classes are set only if a trusted link
can be established with cfenvd, i.e. if both are running with privilege, and the
‘/var/cfengine/env_data’ file is secure.

1.4 Evaluated classes and special functions

Cfengine provides a number of built-in functions for evaluating classes, based on file tests.
Using these built-in functions is quicker than calling the shell test function. The time
functions place their arguments in chronological order.

IsNewerThan(f1,f2)
True if file 2 was modified more recently than file 1 (UNIX mtime)

AccessedBefore(f1,f2)
True if file 1 was accessed more recently than file 2 (UNIX atime)

ChangedBefore(f1,f2)
True if file 1’s attributes were changed in any way more recently than file 2’s
(UNIX ctime)

Chapter 1: Introduction to reference manual 3

FileExists(file)
True if the named file object exists.

IPRange(address-range)
True if the current host lies within the specified IP range

HostRange(basename,start-stop)
True if the current relative domain name begins with basename and ends with
an integer between start and stop

IsDefined(variable-id)
True if the named variable is defined. Note well: use the variable name, not its
contents (that is, IsDefined(var), and not IsDefined(${var}))

IsDir(f) True if the file f is a directory

IsLink(f)
True if the file f is a symbolic link

IsPlain(f)
True if the file f is a plain file

PrepModule(module,arg1 arg2...)
True if the named module exists and can be executed. The module is assumed
to follow the standard programming interface for modules (see Writing plugin
modules in tutorial). Unlike actionsequence modules, these modules are evalu-
ated immediately on parsing. Note that the module should be specified relative
to the authorized module directory.

Regcmp(regexp,string or list separated string)
True if the string matched the regular expression regexp.

ReturnsZero(command)
True if the named shell command returns with exit code zero (success).

Strcmp(s1,s2)
True if the string s1 exactly matches s2

IsGreaterThan(s1,s2)
Returns true if the value of s1 is greater than the value of s2. Note that, if the
strings have numerical values, a numerical comparison is performed, otherwise
a string comparison is used.

IsLessThan(s1,s2)
Returns true if the value of s1 is less than the value of s2. Note that, if the
strings have numerical values, a numerical comparison is performed, otherwise
a string comparison is used.

control:

actionsequence = (files)

a = (2.12)

b = (2.11)

classes:

4 GNU cfengine

lt = (LessThan(${a},${b}))

gt = (GreaterThan(${a},${b}))

alerts:

lt:: "$(a) LESS THAN $(b)"

gt:: "$(a) GREATER THAN $(b)"

For example:

classes:

access_to_dir = (ReturnsZero(/bin/cd /mydir))

compare = (ChangedBefore(/etc/passwd_master,/etc/passwd))

isplain = (IsPlain(/tmp/import))

inrange = (IPRange(128.39.89.10-15))

CIDR = (IPRange(128.39.89.10/24))

compute_nodes = (HostRange(cpu-,01-32)

gotinit = (PrepModule(startup2,"arg1 arg2"))

1.5 Filenames and paths

Filenames in Unix-like operating systems
The directory separator is the forward slash ’/’ character. All references to file locations

must be absolute pathnames in cfengine, i.e. they must begin with a complete specification
of which directory they are in. For example:

/etc/passwd

/usr/local/masterfiles/distfile

The only place where it makes sense to refer to a file without a complete directory specifi-
cation is when searching through directories for different kinds of file, e.g.

tidy:

/home/user pattern=core age=0 recurse=inf

Here, one can write ‘core’ without a path, because one is looking for any file of that name
in a number of directories.

Cfengine was implemented primarily on Unix-like operating systems, but has since been
ported to Windows operating systems and MacOS X. The Windows operating systems
traditionally use a different filename convention. The following are all valid absolute file
names under Windows:

c:\winnt

c:/winnt

/var/cfengine/inputs

//fileserver/share2/dir

The ‘drive’ name “C:” in Windows refers to a partition or device. Unlike Unix, Windows
does not integrate these seamlessly into a single file-tree. This is not a valid absolute
filename:

\var\cfengine\inputs

Paths beginning with a backslash are assumed to be win32 paths. They must begin with
a drive letter or double-slash server name.

Chapter 1: Introduction to reference manual 5

1.6 Debugging with signals

It is possible to turn debugging output on or off on a running cfagent. This is useful
for troubleshooting the cause of hangups, or for getting debugging output from a cfagent
launched from cfexecd.

A running cfagent process that receives a SIGUSR1 will immediately begin to behave as
if it had been invoked with the ’-d2’ option. A SIGUSR2 will cause a running cfagent to
run as if the ’-d2’ option had not been invoked.

Note that this output is often quite verbose.

6 GNU cfengine

Chapter 2: Cfkey reference 7

2 Cfkey reference

The very first thing you should do on every host is to establish a public-private key pair.
To do this, you need to run the program

everyhost# cfkey

on every host. This program needs to produce random numbers, and needs a source of
randomness. A good strategy is to install and run the ‘cfenvd’ program for a week or two
in advance of deploying cfengine 2, since ‘cfenvd’ collects random events, which are an
excellent source of entropy for random number generation.

If you get the error message “PRNG not seeded”, it means that insufficient data were
found in order to make a random key. In that case, run ‘cfenvd’ for a few days more and
try again.

8 GNU cfengine

Chapter 3: Cfshow reference 9

3 Cfshow reference

The cfshow command was introduced in cfengine 2.1.11 in order to provide a simple way
to show some of the data stored by cfagent for operational purposes.

everyhost# cfshow -a

everyhost# cfshow -l

everyhost# cfshow -c

everyhost# cfshow -s

The command line options are

‘-a --active’
This prints a list of any currently active locks, i.e. tasks that cfengine believes
it is currently enagaged in.

‘-l --locks’
This prints a list of the locks and the last times an active lock was secured for
each cfengine acivity. This list is potentially very long.

‘-s --last-seen’
This lists the IP addresses of all known peers and the times they were last en-
gaged in communication with the current host. The expected interval between
communications is also printed. See FriendStatus. The output format is in a
form that can easily be parsed by user scripts. e.g.

192.0.2.1 (answered us) at [Wed May 26 16:39:03 2004] i.e. not seen for !2860.08! hours; <delta_t> = {63325.64} hours

192.0.2.3 (answered us) at [Wed May 26 16:39:03 2004] i.e. not seen for !2860.08! hours; <delta_t> = {90465.20} hours

‘-c --checksum’
This lists all of the files and their current checksum values in the current check-
sum database.

10 GNU cfengine

Chapter 4: Cfagent reference 11

4 Cfagent reference

4.1 Cfagent intro

Cfagent is the workhorse of cfengine. It interprets and computes the necessary strategies
for implementing convergent maintenance. In order to carry out work efficiently, the agent
groups similar actions together. The order of these actions is goverened by a list called the
actionsequence.

In many cases, cfagent will be able to complete all its work in a single pass of the
actionsequence. However, in complex configurations, it is hard to resolve all of the ordering
dependencies automatically in a single pass. Cfagent keeps track both of all actions that
have been performed and of those that might still need to be performed (given that some
actions depend on the later outcomes of others). If there is a possibility that an action
ordering dilemma might occur, it runs a second pass of the actionsequence to more quickly
resolve the dependency (avoiding the wait for next scheduled run). No actions are performed
twice however, since the agent checks off actions that have already been performed to avoid
unnecessary duplication.

4.1.1 The file cfagent.conf� �
control:

classes::

domain = (DNS-domain-name)

classes:

Class/Group definitions

import:

Files to import

other items
 	
4.1.2 Cfagent runtime options

Note that GNU long options are available with the syntax --longoption. The long names
are given in brackets.

‘-a’ (--sysadm) Print only the name of the system administrator then quit.

‘-A’ (--auto) Can be used to signify an automatic run of cfengine, as opposed to a
manual run. The distinction is not predetermined. Use of this option currently
causes cfengine to ignore locks. This option is reserved for future development.

‘-b’ (--force-net-copy) Normally cfengine detects attempts to copy from a server
via the network that will loop back to the localhost. It then avoids using

12 GNU cfengine

the network to make the copy. This option forces cfengine to copy using the
network. Yes, someone thinks this is useful!

‘-c’ (--no-check-files) Do not check file systems for ownership / permissions etc.

‘-C’ (--no-check-mounts) Check mount points for consistency. If this option is
specified then directories which lie in the “mount point” area are checked to
see whether there is anything mounted on them. Normally this is off since not
all machines use mounted file systems in the same way. e.g. HPUX does not
generally operate with partitions, but nevertheless one might wish to mimick a
partition-like environment there, but it would be irritating to be informed that
nothing was mounted on the mount point.

‘-d’ (--debug) Enable debugging output. Normally you will want to send this to a
file using the shell script command or a pipe. -d1 shows only parsing output.
-d2 shows only runtime action output. -d0 shows both levels. Debugging ouput
is intended mainly for the author’s convenience and is not a supported feature.
The details of this output may change at any time.

‘-D’ (--define) Define a compound class symbol of the form alpha.beta.gamma.

‘-e’ (--no-edits) Suppress file editing.

‘-E’ (--enforce-links) Globally force links to be created where plain files or links
already exist. Since this option is a big hammer, you have to use it in interactive
mode and answer a yes/no query before cfengine will run like this.

‘-f’ (--file) Parse filename after this switch. By default cfengine looks for a file
called cfengine.conf in the current directory.

‘-h’ (--help) Help information. Display version banner and options summary.

‘-H’ (--no-hard-classes). Prevents cfengine from generating any built-in class
name information. Can be used for emulation purposes.

‘-i’ (--no-ifconfig) Do not attempt to configure the local area network interface.

‘-I’ (--inform) Switches on the inform output level, whereby cfengine reports ev-
erything it changes..

‘-k’ (--no-copy) Do not copy/image any files.

‘-K’ (--no-lock) Ignore locks when running.

‘-l’ (--traverse-links) Normally cfengine does not follow symbolic links when
recursively parsing directories. This option will force it to do so.

‘-L’ (--delete-stale-links) Delete links which do not point to existing files (ex-
cept in user home directories, which are not touched).

‘-m’ (--no-mount) Do not attempt to mount file systems or edit the filesystem table.

‘-M’ (--no-modules) Ignore modules in actionsequence.

‘-n’ (--recon,--dry-run,--just-print) No action. Only print what has to be
done without actually doing it.

Chapter 4: Cfagent reference 13

‘-N’ (--negate,--undefine) Cancel a set of classes, or undefine (set value to false)
a compound class of the form alpha.beta.gamma.

‘-p’ (--parse-only) Parse file and then stop. Used for checking the syntax of a
program. You do not have to be superuser to use this option.

‘-q’ (--no-splay) Switch off host splaying (sleeping).

‘-Q’ (--quert) Query the values of the comma separated list of variable names.

‘-s’ (--no-commands) Do not execute scripts or shell commands.

‘-S’ (--silent) Silence run time warnings.

‘-t’ (--no-tidy) Do not tidy file systems.

‘-u’ (--use-env) Causes cfengine to generate an environment variable
‘CFALLCLASSES’ which can be read by child processes (scripts). This variable
contains a summary of all the currently defined classes at any given time. This
option causes some System V systems to generate a Bus Error or segmentation
fault. The same information is available from the cfengine built-in variable
$(allclasses) and can be passed as a parameter to scripts.

‘-U’ (--underscore-classes). When this option is set, cfengine adds an underscore
to the beginning of the hard system classes (like _sun4, _linux etc. The longer
compound classes are not underscored, since these are already complex and
would unlikely result in collisions.) This can be used to avoid naming conflicts
if you are so unjudicious as to name a host by the name of a hard class. Other
classes are not affected.

‘-v’ (--verbose) Verbose mode. Prints detailed information about actions and
state.

‘-V’ (--version) Print only the version string and then quit.

‘-x’ (--no-preconf) Do not execute the ‘cf.preconf’ net configuration file.

‘-X’ (--no-links) Do not execute the links section of a program.

‘-w’ (--no-warn,--quiet) Do not print warning messages.

‘-z’ (--schedule) Print the exec schedule for the LAN (used by cfexecd).

In version 2.0.4, an abbreviation for actionsequence exclusions was added:

$ cfagent --avoid resolve,copy

$ cfagent --just tidy --just shellcommands

4.2 Variable expansion and contexts

Variables in cfengine 2 are defined in contexts. Variables in a given context refer to the
different phases of execution of cfengine: global, update and main. In the "current" context,
variables have the form

$(variable) ${variable}

and are expanded either on parsing or at execution. Variables that cannot be expanded
remain as dollar strings. Variables belonging to a context that is not the current one may
be referred to as

14 GNU cfengine

$(context.variable) ${context.variable}

e.g.
$(global.env_time)

Some variables in cfengine are associative arrays (as made famous by Perl). Such arrays
are referred to by square brackets:

$(array[key]) $(array[$(key)])

and so on. Note carefully that cfengine requires parentheses or braces around variable
names. Unlike in the shell, they cannot be omitted.

4.2.1 Setting variables with functions

A number of special functions can be used to set variables in cfengine. You can import
values from the execution of a shell command by prefixing a command with the word exec.
This method is deprecated as of cfengine version 2; use the ExecResult function instead.

control:

old method

listing = ("exec /bin/ls -l")

new method

listing = (ExecResult(/bin/ls -l))

This sets the variable ‘listing’ to the output of the command in the quotes.
Some other built-in functions are

A(X,Y) Makes an associative array entry, associating X and Y. For instance:
control:

assoc_array = (A(B,"is for bird") A(C,"is for cat"))

results in:

OBJECT: main

4569 : assoc_array[B]=is for bird

4630 : assoc_array[C]=is for cat

Another example:
control:

binhost = (A(linux,machine1) A(solaris,machine2))

copy:

Contact machine 1 for linux

Contact machine 2 for solaris

/etc/source dest=/etc/receve server=$(binhost[$(class)])

Chapter 4: Cfagent reference 15

ExecResult(command)
Executes the named shell command and inserts the output into the variable.
Note that, when this is used in cfengine built-in list variables, any spaces are
interpreted as list separators. In other lists, normal rules for iteration apply.

RandomInt(a,b)
Generate a random integer between a and b.

ReadArray(filename,fileformat,separator,comment,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
one-dimensional associated array. File formats are:

autokey If this format is specified, ReadArray tries to interpret the file as
a table of items separated with the separator character. Blank
lines and comments (to end of line) are ignored. Items are keyed
numerically starting from 1 to the maximum number in the file.
The newline $(n) is always considered to be a separator, no matter
what the current separator is.

textkey If this format is specified, ReadArray tries to interpret the file as a
list of lines of the form:

key,value

ReadFile(filename,Max number of bytes)
Read a maximum number of bytes from a file.

ReadTable(filename,fileformat,separator,comment,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
two-dimensional associated array.

autokey If this format is specified, ReadArray tries to interpret the file as
a table of items separated with the separator character. Blank
lines and comments (to end of line) are ignored. Items are keyed
numerically starting from 1 to the maximum number in the file.
Any lines that do not contain the correct number of separators
cause the function to fail without making any assignment.

textkey If this format is specified, ReadArray tries to interpret the file as a
list of lines of the form:

key1,key2,,value

ReadList(filename,fileformat,comment,Max number of bytes)
Reads up to a maximum number of bytes from a properly formatted file into a
listvariable. File formats are:

lines If this format is specified, ReadList tries to interpret the file as a
list of items on separate lines. The value returned is a list formatted
by the Split character.

hosts = (ReadList(/var/cfengine/inputs/datafile,lines,#,1000))

16 GNU cfengine

ReadTCP(host/IP,portnumber,send string,Max number of bytes)
Reads up to a maximum number of bytes from a TCP service. Can be used to
test whether certain services are responding to queries. It is recommended that
this be used primarily to check services running on localhost. Bear in mind that
this clause, executed on 100 hosts will produce the effect of a distributed denial
of service attack, so the probe should be restricted to a single representative
tester-host. For example:

one_host_only::

USE WITH CAUTION !

probewww = (ReadTCP(localhost,80,’GET index.html’,1000))

Or testing a network service:
control:

checkhost::

probesmtp = (ReadTCP(localhost,25,"",1024))

probewww = (ReadTCP(project.iu.hio.no,80,"GET /viewcvs HTTP/1.0 ${n}${n}",1024))

classes:

viewcvs_error = (RegCmp(".*Python Traceback.*","${probewww}"))

alerts:

viewcvs_error::

"Received viewcvs error from web server"

SelectPartitionGroup(filename,comment,Policy,group size)
This function is for use in peer to peer monitoring applications. It allows
individual hosts to identify themselves as part of a group and find their peers.
The function returns a list variable, delimited by the list separation character,
for use with Split.

control:

allpeers = (SelectPartitionGroup(/var/cfengine/inputs/cfrun.hosts,#,random,4))

copy:

/data/file dest=/p2prepository/file server=$(allpeers)

SelectPartitionLeader(filename,comment,Policy,group size)
This function is for use in peer to peer monitoring applications. It allows
individual hosts to identify themselves as part of a group and select a leader.
This function reads a text file of hostnames or IP addresses, one host per line,
with blank lines and comments and partitions it into groups of a fixed size. It

Chapter 4: Cfagent reference 17

then returns picks a leader for the the group and returns its name as the value
of the function.

control:

leader = (SelectPartitionLeader(/var/cfengine/inputs/cfrun.hosts,#,random,4))

copy:

/data/file dest=/p2prepository/file server=$(leader)

Note that functions should have no spaces between the function name and the leading
parenthesis, but should themselves be surrounded by white space. For example:

control:

variable2 = (RandomInt(0,23))

variable3 = (ExecResult(/bin/ls -a /opt))

myexcerpt = (ReadFile("/etc/services",220))

listvar = (ReadArray(/tmp/array,textkey,",","#",100))

In the latter case, the file could look like this:
host$ more /tmp/array

one,String to tbe read

two,Nothing string

three,Everything comes in threes

and results in the definition of (verify with cfagent -p -d3):
OBJECT: main

960 : listvar[one]=String to tbe read

259 : listvar[two]=Nothing string

224 : listvar[three]=Everything comes in threes

4.2.2 Special variables

Variables are referred to in either of two different ways, depending on your taste. You can
use the forms $(variable) or ${variable}. The variable in braces or parentheses can be
the name of any user defined macro, environment variable or one of the following special
built-in variables.

AllClasses
A long string in the form ‘CFALLCLASSES=class1:class2...’. This variable is
a summary of all the defined classes at any given time. It is always kept up to
date so that scripts can make use of cfengine’s class data.

arch The current detailed architecture string—an amalgamation of the information
from uname. A constant.

binserver
The default server for binary data. A constant.

18 GNU cfengine

ChecksumDatabase
If set to the name of a file, cfagent will use this to store checksums of important
files, and give ‘tripwire functionality’, See Section 4.9.8 [ChecksumDatabase],
page 39.

ChecksumUpdates
If set to ‘on’, security information is automatically updated, See Section 4.9.11
[ChecksumUpdates], page 39.

class The currently defined system hard-class (e.g. sun4, hpux). A constant.

date The current date string. Note that if you use this in a shell command it might
be interpreted as a list variable, since it contains the default separator ‘:’.

domain The currently defined domain.

EmailFrom
The email address from whom email from cfexecd should appear to originate.

EmailMaxLines
Most lines of output to email from a single cfexecd-induced run of cfagent. If
undefined, defaults to 100. If set to 0, no email is sent by cfexecd. If set to inf,
no maximum is enforced.

EmailTo The E-mail address to whom mail should be sent (overrides sysadm variable).

faculty The faculty or site as defined in control (see site).

fqhost The fully qualified hostname of the system.

host The hostname of the machine running the program.

ipaddress
The numerical form of the Internet address of the host currently running
cfengine found by a reverse lookup in DNS.

ipv4[interface]
The IPv4 address of the named interface as determined from a probe of the
interfaces. This variable belongs in the global context and refers to as in the
following examples:

${global.ipv4[hme0]}

${global.ipv4[eth0]}

MaxCfengines
The maximum number of cfengines which should be allowed to run concurrently
on the system. This can prevent excessive load due to unintentional spamming
in situations where several cfengines are started independently. The default
value is unlimited.

ostype A short for of $(arch).

OutputPrefix
This quoted string can be used to change the default ‘cfengine:’ prefix on output
lines to something else. You might wish to shorten the string, or have a different

Chapter 4: Cfagent reference 19

prefix for different hosts. The value in this variable is appended with the name
of the host. The default is equivalent to,

OutputPrefix = ("cfengine:$(host):")

RepChar The character value of the string used by the file repository in constructing
unique filenames from path names. This is the character which replaces ‘/’.

site This variable is identical to $(faculty) and may be used interchangeably.

smtpserver
The name of the host to which mail output should be sent.

split The character on which list variables are split.

sysadm The name or mail address of the system administrator.

timezone The current timezone as defined in control.

UnderscoreClasses
If this is set to ‘on’ cfengine uses hard classes which begin with an underscore
to avoid name collisions. See also the section Runtime Options.

version The current version string as defined in the code.

year The current year.

These variables are kept special because they play a special role in setting up a system
configuration. You are encouraged to use them to define fully generalized rules in your
programs. Variables can be used to advantage in defining filenames, directory names and
in passing arguments to shell commands. The judicious use of variables can reduce many
definitions to a single one if you plan carefully.� �

NOTE: the above control variables are not case sensitive, unlike user macros, so you
should not define your own macros with these names.
 	

The following variables are also reserved and may be used to produce troublesome special
characters in strings.

cr Expands to the carriage return character.

colon Expands to the colon ‘:’ character.

dblquote Expands to a double quote "

dollar Expands to ‘$’.

lf Expands to a line-feed character (Unix end of line).

n Expands to a newline character.

quote Expands to a single quote ’.

spc Expands simply to a single space. This can be used to place spaces in filenames
etc.

tab Expands to a single tab character.

20 GNU cfengine

4.2.3 Iteration over lists

Variables can be used as iterators in some situations. Iteration over lists is currently rather
limited in cfengine and is something to be improved on in a future version. When a variable
is used as an iterator, a character is chosen to represent a list separator, as in the shell ‘IFS’
variable. The default separator is the colon ‘:’ character:

control:

listvar = (one:two:three:four)

The action that contains a variable to be interpreted as a list appears as separate actions,
one for each case:

shellcommand:

"/bin/echo $(listvar)"

is equivalent to
shellcommand:

"/bin/echo one"

"/bin/echo two"

"/bin/echo three"

"/bin/echo four"

If multiple iterators are used, these are handled as nested loops:
cfengine::/bin/echo one 1: one 1

cfengine::/bin/echo one 2: one 2

cfengine::/bin/echo one 3: one 3

cfengine::/bin/echo one 4: one 4

cfengine::/bin/echo two 1: two 1

cfengine::/bin/echo two 2: two 2

cfengine::/bin/echo two 3: two 3

cfengine::/bin/echo two 4: two 4

cfengine::/bin/echo three: three 1

cfengine::/bin/echo three: three 2

cfengine::/bin/echo three: three 3

cfengine::/bin/echo three: three 4

cfengine::/bin/echo four : four 1

cfengine::/bin/echo four : four 2

cfengine::/bin/echo four : four 3

cfengine::/bin/echo four : four 4

Where iterators are not allowed, the implied lists are treated as scalars:

alerts:

amnexus::

"do $(list1) $(list2)"

e.g.

cfengine:: do one:two:three:four 1:2:3:4

Iterative expansion is currently restricted to:
• In the directory field of the admit/deny server access rules,
• In the ‘from’ field of a copy action,

Chapter 4: Cfagent reference 21

• In the server field of the copy action,
• In the directory field of the disable action,
• In the directory field of the files action,
• In the ‘to’ field of a multiple link action,
• In the directory field of the required/disk action,
• In a resolve item.
• In the directory field of a tidy action,
• Names in the ignore action.

4.3 Cfengine classes

A cfengine action looks like this:

action-type:

compound-class::

declaration

A single class can be one of several things:
• The name of an operating system architecture e.g. ultrix, sun4, etc. This is referred

to as a hard class.
• The unqualified name of a particular host. If your system returns a fully qualified

domain name for your host, cfagent truncates it at the first dot.
• The name of a user-defined group of hosts.
• A day of the week (in the form Monday, Tuesday, Wednesday, ..).
• An hour of the day (in the form Hr00, Hr01 ... Hr23).
• Minutes in the hour (in the form Min00, Min17 ... Min45).
• A five minute interval in the hour (in the form Min00_05, Min05_10 ... Min55_00)
• A quart hour (in the form Q1, Q2, Q3, Q4)
• An abbreviated time with quarter hour specified (in the form Hr00_Q1, Hr23_Q4 etc.)
• A day of the month (in the form Day1 ... Day31).
• A month (in the form January, February, ... December).
• A year (in the form Yr1997, Yr2004).
• An arbitrary user-defined string.
• The IP address octets of any active interface (in the form ipv4_192_0_0_1,

ipv4_192_0_0, ipv4_192_0, ipv4_192).

A compound class is a sequence of simple classes connected by dots or ‘pipe’ symbols
(vertical bars). For example:

myclass.sun4.Monday::

sun4|ultrix|osf::

22 GNU cfengine

A compound class evaluates to ‘true’ if all of the individual classes are separately true,
thus in the above example the actions which follow compound_class:: are only carried
out if the host concerned is in myclass, is of type sun4 and the day is Monday! In the
second example, the host parsing the file must be either of type sun4 or ultrix or osf.
In other words, compound classes support two operators: AND and OR, written ‘.’ and
‘|’ respectively. From cfengine version 2.1.1, I bit the bullet and added ‘&’ as a synonym
for the AND operator. Cfengine doesn’t care how many of these operators you use (since
it skips over blank class names), so you could write either

solaris|irix::

or

solaris||irix::

depending on your taste. On the other hand, the order in which cfengine evaluates AND
and OR operations does matter, and the rule is that AND takes priority over OR, so that
‘.’ binds classes together tightly and all AND operations are evaluated before ORing the
final results together. This is the usual behaviour in programming languages. You can use
round parentheses in cfengine classes to override these preferences.

Cfengine allows you to define switch on and off dummy classes so that you can use them
to select certain subsets of action. In particular, note that by defining your own classes,
using them to make compound rules of this type, and then switching them on and off, you
can also switch on and off the corresponding actions in a controlled way. The command
line options -D and -N can be used for this purpose. See also addclasses in the Reference
manual.

A logical NOT operator has been added to allow you to exclude certain specific hosts in
a more flexible way. The logical NOT operator is (as in C and C++) ‘!’. For instance, the
following example would allow all hosts except for myhost:

action:

!myhost::

command

and similarly, so allow all hosts in a user-defined group mygroup, except for myhost, you
would write

action:

mygroup.!myhost::

command

which reads ‘mygroup AND NOT myhost’. The NOT operator can also be combined with
OR. For instance

class1|!class2

would select hosts which were either in class 1, or those which were not in class 2.

Chapter 4: Cfagent reference 23

Finally, there is a number of reserved classes. The following are hard classes for various
operating system architectures. They do not need to be defined because each host knows
what operating system it is running. Thus the appropriate one of these will always be
defined on each host. Similarly the day of the week is clearly not open to definition, unless
you are running cfengine from outer space. The reserved classes are:

ultrix, sun4, sun3, hpux, hpux10, aix, solaris, osf, irix4, irix, irix64

sco, freebsd, netbsd, openbsd, bsd4_3, newsos, solarisx86, aos,

nextstep, bsdos, linux, debian, cray, unix_sv, GnU, NT

If these classes are not sufficient to distinguish the hosts on your network, cfengine provides
more specific classes which contain the name and release of the operating system. To find
out what these look like for your systems you can run cfengine in ‘parse-only-verbose’ mode:

cfagent -p -v

and these will be displayed. For example, Solaris 2.4 systems generate the additional classes
sunos_5_4 and sunos_sun4m, sunos_sun4m_5_4.

Cfengine uses both the unqualified and fully host names as classes. Some sites and
operating systems use fully qualified names for their hosts. i.e. uname -n returns to full
domain qualified hostname. This spoils the class matching algorithms for cfengine, so
cfengine automatically truncates names which contain a dot ‘.’ at the first ‘.’ it encounters.
If your hostnames contain dots (which do not refer to a domain name, then cfengine will be
confused. The moral is: don’t have dots in your host names! NOTE: in order to ensure that
the fully qualified name of the host becomes a class you must define the domain variable.
The dots in this string will be replaced by underscores.

In summary, the operator ordering in cfengine classes is as follows:

‘()’ Parentheses override everything.

‘!’ The NOT operator binds tightest.

‘. &’ The AND operator binds more tightly than OR.

‘|’ OR is the weakest operator.

4.4 acl� �
acl:

class::

{ acl-alias

action

}
 	
Cfengine’s ACL feature is a common interface for managing filesystem access control lists

(ACLs). An access control list is an extended file permission. It allows you to open or close
a file to a named list of users (without having to create a group for those users); similarly, it

24 GNU cfengine

allows you to open or close a file for a list of groups. Several operating systems have access
control lists, but each typically has a different syntax and different user interface to this
facility, making it very awkward to use. This part of a cfengine configuration simplifies the
management of ACLs by providing a more convenient user interface for controlling them
and—as far as possible—a common syntax.

An ACL may, by its very nature, contain a lot of information. Normally you would
set ACLs in a files command, See Section 4.17 [files], page 84, or a copy command, See
Section 4.11 [copy], page 57. It would be too cumbersome to repeat all of the information
in every command in your configuration, so cfengine simplifies this by first associating an
alias together with a complex list of ACL information. This alias is then used to represent
the whole bundle of ACL entries in a files or copy command. The form of an ACL is
similar to the form of an editfiles command. It is a bundle of information concerning a
file’s permissions.

{ acl-alias

method:overwrite/append
fstype:posix/solaris/dfs/afs/hpux/nt

acl_type:user/group:permissions

acl_type:user/group:permissions

...

}

The name acl-alias can be any identifier containing alphanumeric characters and under-
scores. This is what you will use to refer to the ACL entries in practice. The method
entry tells cfengine how to interpret the entries: should a file’s ACLs be overwritten or only
adjusted? Since the filesystems from different developers all use different models for ACLs,
you must also tell cfengine what kind of filesystem the file resides on. Currently only Solaris
and DCE/DFS ACLs are implemented.

NOTE: if you set both file permissions and ACLs the file permissions override the ACLs.

4.4.1 Access control entries

An access control list is build of any number of individual access control entries (ACEs).
The ACEs has the following general syntax:

acl_type:user/group:permissions

The user or group is sometimes referred to as a key.

For an explanation of ACL types and their use, refer to your local manual page. However,
note that for each type of filesystem, there are certain entries which must exist in an ACL.
If you are creating a new ACL from scratch, you must specify these. For example, in Solaris
ACLs you must have entries for user, group and other. Under DFS you need what DFS
calls a user_obj, group_obj and an other_obj, and in some cases mask_obj. In cfengine
syntax these are called user:*:, other:*: and mask:*:, as described below. If you are
appending to an existing entry, you do not have to re-specify these unless you want to
change them.

Cfengine can overwrite (replace) or append to one or more ACL entries.

Chapter 4: Cfagent reference 25

overwrite
method:overwrite is the default. This sets the ACL according to the specified
entries which follow. The existing ACL will be overwritten completely.

append method:append adds or modifies one or more specified ACL entries. If an entry
already exists for the specified type and user/group, the specified permission
bits will be added to the old permissions. If there is no ACL entry for the given
type and user/group, a new entry will be appended.

If the new ACL exactly matches the existing ACL, the ACL is not replaced.
The individual bits in an ACE may be either added subtracted or set equal to a specified

mask. The ‘+’ symbol means add, the ‘-’ symbol subtract and ‘=’ means set equal to. Here
are some examples:

acltype:id/*:mask

user:mark:+rx,-w

user:ds:=r

user:jacobs:noaccess

user:forgiven:default

user:*:rw

group:*:r

other:*:r

The keyword noaccess means set all access bits to zero for that user, i.e. remove all
permissions. The keyword default means remove the named user from the access crontrol
list altogether, so that the default permissions apply. A star/asterisk in the centre field
indicates that the user or group ID is implicitly specified as of the owner of the file, or that
no ID is applicable at all (as is the case for ‘other’).

4.4.2 Solaris ACLs

Under Solaris, the ACL type can be one of the following:
user

group

mask

other

default_user

default_group

default_mask

default_other

A user or group can be specified to the user, group, default user and default group types.
Solaris ACL permissions are the normal UNIX permissions bits ‘rwx’, where:

r - Grants read privileges.

w - Grants write privileges.

x - Grants execute privileges.

4.4.3 DFS ACLs

In DCE, the ACL type can be one of the following:
other

26 GNU cfengine

mask

any

unauthenticated

user

group

foreign_other

foreign_user

foreign_group

The user, group, foreign_user and foreign_group types require that you specify a user
or group. The DCE documentation refers to types user_obj, group_obj and so on. In
the cfengine implementation, the ugly ‘_obj’ suffix has been dropped to make these more
in keeping with the POSIX names. user_obj::, is equivalent to user:*: is cfengine. The
star/asterisk implies that the ACL applies to the owner of the file object.

DFS permissions are comprised of the bits ‘crwxid’, where:

c - Grants control privileges, to modify an acl.

r - Grants read privileges.

w - Grants write privileges.

x - Grants execute privileges.

i - Grants insert privileges.

d - Grants delete privileges.

See the DCE/DFS documentation for more information about this.
It is not possible to set ACLs in foreign cells currently using cfengine, but you can still

have all of your ACL definitions in the same file. You must however arrange for the file to
be executed on the server for the cell concerned. Note also that you must perform a DCE
login (normally as user ‘cell_admin’) in order to set ACLs on files which are not owned by
the owner of the cfengine-process. This is because you must have a valid security ticket.

4.4.4 NT ACLs

NT ACEs are written as follows:
acl_type:user/group:permissions:accesstype

The actual change consists of the extra field containing the access type. A star/asterisk
in the field for user/group would normally imply that the ACL applies to the owner of the
file object. However this functionality is as of today not yet implemented.

In NT, the ACL type can be one of the following:
user

group

Both types require that you specify the name of a user or a group.
NT permissions are comprised of the bits ‘rwxdpo’, where:

r - Read privileges

w - Write privileges

x - Execute privileges

d - Delete privileges

p - Privileges to change the permissions on the file

o - Privileges to take ownership of the file

In addition to any combination of these bits, the word noaccess or default can be used
as explained in the previous section. NT comes with some standard, predefined permissions.
The standards are only a predefined combination of the different bits specified above and

Chapter 4: Cfagent reference 27

are provided with cfengine as well. You can use the standards by setting the permission to
read, change or all. The bit implementation of each standard is as on NT:

read - rx

change - rwxd

all - rwxdpo

where the bits follow the earlier definition. The keywords mentioned above can only be
used alone, and not in combination with ‘+’, ‘-’, ‘=’ and/or other permission bits.

NT defines several different access types, of which only two are used in connection with
the ACL type that is implemented in cfengine for NT. The access type can be one of the
following:

allowed

denied

Intuitively, allowed access grants the specified permissions to the user, whilst denied
denies the user the specified permissions. If no access type is specified, the default is
allowed. This enables cfengine’s behaviour as on UNIX systems without any changes to
the configuration file. If the permissions noaccess or default is used, the access type will
be irrelevant.

4.5 ACL Example

Here is an example of a configuration file for an NT ACL:
control:

actionsequence = (files)

domain = (iu.hioslo.no)

files:

$(HOME)/tt acl=acl_alias1 action=fixall

acl:

{ acl_alias1

method:overwrite

fstype:nt

user:gustafb:rwx:allowed

user:mark:all:allowed

user:toreo:read:allowed

user:torej:default:allowed

user:ds2:+rwx:allowed

group:dummy:all:denied

group:iu:read:allowed

group:root:all:allowed

group:guest:dpo:denied

}

4.5.1 ACL Example

Here is an example of a configuration file for one Solaris ACL and one DCE/DFS ACL:
control:

actionsequence = (files)

domain = (iu.hioslo.no)

28 GNU cfengine

files:

$(HOME)/tt acl=acl_alias1 action=fixall

/:/bigfile acl=acl_alias2 action=fixall

acl:

{ acl_alias1

method:overwrite

fstype:posix

user:*:rwx

user:mark:=rwx

user:sowille:=rx

user:toreo:=rx

user:torej:default

user:ds2:+rwx

group:*:rx

group:iu:r

group:root:x

mask:*:rx

other:*:rx

default_user:*:=rw

default_user:mark:+rwx

default_user:ds:=rwx

default_group::=r

default_group:iu:+r

default_mask::w

default_other::rwx

}

{ acl_alias2

method:overwrite

fstype:dfs

user:*:rwxcid

group:*:rxd

other:*:wxir

mask:*:rxw

user:/.../iu.hioslo.no/cell_admin:rc

group:/.../iu.hioslo.no/acct-admin:rwxcid

user:/.../iu.hioslo.no/root:rx

}

4.6 alerts

Alerts are normally just messages that are printed when classes become activated in order
to alert the system administrator to some condition that has arisen. Alerts can also be
special functions, like ShowState() that generate system output.

Alerts cannot belong to the class any, that would generate a message from every host.
In a huge network this could result in vast amounts of Email. This behaviour can be forced,
however, by creating an alias for the class ‘any’ that is defined on the affected hosts.

alerts:

Chapter 4: Cfagent reference 29

class::

quoted message ifelapsed=time

ShowState(parameter)

SysLog(priority,message)

SetState(name,ttl,policy)

UnSetState(name)

FriendStatus(hours)

For example:

alerts:

"Reminder: say hello every hour" ifelapsed=60

nfsd_in_high_dev2::

"High NFS server access rate 2dev at $(host) value $(value_nfsd_in) av $(average_nfsd_in) pm $(stddev_nfsd_in)"

ShowState(incoming.nfs)

ROOT PROCS

anomaly_hosts.RootProcs_high_dev2::

"RootProc anomaly high 2 dev on $(host) value $(value_rootprocs) av $(average_rootprocs) pm $(stddev_rootprocs)"

ShowState(procs)

The ShowState() function reports on state gathered by the cfenvd daemon.
ShowState(incoming.tcpsyn)

ShowState(outgoing.smtp)

ShowState(incoming.www)

ShowState(outgoing.www)

ShowState(procs)

ShowState(users)

To limit the frequency of alerts, you can set locking times:
ROOT PROCS

anomaly_hosts.RootProcs_high_dev2::

"RootProc anomaly high 2 dev on $(host) value $(value_rootprocs) av $(average_rootprocs) pm $(stddev_rootprocs)"

ShowState(procs) ifelapsed=10 expireafter=20

Alerts can also be channeled directly to syslog, to avoid extraneous console messages or
email.

SysLog(LOG_ERR,"Test syslog message")

One application for alerts is to pass signals from one cfengine to another by persistent,
shared memory. For example, suppose a short-lived anomaly event triggers a class that
relates to a security alert. The event class might be too short-lived to be followed up by
cfagent in full. One could thus set a long term class that would trigger up several follow-up
checks. A persistent class could also be used to exclude an operation for an interval of time.

30 GNU cfengine

Persistent class memory can be added through a system alert functions to give timer
behaviour. For example, consider setting a class that acts like a non-resettable timer. It is
defined for exactly 10 minutes before expiring.

SetState("preserved_class",10,Preserve)

Or to set a class that acts as a resettable timer. It is defined for 60 minutes unless the
SetState call is called again to extend its lifetime.

SetState(non_preserved_class,60,Reset)

Existing persistent classes can be deleted with:

UnsetState(myclass)

The FriendStatus function is available from version 2.1.4 and displays a message if
hosts that normally have a cfengine protocol connection with the current host have not
connected for more than than specified number of hours. If the number of hours is set to
zero, cfengine uses a machine-learned expectation value for the time and uses this to report.
The friend status of a host is thus the expectation that there is a problem with a remote
peer. Expected contact rates of more than the variable LastSeenExpireAfter are ignored
as spurious, See Section 4.9.35 [lastseenexpireafter], page 45.

4.7 binservers

The binservers declaration need only be used if you are using cfengine’s model for mount-
ing NFS filesystems. This declaration informs hosts of which other hosts on the network
possess filesystems containing software (binary files) which client hosts should mount. This
includes resources like programs in /usr/local and so on. A host may have several bi-
nary servers, since there may be several machines to which disks are physically attached.
In most cases, on a well organized network, there will be only one architecture server per
UNIX platform type, for instance a SunOS server, an ULTRIX server and so on.

Binary servers are defined as follows:

binservers:

physics.sun4:: sunserver sunserver2

physics.linux:: linuxserver

The meaning of this declaration is the following. All hosts of type sun4 which are members
of the group physics should mount any binaries declared in the mountables resource list
which belong to hosts sunserver or sunserver2. Similarly all linux machines should
mount binary filesystems in the mountables list from linuxserver.

Cfengine knows the difference between binaries and home directories in the mountables
list, because home directories match the pattern given by homepattern. See Section 4.9.30
[homepattern], page 43. See Section 4.20 [homeservers], page 97.

Note that every host is a binary server for itself, so that the first binary server (and that
with highest priority) is always the current host. This ensures that local filesystems are

Chapter 4: Cfagent reference 31

always used in preference to NFS mounted filesystems. This is only relevant in connection
with the variable $(binserver).

32 GNU cfengine

4.8 broadcast

This information is used to configure the network interface for each host.
Every local area network has a convention for determining which internet address is

used for broadcast requests. Normally this is an address of the form aaa.bbb.ccc.255 or
aaa.bbb.ccc.0. The difference between these two forms is whether all of the bits in the
last number are ones or zeroes respectively. You must find out which convention is used at
your establishment and tell cfengine using a declaration of the form:

broadcast:

any::

ones # or zeros, or zeroes

In most cases you can use the generic class any, since all of the hosts on the same subnet
have to use the same convention. If your configuration file encompasses several different
subnets with different conventions then you will need to use a more specific.

Cfengine computes the actual value of the broadcast address using the value specified
above and the netmask See Section 4.9.43 [netmask], page 47.

Chapter 4: Cfagent reference 33

4.9 control

The fundamental piece of any cfengine script or configuration file is the control section.
If you omit this part of a cfengine script, it will not do anything! The control section is
used to define certain variables, set default values and define the order in which the various
actions you have defined will be carried out. Because cfengine is a declarative or descriptive
language, the order in which actions appear in the file does not necessarily reflect the order
in which they are executed. The syntax of declarations here is:� �

control:

classes::

variable = (list or value function(args))
 	
The control section is a sequence of declarations which looks something like the following

example:

control:

site = (univ)

domain = (univ.edu)

sysadm = (admin@computing.univ.edu)

netmask = (255.255.252.0)

timezone = (EDT)

nfstype = (nfs)

childlibpath = (/usr/local:/mylibs)

sensiblesize = (1000)

sensiblecount = (2)

editfilesize = (4000)

actionsequence =

(

links.some

mountall

links.others

files

)

myvariable = (something)

mymacro = (somethingelse)

myrandom = (RandomInt(3,6))

myexcerpt = (ReadFile("/etc/services",220))

Parentheses are required when making a declaring information in cfengine. Note that a
limited number of built-in functions exists:
• ExecResult(command) Executes the named shell command and inserts the output into

the variable. Note that, when this is used in cfengine built-in list variables, any spaces
are interpreted as list separators. In other lists, normal rules for iteration apply.

• RandomInt(a,b) Is substituted for a random number between (a,b).

34 GNU cfengine

• ReadFile(filename,Max number of bytes) A maximum number of bytes is read from
the named file and placed in a variable.

For more functions, See Section 4.2.1 [Setting variables with functions], page 14.

The meaning of each of these lines is described below.

4.9.1 access

The access list is a list of users who are to be allowed to execute a cfengine program. If
the list does not exist then all users are allowed to run a program.

access = (user1 user2 ...)

The list may consist of either numerical user identifiers or valid usernames from the password
database. For example:

access = (mark aurora 22 456)

would restrict a script to users mark, aurora and user id 22 and 456.

4.9.2 actionsequence

The action sequence determines the order in which collective actions are carried out. Here
is an example containing the full list of possibilities:

actionsequence =

(

mountall # mount filesystems in fstab

mountinfo # scan mounted filesystems

checktimezone # check timezone

netconfig # check net interface config

resolve # check resolver setup

unmount # unmount any filesystems

packages # check for required packages

shellcommands # execute shell commands

editfiles # edit files

addmounts # add new filesystems to system

directories # make any directories

links # check and maintain links (single and child)

mailcheck # check mailserver

mountall # (again)

required # check required filesystems

tidy # tidy files

disable # disable files

files # check file permissions

copy # make a copy/image of a master file

processes # signal / check processes

module:name # execute a user-defined module

)

Here is a more complete description of the meaning of these keywords.

addmounts
causes cfengine to compute which NFS filesystems are missing from the current
host and add them. This includes editing the filesystem table, creating the
mount-directory, if required. This command relies on information provided
by mountinfo, so it should normally only be called after mountinfo. If the
filesystem already appears to be in the filesystem table, a warning is issued.

Chapter 4: Cfagent reference 35

checktimezone
runs a check on the timezone defined for the shell running cfengine.

directories
executes all the commands defined under the directories section of the pro-
gram. It builds new directories.

disable executes all the commands defined under the disable section of the program.

editfiles
executes all the commands defined under the editfiles section of the program.

files executes all the commands defined under the files section of the program.

links executes all the commands defined under the links section of the program.

mailcheck
tests for the presence of the NFS-mounted mail spooling directory on the current
host. The name of the mail spool directory is defined in the mailserver section
of the cfengine program. If the current host is the same as the mailserver (the
host which has the physical spool directory disk) nothing is done. Otherwise
the filesystem table is edited so as to include the mail directory.

module Normally cfengine’s ability to detect the systems condition is limited to what it
is able to determine while excuting predefined actions. Classes may be switched
on as a result of actions cfengine takes to correct a problem. To increase the
flexibility of cfengine, a mechanism has been introduced in version 1.5 which
allows you to include a module of your own making in order to define or undefine
a number of classes. The syntax

module:mytests

"module:mytests arg1 arg2 .."

declares a user defined module which can potentially set the classes class1 etc.
Classes returned by the module must be declared so that cfengine knows to
pay attention to rules which use these classes when parsing; this is done using
AddInstallable. If arguments are passed to the module, the whole string
must be quoted like a shellcommand. See 〈undefined〉 [Writing plugin modules],
page 〈undefined〉. Whether or not these classes become set or not depends on
the behaviour of your module. The classes continue to apply for all actions
which occur after the module’s execution. The module must be owned by
the user executing cfengine or root (for security reasons), it must be named
‘module:module-name ’ and must lie in a special directory, See Section 4.9.41
[moduledirectory], page 47.

mountall mounts all filesystems defined in the hosts filesystem table. This causes new
NFS filesystems added by addmounts and mailcheck to be actually mounted.
This should probably be called both before mountinfo and after addmounts etc.
A short timeout is placed on this operation to avoid hanging RPC connections
when parsing NFS mounted file systems.

mountinfo
builds internal information about which filesystems are presently mounted on
the current host. Cfengine assumes that required-filesystems which are not

36 GNU cfengine

found need to be mounted. A short timeout is placed on this operation to
avoid hanging RPC connections when parsing NFS mounted file systems. If
this times out, no further mount operations are considered reliable and are
summarily cancelled.

netconfig
checks the netmask, hostname, IP address and broadcast address for the current
host. The correct values for the netmask and broadcast address are set if there
is an error. The defaultroute is matched against the static routing table and
added if no default route exists. This does not apply to DHCP clients, which
set a default route automatically.

required executes all the commands defined under the required section of the program.
It checks for the absence of important NFS resources.

resolve checks and corrects the DNS domain name and the order of nameservers in the
file ‘/etc/resolv.conf’.

packages executes commands defined under the packages section of the program. This
will query the system’s package database for the specified packages, at the spec-
ified versions, set classes based on whether or not those packages exist, and op-
tionally install those packages using a pre-defined package manager command.

shellcommands
executes all the commands defined under the shellcommands section of the
program.

tidy executes all the commands defined under the tidy section of the program.

unmount executes all the commands defined under the unmount section of the program.
The filesystem table is edited so as to remove the unwanted filesystems and the
unmount operation is executed.

processes
executes commands defined under the processes section of the program.

Under normal circumstances this coarse ordering is enough to suit most purposes. In
some cases you might want to, say, only perform half the link operations before mounting
filesystems and then, say, perform the remainder. You can do this (and similar things)
by using the idea of defining and undefining classes. See 〈undefined〉 [Defining classes],
page 〈undefined〉.

The syntax

actionsequence =

(

links.firstpass.include

...

links.secondpass

)

means that cfengine first executes links with the classes firstpass and include defined.
Later it executes links with secondpass defined. You can use this method of adding classes
to distinguish more finely the flow of control in programs.

Chapter 4: Cfagent reference 37

A note about style: if you define and undefine lots of classes to do what you want to
do, you might stop and ask yourself if your groups are defined as well as they should be.
See Section 4.19 [groups], page 95. Programming in cfengine is about doing a lot for only
a little writing. If you find yourself writing a lot, you are probably not going about things
in the right way.

4.9.3 AddClasses
AddClasses = (list of identifiers)

The AddClasses directive is used to define a list of class attributes for the current host.
Normally only the hard classes defined by the system are ‘true’ for a given host. It is
convenient though to be able to define classes of your own to label certain actions, mainly
so that they can later be excluded so as to cut short or filter out certain actions. This can
be done in two ways. See Section 4.9.2 [actionsequence], page 34.

To define a list of classes for the current session, you write:
AddClasses = (exclude shortversion)

This is equivalent to (though more permanent than) defining classes on the command line
with the -D option. You can now use these to qualify actions. For example

any.exclude::

...

Under normal circumstances exclude is always true — because you have defined it to
be so, but you can undefine it in two ways so as to prevent the action from being carried
out. One way is to undefine a class on the command line when you invoke cfengine:� �

host# cfengine -N exclude
 	
or � �

host# cfengine -N exclude.shortversion

host# cfengine -N a.b.c.d
 	
These commands run cfengine with the named classes undefined. That means that actions
labelled with these classes are excluded during that run.

Another way to restrict classes is to add a list of classes to be undefined in the action-
sequence. See next section.

4.9.4 AddInstallable
AddInstallable = (list of identifiers)

Some actions in your cfengine program will be labelled by classes which only become
defined at run time using a define= option. Cfengine is not always able to see these classes
until it meets them and tries to save space by only loading actions for classes which is
believes will become defined at some point in the program. This can lead to some actions
being missed if the action is parsed before the place where the class gets switched on, since
cfengine is a one-pass interpreter,. To help cfengine determine classes which might become
defined during a run, you can declare them in this list. It does no harm to declare classes

38 GNU cfengine

here anyway. Here is an example where you need to declare a class because of the ordering
of the actions.

control:

AddInstallable = (myclass)

files:

myclass::

/tmp/test mode=644 action=fixall

copy:

/tmp/foo dest=/tmp/test define=myclass

If we remove the declaration, then when cfengine meets the files command, it skips it because
it knows nothing about the class ‘myclass’—when the copy command follows, it is too late.
Remember that imported files are always parsed after the main program so definitions made
in imported files always come later than things in the main program.

4.9.5 AllowRedefinitionOf

Normally cfagent warns about redefinitions of variables during parsing. This is presumed
to be a mistake. To avoid this behaviour, add the name of the variable to this list, and the
warning disappears.

control:

actionsequence = (copy)

AllowRedefinitionOf = (cfrep)

cfrep = (bla)

cfrep = (blo)

4.9.6 AutoDefine

control:

hup_syslogd::

autodefine = (/etc/syslog.conf)

Referring to the class that prefixes it, autodefine will define the class if the names file is
copied in any statement. This helps to avoid having to write a large number of file-specific
copy: lines with define=class configured.

4.9.7 BinaryPaddingChar

Chapter 4: Cfagent reference 39

BinaryPaddingChar = (\0)

This specifies the type of character used to pad strings of unequal length in editfiles
during binary editing. The default value is the space character, since this is normally used
to edit filenames or text messages within program code.

4.9.8 ChecksumDatabase

ChecksumDatabase = (/var/cfengine/cfdb)

If this filename is defined, cfengine will use it to store message digests (i.e. cryptographic
checksums) of files for security purposes, See Section 4.17 [files], page 84, checksum=.

4.9.9 BindToInterface

If this is set to a specific IP address of an IP configured interface, cfagent will use that
address for outgoing connections. On Multi-homed hosts this allows one to restrict the
traffic to a known interface. An interface must be configured with an IP address in order
to be bound.

This feature is not available for old operating systems.

4.9.10 ChecksumPurge

ChecksumPurge = (on)

This variable defaults to ‘off’. If set to true, cfagent will look at all of the registered files
in the database and check whether thet still exist. If the file no longer exists, it is removed
from the database and a warning is issued.

To purge files now and then, but at no particular time, one could do something like this:

strategies:

{ purging

NowAndThen: 1

ElseWhen: 49

}

control:

NowAndThen::

ChecksumPurge = (on)

4.9.11 ChecksumUpdates

ChecksumUpdates = (on)

This variable defaults to ‘off’. If set to true, cfagent will automatically update the
checksum of a file, if it changes on the disk. This means that a security warning will

40 GNU cfengine

be issued only once about files which have changed, and the changed version will be re-
registered as the correct version. This option could be switched on after a system upgrade,
for instance, in order to update the database, and then switched to ‘off’ again to reduce the
risk of missing a security alert. Alternatively, if you are confident that the first message is
sufficient, it can be left as ‘on’ so that only one message is given.

4.9.12 ChildLibPath

Sets a value for LD LIBRARY PATH in child processes:

childlibpath = (/usr/local/lib:/local/mysql/lib)

Note that the variables LD LIBRARY PATH is special. This library path is needed
to run processes as children of cfengine. Often, if the agent is started from cron (which
is started by init), there is no suitable library path set, and shellcommands will fail with
strange errors about not being able to load shared objects. Setting a library path here is a
useful way of correcting this problem.

4.9.13 CopyLinks

This list is used to define a global list of names or patterns which are to be copied rather
than linked symbolically. For example

CopyLinks = (*.config)

The same facility can be specified for each individual link operation using the copy
option See Section 4.24 [links], page 101. Copying is performed using a file age comparison.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

CopyLinks = (pattern)

would define a pattern which was only valid when class is defined.

4.9.14 DefaultCopyType

This parameter determines the default form of copying for all copy operations parsed after
this variable. The legal values are ctime (intial default), mtime, checksum and binary. e.g.

DefaultCopyType = (mtime)

4.9.15 DefaultPkgMgr

Sets the default value of the pkgmgr attribute for packages items.

DefaultPkgMgr = (rpm)

By default, this variable is not set, meaning there will be no package manager selected,
and each item in the packages section must specify its own package manager, or it will
not be checked. For information on the values of this variable, See Section 4.30 [packages],
page 121.

Chapter 4: Cfagent reference 41

4.9.16 DeleteNonUserFiles

If this parameter is set to true, cfengine will delete files which do not have a name belonging
to a known user id.

DeleteNonUserFiles = (true)

SpoolDirectories = (/var/spool/cron/crontabs)

This is an generalization of DeleteNonUserMail and makes it redundant. it is formally
executed as a part of the “tidy” action.

4.9.17 DeleteNonOwnerFiles

If this parameter is set to true, cfengine will delete files on mailservers whose names do not
correspond to a known user name, but might be owned by a known user.

DeleteNonOwnerFiles = (true)

SpoolDirectories = (/var/spool/cron/crontabs)

This is an generalization of DeleteNonOwnerMail and makes it redundant.

4.9.18 DeleteNonUserMail

If this parameter is set to true, cfengine will delete mail files on mailservers which do not
have a name belonging to a known user id. This does not include lock files.

4.9.19 DeleteNonOwnerMail

If this parameter is set to true, cfengine will delete files on mailservers whose names do not
correspond to a known user name, but might be owned by a known user.

4.9.20 domain
domain = (domain name)

This variable defines the domainname for your site. You must define it here, because
your system might not know its domainname when you run cfengine for the first time. The
domainname can be used as a cfengine variable subsequently by referring to $(domain). The
domainname variable is used by the action resolve. The domain is also used implicitly
by other matching routines. You should define the domain as early as possible in your
configuration file so as to avoid problems, especially if you have the strange practice of
naming hosts with their fully qualified host names since groups which use fully qualified
names can fail to be defined if cfengine is not able to figure out the domain name.

4.9.21 DPKGInstallCommand

Sets the command used to install packages that need to be installed under the DPKG
package manager.

DPKGInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the "’s around the string, and the %s is
replaced with the list of packages to be installed, each separated by a ’ ’ (space).

4.9.22 DryRun

42 GNU cfengine

DryRun = (on/off)

This variable has the same effect as the command line options --dry-run or -n. It tells
cfengine to only report what it should do without actually doing it.

classes::

DryRun = (on)

4.9.23 editbinaryfilesize
EditBinaryFileSize = (size)

Cfengine will refuse to edit a file which is larger than the value of editbinaryfilesize
in bytes. This is to prevent possible accidents from occurring. The default value for this
variable is 10000000 bytes. If you don’t like this feature, simply set the value to be a very
large number or to zero. If the value is zero, cfengine will ignore it.

4.9.24 editfilesize
EditfileSize = (size)

This variable is used by cfengine every time it becomes necessary to edit a file. Since file
editing applies only to text files, the files are probably going to be relatively small in most
cases. Asking to edit a very large (perhaps binary) file could therefore be the result of an
error.

A check is therefore made as a security feature. Cfengine will refuse to edit a file which is
larger than the value of editfilesize in bytes. This is to prevent possible accidents from
occurring. The default value for this variable is 10000 bytes. If you don’t like this feature,
simply set the value to be a very large number or to zero. If the value is zero, cfengine will
ignore it.

4.9.25 EmptyResolvConf
EmptyResolvConf = (true)

Normally cfengine does not tidy up old entries in the ‘/etc/resolv.conf’ file. This
option causes cfengine to remove all existing content from the file.

4.9.26 Exclamation

This variable defaults to “on”. If set to “off”, no exclamation marks (Br. pling, Am: shriek)
are printed during security alerts, e.g. for checksum violations.

Exclamation = (off)

4.9.27 ExcludeCopy

This list is used to define a global list of names or patterns which are to be excluded from
copy operations. For example

ExcludeCopy = (*~ *% core)

The same facility can be specified for each individual link operation using the exclude
option See Section 4.11 [copy], page 57.

Chapter 4: Cfagent reference 43

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

ExcludeCopy = (pattern)

would define a pattern which was only valid when class is defined.

4.9.28 ExcludeLink

This list is used to define a global list of names or patterns which are to be excluded from
linking operations. For example

ExcludeLink = (*~ *% core)

The same facility can be specified for each individual link operation using the exclude
option See Section 4.24 [links], page 101.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

ExcludeLink = (pattern)

would define a pattern which was only valid when class is defined.

4.9.29 ExpireAfter

If you change the value of this parameter, it should be one of the first things you do in your
configuration script.

This parameter controls the global value of the ExpireAfter parameter. See 〈undefined〉
[Spamming and security], page 〈undefined〉. This parameter controls the maximum time in
minutes which a cfengine action is allowed to live. After this time cfengine will try to kill
the cfengine which seems to have hung and attempt to restart the action.� �
ExpireAfter = (time-in-minutes)
 	

This parameter may also be set per action in the action sequence by appending a pseudo-
class called ExpireAftertime . For instance,

actionsequence = (copy.ExpireAfter15)

sets the expiry time parameter to 15 minutes for this copy command. This method should
be considered old and deprecated however. As of version 2.1.0, you can define the expiry
time on a per-command basis, as options of the form expireafter=10.

4.9.30 HomePattern
HomePattern = (list of patterns)

The homepattern variable is used by the cfengine model for mounting nfs filesystems.
See 〈undefined〉 [NFS resources], page 〈undefined〉. It is also used in the evaluation of the
pseudo variable home, See Section 4.17 [files], page 84, Section 4.36 [tidy], page 131.

44 GNU cfengine

homepattern is in fact a list and is used like a wildcard or pattern to determine which
filesystems in the list of mountables are home directories. See Section 4.28 [mountables],
page 115. This relies on your sticking to a rigid naming convention as described in the first
reference above.

For example, you might wish to mount (or locate directly if you are not using a separate
partition for home directories) your home directories under mountpattern in directories u1,
u2 and so on. In this case you would define homepattern to match these numbers:

homepattern = (u?)

Cfengine now regards any directory matching $(mountpattern)/u? as being a user login
directory.

Suppose you want to create mount home directories under $(mountpattern)/home and
make subdirectories for staff and students. Then you would be tempted to write:

HomePattern = (home/staff home/students)

Unfortunately this is not presently possible. (This is, in principle, a bug which should be
fixed in the future.) What you can do instead is to achieve the same this as follows:

MountPattern = (/$(site)/$(host) /$(site)/$(host)/home)

HomePattern = (staff students)

4.9.31 HostnameKeys

If this variable is set to true/on, it causes cfagent to lookup and store trusted public keys
according to their DNS fully qualified host name, instead of using the IP address. This can
be useful in environments where hosts do not have fixed IP addresses, but do have fixed
hostnames.

HostnameKeys = (on)

This method of storing keys is not recommended for sites with fixed IP addresses, since it
removes one security barrier from a potential attacker by potentially allowing DNS spoofing.

Note that there is a corresponding variable to be set in ‘cfrun.hosts’ for consistency.

4.9.32 IfElapsed

If you change the value of this parameter, it should be one of the first things you do in your
configuration script.

This parameter controls the global value of the IfElapsed parameter, See 〈undefined〉
[Spamming and security], page 〈undefined〉. This parameter controls the minimum time
which must have elapsed for an action in the action sequence before which it will be executed
again.� �
IfElapsed = (time-in-minutes)
 	

This parameter may also be set per action in the action sequence by appending a pseudo-
class called IfElapsedtime . For instance,

Chapter 4: Cfagent reference 45

ActionSequence = (copy.IfElapsed15)

sets the elapsed time parameter to 15 minutes for this copy command. This method should
be considered old and deprecated however. As of version 2.1.0, you can define the expiry
time on a per-command basis, as options of the form ifelapsed=15.

4.9.33 Inform

Inform = (on/off)

This variable switches on the output level whereby cfengine reports changes it makes
during a run. Normally only urgent messages or clear errors are printed. Setting Inform
to on makes cfengine report on all actions not explicitly cancelled with a ‘silent’ option. To
set this output level one writes:

classes::

Inform = (on)

4.9.34 InterfaceName

If you have an operating system which is installed on some non-standard hardware, you
might have to specifically set the name of the network interface. For example:

control:

nextstep.some::

InterfaceName = (en0)

nextstep.others::

InterfaceName = (ec0)

It is only necessary to set the interface name in this fashion if you have an operating system
which is running on special hardware. Most users will not need this. The choice set here
overrides the system defaults and the choices made in the ‘cfrc’ file, See Section 7.2 [cfrc
resource file], page 150.

4.9.35 LastSeenExpireAfter

This value (in days) sets the time after which unseen friend hosts are purged from the ‘last
seen’ database, as viewed by the FriendStatus function, See Section 4.6 [alerts], page 28.

LastSeenExpireAfter = (2)

4.9.36 FileExtensions

This list may be used to define a number of extensions which are regarded as being plain
files by the system. As part of the general security checking cfengine will warn about

46 GNU cfengine

any directories which have names using these extensions. They may be used to conceal
directories.

FileExtensions = (c o gif jpg html)

4.9.37 LastSeen

This option is true by default. If set to off or false it prevents cfengine and/or cfservd from
learning about last times hosts were observed connecting to one another. Some users with
broken resolvers (particularly in view of the change over to IPv6 compatible libraries) might
find this useful when processes appear to hang on connecting.

LastSeen = (off)

4.9.38 LinkCopies

This list is used to define a global list of names or patterns which are to be linked symboli-
cally rather than copied. For example

excludelinks = (*.gif *.jpg)

The same facility can be specified for each individual link operation using the symlink
option See Section 4.11 [copy], page 57.

Note that all entries defined under a specified class are valid only as long as that class
is defined. For instance

class::

LinkCopies = (pattern)

would define a pattern which was only valid when class is defined.

4.9.39 LogDirectory

This is now deprecated.

Specify an alternative directory for keeping cfengine’s log data. This defaults to
‘/var/run/cfengine’ or ‘/var/cfengine’.

LogDirectory = (/var/cfengine)

4.9.40 LogTidyHomeFiles

LogTidyHomeFiles = (off)

If set to “off”, no log is made of user files, in their home directories, of the files which
are tidied by cfengine.

Chapter 4: Cfagent reference 47

4.9.41 moduledirectory
moduledirectory = (directory for plugin modules)

This is the directory where cfengine will look for plug-in modules for the actionsequence,
See Section 4.9.2 [actionsequence], page 34. Plugin modules may be used to activate
classes using special algorithms. See 〈undefined〉 [Writing plugin modules], page 〈unde-
fined〉. This variable defaults to ‘/var/cfengine/modules’ for privileged users and to
‘$HOME)/.cfengine/modules’ for non-privileged users.

4.9.42 mountpattern
mountpattern = (mount-point)

The mountpattern list is used by the cfengine model for mounting nfs filesystems. See
〈undefined〉 [NFS resources], page 〈undefined〉. It is also used in the evaluation of the pseudo
variable home, See Section 4.17 [files], page 84, Section 4.36 [tidy], page 131.

It is used together with the value of homepattern to locate and identify what filesystems
are local to a given host and which are mounted over the network. For this list to make
sense you need to stick to a rigid convention for mounting your filesystems under a single
naming scheme as described in the section mentioned above. If you follow the recommended
naming scheme then you will want to set the value of mountpattern to

mountpattern = (/$(site)/$(host))

which implies that cfengine will look for local disk partitions under a unique directory given
by the name of the host and site. Any filesystems which are physically located on the
current host lie in this directory. All mounted filesystems should lie elsewhere. If you insist
on keeping mounted file systems in more than one location, you can make a list like this:

mountpattern = (/$(site)/users /$(site)/projects)

4.9.43 netmask
netmask = (aaa.bbb.ccc.ddd)

The netmask variable defines the partitioning of the subnet addresses on your network.
Its value is defined by your network administrator. On most systems it is likely to be
255.255.255.0. This is used to configure the network interface in netconfig. See Sec-
tion 4.9.2 [actionsequence], page 34.

Every host on the internet has its own unique address. The addresses are assigned
hierarchically. Each network gets a domain name and can attach something like 65,000
hosts to that network. Since this is usually too many to handle in one go, every such
network may be divided up into subnets. The administrator of the network can decide how
the division into subnets is made. The decision is a trade-off between having many subnets
with few hosts, or many hosts on few subnets. This choice is made by setting the value of
a variable called netmask. The netmask looks like an internet address. It takes the form:

aaa.bbb.ccc.mmm

The first two numbers ‘aaa.bbb’ are the address of the domain. The remainder ‘ccc.mmm’
specifies both the subnet and the hostname. The value of netmask tells all hosts on the
network: how many of the bits in the second half label different subnets and how many
label different hosts on each of the subnets?

48 GNU cfengine

The most common value for the netmask is ‘255.255.255.0’. It is most helpful to think
of the netmask in terms of bits. Each base-10 number between 0-255 represents 8 bits which
are either set or not set. Every bit which is set is a network address and every bit which
is zero is part of a host address. The first two parts of the address ‘255.255’ always takes
these values. If the third number is ‘255’, it means that the domain is divided up into 256
sub networks and then the remaining bits which are zero can be used to give 255 different
host addresses on each of the subnets.

If the value had been ‘255.255.255.254’, the network would be divided up into 215
subnets, since fifteen of the sixteen bits are one. The remaining bit leaves enough room for
two addresses 0 and 1. One of those is reserved for broadcasts to all hosts, the other can
be an actual host — there would only be room for one host per subnet. This is a stupid
example of course, the main point with the subnet mask is that it can be used to trade
subnets for hosts per subnet. A value of ‘255.255.254.0’ would allow 128 different subnets
with 2 ∗ 256− 1 = 511 hosts on each.

We needn’t be concerned with the details of the netmask here. Suffice it to say that its
value is determined for your entire domain by the network administrator and each host has
to be told what the value is.

Each host must also know what convention is used for the broadcast address. This is an
address which hosts can send to if they wish to send a message to every other host on their
subnet simultaneously. It is used a lot by services like NIS to ask if any hosts are willing
to perform a particular service. There are two main conventions for the broadcast address:
address zero (all host bits are zero) and the highest address on the subnet (all host bits are
ones). The convention can be different on every subnet and it is decided by the network
administrator. When you write a cfengine program you just specify the convention used on
your subnet and cfengine works out the value of the broadcast address from the netmask
and the host address See Section 4.8 [broadcast], page 32. Cfengine works out the value of
the broadcast address using the value of the netmask.

4.9.44 NonAlphaNumFiles

If enabled, this option causes cfengine to detect and disable files which have purely non-
alphanumeric filenames, i.e. files which might be accidental or deliberately concealed. The
files are then marked with a suffix .cf-nonalpha and are rendered visible.

NonAlphaNumFiles = (on)

These files can then be tidied by searching for the suffix. Note that alphanumeric means
ascii codes less than 32 and greater than 126.

4.9.45 nfstype
nfstype = (nfs-type)

This variable is included only for future expansion. If you do not define this variable,
its value defaults to “nfs”.

At present cfengine operates only with NFS (the network file system). When
cfengine looks for network file systems to mount, it adds lines in the filesystem table
(‘/etc/fstab’,‘/etc/checklist’ etc.) to try to mount filesystems of type “nfs”. In

Chapter 4: Cfagent reference 49

principle you might want to use a completely different system for mounting filesystems
over the network, in which case the ‘mount type’ would not be “nfs” but something else.

At the time of writing certain institutions are replacing NFS with AFS (the Andrew
filesystem) and DFS (from the distributed computing environment). The use of these
filesystems really excludes the need to use the mount protocol at all. In other words if you
are using AFS or DFS, you don’t need to use cfengine’s mounting commands at all.

4.9.46 RepChar
RepChar = (character)

The value of this variable determines the characters which is used by cfengine in creating
the unique filenames in the file repository. Normally, its value is set to ‘_’ and each ‘/’ in
the path name of the file is changed to ‘_’ and stored in the repository. If you prefer a
different character, define it here. Note that the character can be quoted with either single
or double quotes in order to encompass spaces etc.

4.9.47 Repository
Repository = (directory)

Defines a special directory where all backup and junk files are collected. Files are assigned
a unique filename which identifies the path from which they originate. This affects files
saved using disable, copy, links and editfiles See 〈undefined〉 [Disabling and the file
repository], page 〈undefined〉.

4.9.48 RPMcommand

The default value of the Red Hat Package manager command ‘/bin/rpm’ can be altered for
non-standard systems with this variable.

RPMcommand = (/usr/bin/rpm)

4.9.49 RPMInstallCommand

Sets the command used to install packages that need to be installed under the RPM package
manager.

RPMInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the "’s around the string, and the %s is
replaced with the list of packages to be installed, each separated by a ’ ’ (space).

4.9.50 Schedule
schedule = (Min00_05 Min30_35 time class)

When cfexecd is used in daemon mode, it defaults to running once an hour, on the
hour, i.e..

schedule = (Min00_05)

This can be extended to make the agent run more often. The time specifiers are cfengine
classes, and are written as intervals of time rather the precise times. Cfengine’s time
resolution is purposely limited to five minutes because the auto-correlation time of user
resources is generally greater than this. Thus, it is assumed that precision timing is not
required and the start time of cfengine, when scheduled in daemon mode, is not better than

50 GNU cfengine

a few minutes. The daemon does not require precision, but offers many other strategic
features for load balancing and security.

Other time classes can be used in the schedule list, but note that cfexecd will not run
the agent more than once every five minutes. This is treated as a fundamental granularity.

4.9.51 SecureInput
SecureInput = (on)

If this is set cfengine will not import files which are not owned by the uid running the
program, or which are writable by groups or others.

4.9.52 SensibleCount
SensibleCount = (count)

This variable is used by the action required. It defines for cfengine what you consider to
be the minimum number of files in a ‘required’ directory. If you declare a directory as being
required, cfengine will check to see if it exists. Then, if the directory contains fewer than
the value of sensiblecount files, a warning is issued. The default value for this variable is
2.

4.9.53 SensibleSize
SensibleSize = (size)

This variable is used by the action required. It defines for cfengine what you consider
to be the minimum size for a ‘required’ file. If you declare a file as being required, cfengine
will check to see if the file exists. Of course, the file may exist but be empty, so the size
of the file is also checked against this constant. If the file is smaller than the value of
sensiblesize a warning is issued. The default value for this variable is 1000 bytes.

4.9.54 ShowActions
ShowActions = (on)

This causes cfengine to produce detailed output of what action is being carried out as
part of the prefix information during output. This is intended only for third party tools
which collect and parse the cfengine output. It will be of little interest to humans.

4.9.55 SingleCopy

singlecopy = (on)

If singlecopy is defined the behavior of copy: is modified so that a file will only be
copied once, helping to achieve hierarchical or “most specific” file copy overrides, provided
that the most specific file occurs first. With the following file structure on a host running
cfservd:

/dist/hosts/loghost1.example.com/etc/syslog.conf /dist/solaris/etc/syslog.conf
/dist/all/etc/syslog.conf

The configuration:
control:

singlecopy = (on)

Chapter 4: Cfagent reference 51

copy:

/dist/${fqhost} dest=/ inform=true syslog=true r=inf server=disthost

/dist/${ostype} dest=/ inform=true syslog=true r=inf server=disthost

/dist/all dest=/ inform=true syslog=true r=inf server=disthost

Would result in:

/dist/hosts/loghost1.example.com/etc/syslog.conf being copied to loghost1.example.com

/dist/solaris/etc/syslog.conf being copied to Solaris systems

/dist/all/etc/syslog.conf being copied to all other systems

CAUTION: this feature is necessarily memory intensive.

4.9.56 site/faculty
site = (sitename)
faculty = (facultyname)

This variable defines a convenient name for your site configuration. It is useful for
making generic rules later on, because it means for instance that you can define the name
of a directory to be

/$(site)/$(host)/local

without having to redefine the rule for a specific site. This is a handy trick for making
generic rules in your files which can be imported into a configuration for any site.

faculty is a synonym for site. The two names may be used interchangeably.

4.9.57 SkipIdentify
SkipIdentify = (true)

This is the client side directive corresponding to the server directive SkipVerify. It tells
cfengine not to assume that the client is registered in the Domain Name Service (DNS).
Sometimes the assumption of DNS registration can break connectivity between hosts, par-
ticularly if firewalls or Network Address Translation is in use.

4.9.58 smtpserver
smtpserver = (mailhost)

This variable specified the destination for Email sent by cfexecd.

4.9.59 SplayTime
SplayTime = (time-in-minutes)

This variable is used to set the maximum time over which cfengine will share its load on
a server, See 〈undefined〉 [Splaying host times], page 〈undefined〉.

4.9.60 Split
Split = (character)

The value of this variable is used to define the list separator in variables which are
expected to be treated as lists. The default value of this variable is the colon ‘:’. Cfengine
treats variables containing this character as lists to be broken up and iterated over, See
Section 4.2.3 [Iteration over lists], page 20.

52 GNU cfengine

This typically allows communication with PATH-like environment variables in the shell.

4.9.61 SpoolDirectories

A list of additional spool directories for cfengine to police. In these directories, filenames
should correspond to existing users of the system. When users lost their accounts, this list
plus the mail spool directory will be checked for files owned by deprecated users. See also:
DeleteNonOwnerFiles, DeleteNonUserFiles.

SpoolDirectories = (/var/spool/cron/crontabs /var/spool/cron/atjobs)

4.9.62 SUNInstallCommand

Sets the command used to install packages that need to be installed under the SUN package
manager.

SUNInstallCommand = ("/usr/bin/pkgmgr %s")

By default, this variable is not set, meaning that any packages with action=install will
NOT be installed if installation is required. Note the "’s around the string, and the %s is
replaced with the list of packages to be installed, each separated by a ’ ’ (space).

4.9.63 suspiciousnames
SuspiciousNames = (.mo lrk3)

Filenames in this list are treated as suspicious and generate a warning as cfengine scans
directories. This might be used to detect hacked systems or concealed programs. Checks
are only made in directories which cfengine scans in connection with a command such as
files, tidy or copy.

4.9.64 sysadm
sysadm = (mail address)

The mail address of your system administrator should be placed here. This is used in
two instances. If cfengine is invoked with the option -a, then it simply prints out this value.
This is a handy feature for making scripts.

The administrators mail address is also written into the personal log files which cfengine
creates for each user after tidying files, so you should make this an address which users can
mail if they have troubles.

4.9.65 Syslog

Syslog = (on/off)

This variable activates syslog logging of cfengine output at the ‘inform’ level.
To set this output level one writes:

classes::

Syslog = (on)

Chapter 4: Cfagent reference 53

4.9.66 SyslogFacility

SyslogFacility = (facility)

This variable alters the syslog facility level. e.g.

SyslogFacility = (LOG_LOCAL1)

Valid arguments are
LOG_USER

LOG_DAEMON

LOG_LOCAL0

LOG_LOCAL1

LOG_LOCAL2

LOG_LOCAL3

LOG_LOCAL4

4.9.67 timezone
timezone = (3-character timezone)

The timezone variable is a list of character strings which define your local timezone.
Normally you will only need a single timezone, but sometimes there are several aliases
for a given timezone e.g. MET and CET are synonymous. Currently only the first three
characters of this string are checked against the timezone which cfengine manages to glean
from the system. If a mismatch is detected a warning message is printed. cfengine does
not attempt to configure the timezone. This feature works only as a reminder, since the
timezone should really be set once and for all at the time the system is installed. On some
systems you can set the timezone by editing a file, a procedure which you can automate
with cfengine See Section 4.16 [editfiles], page 72.

The value of the timezone can be accessed by variable substitution in the usual way. It
expands to the first item in your list.

shellcommands:

"echo ${timezone} | mail ${sysadm}"

4.9.68 TimeOut

TimeOut = (10)

The default timeout for network connections is 10 seconds. This is too short on some
routed networks. It is not permitted to set this variable smaller than 3 seconds or larger
than 60 seconds.

4.9.69 Verbose

Verbose = (on/off)

54 GNU cfengine

This variable switches on the output level whereby cfengine reports everything it does
during a run in great detail. Normally only urgent messages or clear errors are printed, See
Section 4.9.33 [Inform], page 45. This option is almost equivalent to using the --verbose

of -v command-line options. The only difference is that system environment reporting
information, which is printed prior to parsing, is not shown. To set this output level on
selected hosts one writes:

classes::

Verbose = (on)

For related more limited output, See Section 4.9.33 [Inform], page 45.

4.9.70 Warnings

Warnings = (on/off)

This variable switches on the parser-output level whereby cfengine reports non-fatal
warnings. This is equivalent to setting the command line switch --no-warn, or -w. To set
this output level on selected hosts one writes:

classes::

Warnings = (on)

4.9.71 WarnNonUserFiles

If this parameter is set to true, cfengine will warn about files in spool directories which do
not have a name belonging to a known user id.

See also DeleteNonUserFiles.

4.9.72 WarnNonOwnerFiles

If this parameter is set to true, cfengine will warn about files on mailservers whose names
do not correspond to a known user name, but might be owned by a known user.

SpoolDirectories = (/var/spool/cron/crontabs)

WarnNonOwnerFiles = (true)

See also DeleteNonOwnerFiles. This generalizes and succeeds DeleteNonOwnerMail.

4.9.73 WarnNonUserMail

If this parameter is set to true, cfengine will warn about mail files on mailservers which do
not have a name belonging to a known user id. This does not include lock files.

Chapter 4: Cfagent reference 55

4.9.74 WarnNonOwnerMail

If this parameter is set to true, cfengine will warn about files on mailservers whose names
do not correspond to a known user name, but might be owned by a known user.

56 GNU cfengine

4.10 classes

The classes keyword is an alias for groups as of version 1.4.0 of cfengine.

Chapter 4: Cfagent reference 57

4.11 copy

Cfengine copies files between locally mounted filesystems and via the network from regis-
tered servers. The copy algorithm avoids race-conditions which can occur due to network
and system latencies by copying first to a file called ‘file.cfnew’ on the local filesystem,
and then renaming this quickly into place. The aim of this roundabout procedure is to
avoid situations where the direct rewriting of a file is interrupted midway, leaving a par-
tially written file to be read by other processes. Cfengine attempts to preserve hard links
to non-directory file-objects, but see the caution below.

Caution should be exercised in copying files which change rapidly in size. This can lead
to file corruption, if the size changes during copying. Cfengine attempts to prevent this
during remote copies.

The syntax summary is:

58 GNU cfengine

� �
copy:

class::

master-file

dest=destination-file

mode=mode

owner=owner

group=group

action=warn/silent/fix

backup=true/false/timestamp
repository=backup directory

stealth=true/on/false/off
timestamps=preserve/keep
symlink=pattern

include=pattern

exclude=pattern

ignore=pattern

filter=filteralias

xdev=true/on/false/off

recurse=number/inf/0

type=ctime/mtime/checksum/sum/byte/binary/any
linktype=absolute/symbolic/relative/hard/none/copy
typecheck=true/on/false/off
define=class-list(,:.)

elsedefine=class-list(,:.)

force=true/on/false/off
forcedirs=true/on/false/off
forceipv4=true/on/false/off
size=size limits

server=server-host

failover=classes

trustkey=true/false
secure=[deprecated]

encrypt=true/false
verify=true/false
oldserver=true/false

purge=true/ false

syslog=true/on/false/off

inform=true/on/false/off

findertype=MacOSX finder type
 	
dest The destination file is the only obligatory item. This must be the name of an ob-

ject which matches the type of the master object i.e. if the master is a plain file,
the destination must also be the explicit name of a plain file. An implicit ‘copy
file to directory’ syntax is not allowed. Symbolic links are copied as symbolic
links, plain files are copied as plain files and special files are copied as special
files. The recurse option is required to copy the contents of subdirectories.

Chapter 4: Cfagent reference 59

If the destination file name is of the form ‘filename/..namedfork/rsrc’, then
it is assumed that you are copying the resource fork of a file to an HFS+ file
system on OS X Jaguar. In the absence of the destination file being in this
form (just dest=filename), cfengine will assume that you are working with the
data fork of the file.

For a resource fork copy to properly work, the data fork must have already been
copied. Ie the OS will not allow you to copy the resource fork for a file that
does not exist. And, copying a data fork after the resource fork will overwrite
the resource fork. So, order is important. Copy the data fork, first. Then, copy
the resource fork.

To split the data and resource forks of a file into two parts, open up a terminal.
The following commands will copy MyFile ’s data and resource forks into two
separate files which can then be recombined by cfengine:

cp MyFile MyFile-datafork

cp MyFile/..namedfork/rsrc MyFile-rsrcfork

mode, owner, group
The file mode, owner and group of the images are specified as in the files
function See Section 4.17 [files], page 84.

action The action may take the values warn, silent or fix. The default action is fix,
i.e. copy files. If warn is specified, only a warning is issued about files which
require updating. If silent is given, then cfengine will copy the files but not
report the fact.

force If set to ‘true’, this option causes cfengine to copy files regardless of whether it
is up to date.

forceipv4
If you are working on an ipv6 enabled pair of hosts, cfengine will normally select
ipv6 for communication between them. If you wish to force the use of ipv4 for
some reason, set this option to true.

forcedirs
If set to ‘true’, this option causes files or links which block the creation of
directories, during recursive copying, to be moved aside forcably. A single
non-supressable warning is given when this occurs; the file is moved to
filename‘.cf-moved’.

backup If the backup option is set to “false”, cfengine will not make a backup copy of
the file before copying. The default value is “true”. If the option “timestamp”
is chosen, a unique timestamp will be appended to the saved filename.

repository
This allows a local override of the Repository variable, on an item by item
basis. If set to “off” or “none” it cancels the value of a global repository.

Copy makes a literal image of the master file at the destination, checking
whether the master is newer than the image. If the image needs updating
it is copied. Existing files are saved by appending .cfsaved to the filename.

60 GNU cfengine

stealth If set to ‘on’ causes cfengine to preserve atime and mtime on source files during
local file copies. File times cannot be preserved on remote copies. This option
should normally only be used together with a checksum copy, since preserving
atime and mtime implies changing ctime which will force continual copying.
This is a weakness in the Unix file system. Ctime cannot be preserved. Before
version 1.5.0, there was a typo which made this option active on many file
copies.

timestamps
If this is set to ‘preserve’ or ‘keep’, the times of the source files are kept by the
destination files during copying. This is like the ‘p’ option of the tar command.

recurse Specifies the depth of recursion when copying whole file-trees recursively. The
value may be a number or the keyword inf. Cfengine crosses device bound-
aries or mounted filesystems when descending recursively through file trees. To
prevent this it is simplest to specify a maximum level of recursion.

symlink This option may be repeated a number of times to specify the names of files,
or wildcards which match files which are to be symbolically linked instead of
copied. A global list of patterns can also be defined in the control section of
the program See Section 4.9.38 [linkcopies], page 46.

ignore This works like the global ignore directive but here you may provide a private
list of ignorable directories and files. Unlike include, exclude this affects the
way cfengine parses directory trees.

include This option may be repeated a number of times to specify the names of files,
or wildcards which match files which are to be included in a copy operation.
Specifying one of these automatically excludes everything else except further
include patterns. A global list of patterns can also be defined in the control
section of the program.

If the purge option is used in copying, then the ignore option has the effect of
the excluding files from the purge, i.e. ignore means ‘keep’ the named files.

exclude This option may be repeated a number of times to specify the names of files, or
wildcards which match files which are to be excluded from a copy operation. A
global list of patterns can also be defined in the control section of the program
‘excludes’ override ‘includes’. See Section 4.9.28 [excludelinks], page 43.

xdev Prevents cfengine from descending into file systems that are not on the same
device as the root of the rescurion path.

type Normally cfengine uses the ctime date-stamps on files to determine whether a
file needs to be copied: a file is only copied if the master is newer than the copy
or if the copy doesn’t exist. If the type is set to ‘checksum’ or ‘sum’, then a
secure MD5 checksum is used to determine whether the source and destination
files are identical. If ‘byte’ or ‘binary’ is specified, a byte by byte comparison
is initiated. An ‘mtime’ comparison does not take into account changes of file
permissions, only modifications to the contents of the files.

Chapter 4: Cfagent reference 61

findertype
Sets the four letter file type code in an HFS+ file system on Mac OS X Jaguar.
For example, the four letter code APPL indicates the file is an Application (and
will be executed when double-clicked). The four letter code TEXT indicates
the file is a text file and will be opened by the default text editor.
If the file also has an extension (for example .txt), then if setting the finder
type code, you should make sure your finder type code does not conflict with
the file extension.
Files both without extensions and finder type codes are mostly useless to OS
X, so be sure to do one or the other!
Also note that finder type codes should not be applied to the resource forks of
files.

server If you want to copy a file remotely from a server, you specify the name of the
server here. This must be the name of a host which is running the cfservd
daemon, and you must make sure that you have defined the variable domain in
the control section of the ‘cfagent.conf’ file. If you don’t define a domain you
will probably receive an error of the form ‘cfengine: Hey! cannot stat file’. If
the server name is ‘localhost’, cfengine will perform a local copy, without using
a connection to cfservd.

failover If a file copy fails due to an error, the classes in this assignment will become
active, allowing failover rules to become active.

oldserver
If this is true, cfengine uses the old protocol specification for temporary com-
patibility with early version 2 alphas.

trustkey This option defaults to ’no’ or ’false’. If set to true, cfagent will accept a public
key from a server whose public key is presently unknown to the agent, on trust.
This option should be used to bootstrap public key transfer between hosts.
Once a public key has been accepted, it will not be replaced automatically.
Dated public keys must be removed by hand.

encrypt Has an effect only when used in conjuction with copy from a remote file server.
This causes cfengine to use encryption and one-time keys on transferred data.
(This requires RSA keys to be installed on both client and server hosts, and
provides strong authentication and encryption, using random session keys.)
The preferred algorithm is Blowfish, with a 128 bit key. Generally speaking the
only case in which this function makes sense is in transferring shadow password
files. Encrypting the transfer of system binaries makes little sense. Note: the
encryption keys required to get files from cfservd are those for the user under
which cfservd is running (normally root).

verify If verify is true, cfagent attempts to verify the integrity of a remote file transfer
before the new file is installed. This takes time, since an MD5 computation and
transaction must take place.

size With this option you can specify that a file is only to be copied if the source
file meets a size critereon. This could be used to avoid installing a corrupted

62 GNU cfengine

file (the copying of an empty password file, for instance). Sizes are in bytes by
default, but may also be quoted in kilobytes or megabytes using the notation:

numberbytes

numberkbytes

numbermbytes

Only the first characters of these strings are significant, so they may be written
however is convenient: e.g. 14kB, 14k, 14kilobytes etc. Examples are:

size=<400 # copy if file size is < 400 bytes

size=400 # copy if file size is equal to 400 bytes

size=>400 # copy if file size > 400 bytes

linktype This option determines the type of link used to make links. This only applies if
the file is linked rather than copied because it matches a pattern set by symlink.
The default type is a direct symbolic link. The values ‘relative’ or ‘absolute’
may be used, but hard links may not be created in place of copied files, since
hard links must normally reside on the same filesystem as their files, and it is
assumed that most links will be between filesystems. If this value is set to copy
or none, symbolic links will be replaced by actual copies of the files they point
to. Note that for directories, this option is ignored.

typecheck
Controls whether cfengine allows files of one type to overwrite files of another
type, i.e. switches on/off errors if source and existing destination files do not
match in type, e.g. if a file would overwrite a directory or link. The default is
on for safety reasons.

define This option is followed by a list of classes which are to be ‘switched on’ if and
only if the named file was copied. In multiple (recursive) copy operations the
classes become defined if any of the files in the file tree were copied. This
feature is useful for switching on other actions which are to be performed after
the installation of key files (e.g. package installation scripts etc).

purge If this option is set to true, cfengine will remove files in the destination directory
which are not also in the source directory. This allows exact images of filesys-
tems to be mantained. Note that if the copy command has includes or excludes
or ignored files, cfengine will purge only those files on the client machine which
are also on the server. Included files are not purged. This means that some files
(such as system specific work files) can be excluded from copies without them
being destroyed. Note that purging is disallowed if contant with a remote server
fails. This means that local files will not be destroyed by a denial of service at-
tack. You should not use this option to synchronize NFS mounted file systems.
If the NFS server goes down, cfengine cannot then tell the difference between
a valid empty directory and a missing NFS file system. If you use purge, use
a remote copy also. If we specify purge, then the following options will also
be set and cannot be altered: forcedirs=true, typecheck=false, since other
defaults could be very destructive.

Chapter 4: Cfagent reference 63

Example:

copy:

/local/etc/aliases dest=/etc/aliases m=644 o=root g=other

/local/backup-etc dest=/etc

solaris::

/local/etc/nsswitch.conf dest=/etc/nsswitch.conf

In the first example, a global aliases file is copied from the master site file
‘/local/etc/aliases’ to ‘/etc/aliases’, setting the owner and protection as specified.
The file gets installed if ‘/etc/aliases’ doesn’t exist and updated if ‘/local/etc/aliases’
is newer than ‘/etc/aliases’. In the second example, ‘backup-etc’ is a directory
containing master configuration files (for instance, ‘services’, ‘aliases’, ‘passwd’...).
Each of the files in ‘backup-etc’ is installed or updated under ‘/etc’. Finally, a global
‘nsswitch.conf’ file is kept up to date for Solaris systems.

The home directive can be used as a destination, in which case cfengine will copy files
to every user on the system. This is handy for distributing setup files and keeping them
updated:

copy:

/local/masterfiles/.cshrc dest=home/.cshrc mode=0600

You can force the copying of files, regardless of the date stamps by setting the option
force=true or force=on. The default is force=false or force=off.

4.11.1 Hard links in copying

Hard links are not like symbolic links, they are not merely pointers to other files, but
alternative names for the same file. The name of every file is a hard link, the first so to
speak. You can add additional names which really are the file, they are not just pointers. For
the technically minded, they are not separate inodes, they are additional directory references
to the same inode. When you perform a copy operation on multiple files, cfengine attempts
to preserve hard links but this is a difficult task.

Because a hard link just looks like an ordinary file (it cannot be distingiushed from the
original, the way a symbolic link can) there is a danger that any copy operation will copy
two hard links to the same file as two separate copies of the same file. The difference is that
changes a hard-linked file propagate to the links, whereas two copies of a file are completely
independent thereafter. In order to faithfully reproduce all hardlinks to all files, cfengine
needs to examine every file on the same filesystem and check whether they have the same
inode-number. This would be an enourmous overhead, so it is not done. Instead what
happens is that cfengine keeps track of only the files which it is asked to examine, for each
atomic copy-command, and makes a note of any repeated inodes within this restricted set.
It does not try to go off, wandering around file systems looking to other files which might
be hardlinks.

64 GNU cfengine

To summarize, cfengine preserves hardlinks during copying, only within the scope of the
present search. No backups are made of hard links, only of the first link or name of the file
is backed up. This is a necessary precaution to avoid dangling references in the inode table.
As a general rule, hard links are to be avoided because they are difficult to keep track of.

4.11.2 Too many open files

In long recursive copies, where you descend into many levels of diretories, you can quickly
run out of file descriptors. The number of file descriptors is a resource which you can often
set in the shell. It is a good idea to set this limit to a large number on a host which will be
copying a lot of files. For instance, in the C shell you would write,

limit descriptors 1024

Most systems should have adequate defaults for this parameter, but on some systems it
appears to be set to a low value such as 64, which is not sufficient for large recursive tree
searches.

Chapter 4: Cfagent reference 65

4.12 defaultroute

Dynamical routing is not configurable in cfengine, but for machines with static routing
tables it is useful to check that a default route is configured to point to the nearest gateway
or router. The syntax for this statement is simply:

defaultroute:

class::

my_gateway

For example:

defaultroute:

most::

129.240.22.1

rest::

small_gw

no_default_route::

192.168.1.1

Gateways and routers usually have internet address aaa.bbb.ccc.1 — i.e. the first address
on the subnet. You may use the numerical form or a hostname for the gateway.

The class no_default_route is defined if the current host does not have a currently
defined default route, but specifies one in its configuration.

66 GNU cfengine

4.13 disks

This is a synonyn for required, See Section 4.32 [required], page 125. This action tests for
the existence of a file or filesystem. It should be called after all NFS filesystems have been
mounted. You may use the special variable $(binserver) here.� �

disks:

/filesystem freespace=size-limit define=class-list(,:.)

inform=true

log=true

scanarrivals=true

force=true

ifelapsed=mins

expireafter=mins
 	
Files or filesystems which you consider to be essential to the operation of the system

can be declared as ‘required’. Cfengine will warn if such files are not found, or if they look
funny.

Suppose you mount your filesystem /usr/local via NFS from some binary server. You
might want to check that this filesystem is not empty! This might occur if the filesystem
was actually not mounted as expected, but failed for some reason. It is therefore not enough
to check whether the directory /usr/local exists, one must also check whether it contains
anything sensible.

Cfengine uses two variables: sensiblesize and sensiblecount to figure out whether
a file or filesystem is sensible or not. You can change the default values of these variables
(which are 1000 and 2 respectively) in the control section. See Section 4.9 [control],
page 33.

If a file is smaller than sensiblesize or does not exist, it fails the ‘required’ test. If a
directory does not exist, or contains fewer than sensiblecount files, then it also fails the
test and a warning is issued.

disks:

any::

/$(site)/$(binserver)/local

If you set the freespace variable to a value and set inform=true, cfagent issues warnings
when free disk space falls below this threshold. Any define-classes also become defined in
this instance. (the default units are kilobytes, but you may specify bytes or megabytes),
e.g.

If the option force=true is used, cfengine will parse filesystems even on NFS mounted
filesystems. Normally it does not make sense to check filesystems that are not native to the

Chapter 4: Cfagent reference 67

local host, but occasionally ne would like to force such a check in order to set a class, based
on the result, for instance.

If the scanarrivals option is set, the agent will recursively descend through the file
system building a database of file modification times. This data is used for research purposes
and will eventually be used to trigger classes that determine optimal times for backup of
filesystem.

4.14 directories

Directories declarations consist of a number of directories to be created. Directories and
files may also be checked and created using the touch option in the files actions. See
Section 4.17 [files], page 84.

The form of a declaration is:� �
directories:

classes::

/directory

mode=mode

owner=uid

group=gid

define=classlist

syslog=true/on/false/off

inform=true/on/false/off

ifelapsed=mins

expireafter=mins
 	
For example

directories:

class::

/usr/local/bin mode=755 owner=root group=wheel

The form of the command is similar to that of files but this command is only used to
create new directories. Valid options are mode, owner, group and are described under files
See Section 4.17 [files], page 84. This interface is only for convenience. It is strictly a part
of the ‘files’ functionality and is performed together with other ‘files’ actions at run time.

The creation of a path will fail if one of the links in the path is a plain file or device
node. A list of classes may optionally be defined here if a directory is created.

If the owner value is set to the literal "LastNode", then the owner will be exchanged for
the last node of the path. This allows the creation of home directories owned by users.

control:

homedirs = (mark:simen:luke:aeleen)

68 GNU cfengine

directories:

/home/$(listcontent) owner=LastNode

Chapter 4: Cfagent reference 69

4.15 disable

Disabling a file means renaming it so that it becomes harmless. This feature is useful if you
want to prevent certain dangerous files from being around, but you don’t want to delete
them— a deleted file cannot be examined later. The syntax is� �
disable:

class::

/filename

dest=filename

type=plain/file/link/links

rotate=empty/truncate/numerical-value

size=numerical-value

define=classlist

syslog=true/on/false/off
inform=true/on/false/off
repository=destination directory

action=disable/warn

ifelapsed=mins

expireafter=mins
 	
If a destination filename is specified, cfagent renames the source file to the destination, where
possible (renaming across filesystems is not allowed). If no destination is given, cfagent
renames a given file by appending the name of the file with the suffix ‘.cfdisabled’. Note
that directories are only renamed if they have a specific destination specified.

A typical example of a file you would probably want to disable would be the
/etc/hosts.equiv file which is often found with the ‘+’ symbol written in it, opening
the system concerned to the entire NIS universe without password protection! Here is an
example:

disable:

/etc/hosts.equiv

/etc/nologin

/usr/lib/sendmail.fc

sun4::

/var/spool/cron/at.allow

Hint: The last example disables a file which restricts access to the at utility. Such a
command could be followed by a file action, See Section 4.17 [files], page 84,

files:

some::

70 GNU cfengine

/var/spool/cron/at.allow =0644 N [root] [wheel] touch

which would create an empty security file ‘at.allow’. See also your system manual pages
for the at command if you don’t understand why this could be useful.

Disabling a link deletes the link. If you wish you may use the optional syntax

disable:

/directory/name type=file

to specify that a file object should only be disabled if it is a plain file. The optional element
type= can take the values plain, file, link or links. If one of these is specified, cfengine
checks the type and only disables the object if there is a match. This allows you to disable
a file and replace it by a link to another file for instance.

NOTE that if you regularly disable a file which then gets recreated by some process,
the disabled file ‘filename.cfdisabled’ will be overwritten each time cfengine disables the
file and therefore the contents of the original are lost each time. The rotate facility was
created for just this contingency.

The disable feature can be used to control the size of system log files, such as
‘/var/adm/messages’ using a further option rotate. If the value rotate is set to 4, say,

disable:

filename rotate=4

then cfengine renames the file concerned by appending ‘.1’ to it and a new, empty file is
created in its place with the same owner and permissions. The next time disable is executed
‘.1’ is renamed to ‘.2’ and the file is renamed ‘.1’ and a new empty file is created with the
same permissions. Cfengine continues to rotate the files like this keeping a maximum of
four files. This is similar to the behaviour of syslog.

If you simply want to empty the contents of a log file, without retaining a copy then you
can use rotate=empty or rotate=truncate. For instance, to keep control of your World
Wide Web server logs:

disable:

Sunday|Wednesday::

/usr/local/httpd/logs/access_log rotate=empty

This keeps a running log which is emptied each Sunday and Wednesday.
The size= option in disable allows you to carry out a disable operation only if the size

of the file is less than, equal to or greater than some specified size. Sizes are in bytes by
default, but may also be quoted in kilobytes or megabytes using the notation:

numberbytes

numberkbytes

numbermbytes

Only the first characters of these strings are significant, so they may be written however is
convenient: e.g. 14kB, 14k, 14kilobytes etc. Examples are:

Chapter 4: Cfagent reference 71

size=<400 # disable if file size is < 400 bytes

size=400 # disable if file size is equal to 400 bytes

size=>400 # disable if file size > 400 bytes

This options works with rotate or normal disabling; it is just an extra condition which
must be satisfied.

If a disable command results in action being taken by cfengine, an optional list of classes
becomes can be switched on with the aid of a statement define=classlist in order to
trigger knock-on actions.

The repository declaration allows a local override of the Repository variable, on an
item by item basis. If set to “off” or “none” it cancels the value of a global repository and
leaves the disabled file in the same directory.

72 GNU cfengine

4.16 editfiles

Performs ascii (line-based) editing on text-files or limited binary editing of files. If editing
a file which has hard links to it, be aware that editing the file will destroy the hard link ref-
erences. This is also the case with shell commands. You should avoid hard links whenever
possible. The form of an editing command is editfiles can also search directories recur-
sively through directories and edit all files matching a pattern, using Include, Exclude,
and Ignore (see Recursive File Sweeps in the tutorial).� �
editfiles:

class::

{ file-to-be-edited

action "quoted-string..."

}

{ directory-to-be-edited

Recurse "inf" # iterated over all files

Filter "filteralias"

Include ".cshrc"

Ignore "bin"

Ignore ".netscape"

action "quoted-string..."

}
 	
Here are some examples:

editfiles:

sun4::

{ /etc/netmasks

DeleteLinesContaining "255.255.254.0"

AppendIfNoSuchLine "128.39 255.255.255.0"

}

PrintServers::

{ /etc/hosts.lpd

AppendIfNoSuchLine "tor"

AppendIfNoSuchLine "odin"

AppendIfNoSuchLine "borg"

}

The first of these affects the file ‘/etc/netmasks’ on all SunOS 4 systems, deleting any
lines containing the string “255.255.254.0” and Appending a single line to the file con-
taining “128.39 255.255.255.0” if none exists already. The second affects only hosts in
the class ‘PrintServers’ and adds the names of three hosts: tor, odin and borg to the file

Chapter 4: Cfagent reference 73

‘/etc/hosts.lpd’ which specifies that they are allowed to connect to the printer services
on any host in the class ‘PrintServers’.
Note that single or double quotes may be used to enclose strings in cfengine. If you use
single quotes, your strings may contain double quotes and vice-versa. Otherwise a double
quoted string may not currently contain double quotes and likewise for single quoted strings.

As of version 2.0.6 quoted strings may contain escaped quotes using \".
As of version 1.3.0, you can use the ‘home’ directive in edit filenames, enabling you to

edit files for every user on the system, provided they exist. For example, to edit every user’s
login files, you would write

{ home/.cshrc

AppendIfNoSuchLine "setenv PRINTER default-printer"

AppendIfNoSuchLine "set path = ($path /new/directory)"

}

If a user does not possess the named file, cfengine just skips that user. A new file is not
created.
The meanings of the file-editing actions should be self-explanatory. Commands containing
the word ’comment’ are used to ‘comment out’ certain lines in a file rather than deleting
them. Hash implies a shell comment of the type

comment

Slash implies a comment of the C++ type:

// comment

Percent implies a comment of the type:

% comment

More general comment types may be defined using the SetCommentStart,
SetCommentEnd and CommentLinesMatching, CommentLinesStarting functions.

A special group of editing commands is based on the POSIX Regular Expression package.
These use regular expressions to search line by line through text and perform various editing
functions. Searches are of two different types: “LineMatching” and “LineContaining”. In
the first case the regular expression must match the entire line exactly; in the latter, a
substring is searched for in the file.

Some of these commands are based on the concept of a file pointer. The pointer starts at
line one of the file and can be reset by ’locating’ a certain line, or by using the reset-pointer
commands. The current position of the pointer is used by commands such as InsertLine
to allow a flexible way of editing the middle of files.

A simple decision mechanism is incorporated to allow certain editing actions to be ex-
cluded. For instance, to insert a number of lines in a file once only, you could write:

{ file

LocateLineMatching "insert point..."

IncrementPointer "1"

74 GNU cfengine

BeginGroupIfNoMatch "# cfengine - 2/Jan/95"

IncrementPointer "-1"

InsertLine "# cfengine - 2/Jan/95"

InsertLine "/local/bin/start-xdm"

DefineInGroup "AddedXDM"

EndGroup

}

Since the first inserted line matches the predicate on subsequent calls, the grouped lines
will only be carried out once. When the grouped lines are run, the ‘AddedXDM’ class will be
activated for use by a later part of the script.

The full list of editing actions is given below in alphabetical order. Note that some
commands refer to regular expressions and some refer to ’literal strings’ (i.e. any string
which is not a regular expression). Variable substitution is performed on all strings. Be
aware that symbols such as ‘.’, ‘*’ and so on are meta-characters in regular expressions
and a backslash must be used to make them literal. The regular expression matching
functions are POSIX extended regular expressions. See 〈undefined〉 [Regular expressions],
page 〈undefined〉.
AbortAtLineMatching quoted-regex

This command sets the value of a regular expression. In all editing operations
(except FixEndOfLine and GotoLastLine) which involve multiple replacements
and searches, this expression marks a boundary beyond which cfengine will cease
to look any further. In other words, if cfengine encounters a line matching
this regular expression, it aborts the current action. BE CAREFUL with this
feature: once set, the string remains set for the remainder of the current file.
It might therefore interact in unsuspected ways with other search parameters.
Editing actions are always aborted as soon as the abort expression is matched.
Use UnsetAbort to unset the feature.

Append quoted-string

Add a line containing the quoted string to the end of the file. This should be
used in conjunction with the decision structures BeginGroupIfNoLineMatching
and BreakIfLineMatches.

AppendIfNoLineMatching quoted-regex/ ‘‘ThisLine’’
A new version of the older AppendIfNoSuchLine which uses a regular expression
instead of a literal string. The line which gets appended must be set previously
using SetLine. If ‘‘ThisLine’’ is given as the argument, the current value
of then line buffer is assumed. This allows constructions for merging files on a
convergent line-by-line basis:

editfiles:

{ /tmp/bla

ForEachLineIn "/tmp/in"

AppendIfNoLineMatching "ThisLine"

EndLoop

}

Chapter 4: Cfagent reference 75

AppendIfNoSuchLine quoted-string

Add a line containing the quoted string to the end of the file if the file doesn’t
contain the exact line already.

AppendIfNoSuchLinesFromFile filename

For each line in the named file, call AppendIfNoSuchLine. This adds lines
containing the strings listed in the named file to the end of the current file if
the file doesn’t contain the exact line already.

AppendToLineIfNotContains quoted-string

This commands looks for an exact match of the quoted string in the current
line. If the quoted string is not contained in the line, it is appended. This may
be used for adding entries to a list.

AutoCreate
If this command is listed anywhere in the file action list, cfengine will create
the named file if it doesn’t exist. Normally cfengine issues an error if the named
file does not exist, but if this is set, notification of the file’s absence is only in
verbose output. New files are created with mode 644 (see also Umask), read
access for everyone and write access for the cfengine user (normally root). Note
that if you set this, BeginGroupIfFileIsNewer will always be true.

AutomountDirectResources quoted-string

This command is designed to assist with automounter configuration for users
wishing to use the automounter for NFS filesystems, but still use the cfengine
mount model. Applied to the current file, it is equivalent to saying: for each
of the mountable resources in the list See Section 4.28 [mountables], page 115,
append if not found a line for a direct automount map command, to the current
file. The string which follows can be used to specify any special mount options
e.g. ‘‘-nosuid’’ for non setuid mounting (of all the mountables). Note that
this is added to the current file and not to a file named ‘/etc/auto_direct’.

Backup quoted-string

Set to true or false, on or off to set inform level for this file. Default is on. The
default is to produce time-stamped backups of files; this may be coded explicitly
by setting to “timestamp” or “stamp”. If set to “false” or “off”, no backup is
kept of the edited file. If the value is set to “single” or “one” then only the last
version of the file is kept, overwriting any previously saved versions.

Backup "single"

BeginGroupIfDefined quoted-string

The lines following, up to the first EndGroup are executed if the quoted class is
defined. Edit groups may be nested.

BeginGroupIfNotDefined quoted-string

The lines following, up to the first EndGroup are executed if the quoted class is
not defined. Edit groups may be nested.

BeginGroupIfFileExists quoted-string

The lines following, up to the first EndGroup are executed if the quoted filename
exists (can be statted). Files which are not readable by the running process are
for all intents and purposes non-existent. Edit groups may be nested.

76 GNU cfengine

BeginGroupIfFileIsNewer quoted-string

The lines following, up to the first EndGroup are executed if the quoted filename
is newer than the file being edited. Edit groups may be nested.

BeginGroupIfNoLineContaining quoted-string

The lines following, up to the first EndGroup are executed if the quoted string
does not appear in any line in the file. Edit groups may be nested.

BeginGroupIfNoLineMatching quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular
expression does not match any line in the file. Edit groups may be nested.

BeginGroupIfNoMatch quoted-regex

The lines following, up to the first EndGroup are executed if the quoted regular
expression does not match the current line. Edit groups may be nested.

BeginGroupIfNoSuchLine quoted-string

The lines following, up to the first EndGroup are executed if the quoted literal
string does not match any line in the file. Edit groups may be nested.

BreakIfLineMatches quoted-regex

Terminates further editing of the current file if the current line matches the
quoted regular expression.

CatchAbort
Edit actions which abort on failure (such as LocateLineMatching)
will jump to the first instance of this marker instead of com-
pletely aborting an edit if this keyword occurs in an editing script.
You can catch the exceptions thrown by the following commands:
CommentNLines,CommentToLineMatching,DeleteNLines,DeleteToLineMatching,
HashCommentToLineMatching,IncrementPointer, LocateLineMatching,PercentCommentToLineMatching,
RunScriptIf(No)LineMatching,UnCommentNLines.

CommentLinesMatching quoted-regex

Use the current value of the comment delimiters set using SetCommentStart
and SetCommentEnd to comment out lines matching the given regular expression
in quotes.

CommentLinesStarting quoted-string

Use the current value of the comment delimiters set using SetCommentStart
and SetCommentEnd to comment out lines starting with the quoted literal string.

CommentNLines quoted-string

Comments up to N lines from the current file, starting from the location of
the current line pointer. If the end of the file is reached and less than N lines
are deleted, a warning is issued, but editing continues. The current value of
the comment delimiters is used to determine the method of commenting, (see
SetCommentStart). After the operation the pointer points to the line after the
commented lines.

Chapter 4: Cfagent reference 77

CommentToLineMatching quoted-regex

Use the current value of the comment delimiters set using SetCommentStart
and SetCommentEnd to comment out lines from the current position in a file to
a line matching the given regular expression in quotes.

DefineClasses ‘‘class1:class2:...’’
Activate the following colon, comma or dot-separated list of classes if and only
if the file is edited.

DefineInGroup ‘‘class1:class2:...’’
Activate the following colon, comma or dot-separated list of classes if the edit
group is entered. This can be combined with other classes to identify what
particular edits took place. Use DefineInGroup if you want to define a class or
list of classes conditional on entry to a BeginGroup ... EngGroup block. For
example,

editfiles:

{ /etc/inetd.conf

BeginGroupIfNoSuchLine "$(myservice1)"

Append "$(myservice1)"

DefineInGroup "myservice1_added"

EndGroup

BeginGroupIfNoSuchLine "$(myservice2)"

Append "$(myservice2)"

DefineInGroup "myservice2_added"

EndGroup

}

This will define service added and service added another way if either line is
added, but additionally myservice1 added if myservice1 was added and likewise
for myservice2 added.

DefineInGroup ‘‘class1:class2:...’’
Activate the following colon, comma or dot-separated list of classes if execution
reaches the BeginGroup ... EndGroup section(s) containing this command. If
you think you want to put DefineClasses within a BeginGroup ... EndGroup
section, you actually want this.

DeleteLinesAfterThisMatching quoted-regex

Delete lines after the current position which match the quoted expression.

DeleteLinesContaining quoted-string/DeleteLinesNotContaining quoted-string

Delete all lines (not) containing the exact string quoted.

DeleteLinesMatching quoted-regex/DeleteLinesNotMatching quoted-regex

Delete all lines (not) fully matching the tied quoted regular expression.

DeleteLinesStarting quoted-string/DeleteLinesNotStarting quoted-string

Delete all lines (not) beginning with the exact string quoted.

DeleteLinesNotContainingFileItems filename

Delete lines in the file that do not contain the any of the substrings in the file.

DeleteLinesNotMatchingFileItems filename

Delete lines in the file that do not match the any of the regular expressions in
the file.

78 GNU cfengine

DeleteLinesNotStartingFileItems filename

Delete lines in the file that do not start with any of the substrings in the file.

DeleteNLines quoted-string

Deletes up to N lines from the current file, starting from the location of the
current line pointer. If the end of the file is reached and less than N lines are
deleted, a warning is issued, but editing continues.

DeleteToLineMatching quoted-regex

Delete lines from the current position, up to but not including a line matching
the regular expression in the quoted string. If no line matches the given expres-
sion, a warning is only printed in verbose mode, but all edits are immediately
abandoned.

EditMode ‘‘Binary’’
If set to binary, the file will be edited as if it were a non-ASCII file. See
discussion below.

EditMode "Binary"

EmptyEntireFilePlease
Deletes all lines from the current file.

ElseDefineClasses
See DefineClasses

EndGroup Terminates a begin-end conditional structure.

EndLoop Terminates a loop. See ForEachLineIn

ExpireAfter mins

Filter filteralias

Name a fiter for pruning file searches.

FixEndOfLine
The quoted string which follows may be either ‘dos’ or ‘Unix’ to fix the end of
line character conventions to match these systems. This command should be
executed last of all, since cfengine appends new lines with the conventions of
the system on which is was complied during edit operations.

ForEachLineIn quoted-filename

This marks the beginning of a for-loop which reads successive lines from a
named file. The result is like using SetLine for each line in the file. Nested
loops are not permitted.

GotoLastLine
Moves the file pointer to the last line in the current file.

HashCommentLinesContaining quoted-string

Add a ‘#’ to the start of any line containing the quoted string.

HashCommentLinesMatching quoted-regex

Add a ‘#’ to the start of any line exactly matching the quoted regular expression.

HashCommentLinesStarting quoted-string

Add a ‘#’ to the start of any line starting with the quoted string.

Chapter 4: Cfagent reference 79

IfElapsed mins

As usual.

IncrementPointer quoted-number

Increments the value (in lines) of the file pointer by the number of lines spec-
ified in the quoted string (as a denary number). e.g. ‘‘‘4’’’. Negative values
are equivalent to decrementing the pointer. If a request is made to incre-
ment/decrement outside of the file boundaries the pointer ‘bumps’ into the
boundary and remains there, i.e. either at start of file or end of file.

Inform quoted-string

Set to true or false, on or off to set inform level for this file. Default is off.

InsertFile quoted-string

Inserts the named file after the current line position in the file. This should be
used in conjunction with a begin-end construction in order to avoid including
the file every time cfengine is run. If the file does not exist, or cannot be opened,
there is only a warning issued in verbose mode. Note if the file is empty, or if
the current line pointer is not set, the file is inserted at the start of the file.

InsertLine quoted-string

Inserts the quoted string as a line after the current line pointer in the file. After
the insert, the line pointer is incremented by one so that subsequent inserted
lines are placed after the first. This should probably be used in conjunction
with the conditional begin-end tests to avoid lines being inserted on every run.

LocateLineMatching quoted-regex

Moves the current line pointer to the line matching the quoted regular expres-
sion. If there is no match, a warning is only issued in verbose mode, but all
editing is immediately aborted. See also WarnIfNoLineMatching so that you
can get an explicit warning, even out of verbose mode.

PercentCommentLinesContaining quoted-string

Add a ‘%’ to the start of any line containing the quoted string.

PercentCommentLinesMatching quoted-regex

Add a ‘%’ to the start of any line exactly matching the quoted regular.

PercentCommentLinesStarting quoted-string

Add a ‘%’ to the start of any line starting with the quoted string.

Prepend quoted-string

Add a line containing the quoted string to the start of the file. This should be
used in conjunction with the decision structures BeginGroupIfNoLineMatching
and BreakIfLineMatches.

PrependIfNoLineMatching quoted-regex

A new version of the older PrependIfNoSuchLine with uses a regular expression
instead of a literal string. The string prepended is the one set using SetLine.

PrependIfNoSuchLine quoted-string

Add a line containing the quoted string to the start of the file if the file doesn’t
contain the exact line already.

80 GNU cfengine

Recurse digit/inf

For recursive descents when editing whole file trees.

ReplaceLineWith quoted-string

Replace the line at the current position with the text in the quoted string. The
file pointer remains pointing to this line after the change.

ReplaceAll quoted-regex With quoted-string

Replace all instances of strings matching the regular expression in the first
quotes with the exact string in the second set of quotes, throughout the current
file. Note that cfengine matches on a left to right basis, with the first match
taking precedence, so if your regular expression matches text ambiguously it
is the first occurrence which is replaced. For example, if you replace ‘cf.*’
with ‘CFENGINE’ and cfengine encounters a line ‘hello cfengine cfengine’,
then this will be replaced with ‘hello CFENGINE’ even though two possible
strings match the regular expression. On the other hand if the expression is not
ambiguous, say replacing ‘cfengine’ with ‘CFENGINE’, then the result would be
‘hello CFENGINE CFENGINE’.

ReplaceFirst quoted-regex With quoted-string

For each line of the current file, replace the first string matching the regular
expression in the first quotes (quoted-regex) with the string given in the second
set of quotes (quoted-string). Matching is done left to right. For example, if you
replace ‘‘‘YY = [[:digit:]][[:digit:]]’’’ with ‘‘‘YY = 04’’’ and cfengine
encounters ‘‘‘YY = 03 but old YY = 70’’’ then it will be replaced with ‘‘‘YY
= 04 but old YY = 70’’’

ReplaceLinesMatchingField quoted-number

This command replaces any lines in the current file with the current line set by
SetLine or ForEachLineIn, if the lines are split into fields (e.g. the password
file) separated by the SplitOn character (’:’ by default), and the corresponding
fields match.
The idea behind this command was to be able to override global passwords
(from a file which gets distributed) by new passwords in a local file. Rather
than maintaining the files separately, this simply overrides the entries with the
new ones.

Repository quoted string

This allows a local override of the Repository variable, on an item by item
basis. If set to “off” or “none” it cancels the value of a global repository.

ResetSearch quoted-string

Sets the current-position pointer to the line number in the quoted string. ‘EOF’
indicates the end of the file.

RunScript quoted-string

Executes the named script command. Before executing the script any edits are
saved to disk. After the script has executed, cfengine reloads the file for any
further editing operations. The script (which may be any executable program)
is appended with two arguments: the name of the file which is being edited and
the system hard class (e.g. sun4, ultrix etc.) of the system executing the script.

Chapter 4: Cfagent reference 81

CAUTION: cfengine knows nothing about the success or failure of anything
that is done during the execution of user scripts. This feature is to be used at
the users own peril!

RunScriptIfLineMatching quoted-string

Executes the script named with the SetScript command only if the current
file contains a line matching the quoted regular expression.

CAUTION: cfengine knows nothing about the success or failure of anything
that is done during the execution of user scripts. This feature is to be used at
the users own peril!

RunScriptIfNoLineMatching quoted-regex

Executes the script named with the SetScript command if the current file
contains no line matching the quoted regular expression.

CAUTION: cfengine knows nothing about the success or failure of anything
that is done during the execution of user scripts. This feature is to be used at
the users own peril!

SetCommentStart quoted-string

Specify which string should be used for starting a comment using the commands
CommentLineMatching and CommentLineStarting. The default is the hash
symbol ‘#’ followed by a single space.

SetCommentEnd quoted-string

Specify which string should be used for ending a comment using the com-
mands CommentLineMatching and CommentLineStarting. The default is the
empty string. For example, you could make C style comments by setting Com-
mentStart to ‘/*’ and comment end to ‘*/’.

SetLine quoted-string

Sets a current line value which can be appended using AppendIfNoLineMatching
using a regular expression.

SetScript quoted-string

Sets the name of a user-supplied script for editing the current file.

SlashCommentLinesContaining quoted-string

Add a ‘//’ to the start of any line containing the quoted string.

SlashCommentLinesMatching quoted-regex

Add a ‘//’ to the start of any line exactly matching the quoted regular expres-
sion.

SlashCommentLinesStarting quoted-string

Add a ‘//’ to the start of any line starting with the quoted string.

SplitOn quoted-string

This defines a single character which is to be interpreted as a field separator
for editing files with columns. The default value for this is ‘:’, as is
used in the password and group files. It is used in conjunction with
ReplaceLinesMatchingField.

82 GNU cfengine

Syslog quoted-string

Set to true or false, on or off to set inform level for this file. Default is off.

Umask quote mode

Set local umask for file creation and script execution.

UnCommentLinesContaining quoted-string

Uncomment all lines in file containing the quoted string as a substring. The
comment delimiters are assumed to be those set using SetCommentStart and
SetCommentEnd.

UnCommentLinesMatching quoted-regex

Uncomment all lines in file matching the quoted regular expression. The com-
ment delimiters are assumed to be those set using SetCommentStart and Set-
CommentEnd.

UnCommentNLines quoted-string

Uncomments N lines starting from the current position, using the currently
defined method for commenting. Note that the comment start and end symbols
are removed independently, i.e. they are not matched, so that a comment may
be spread over several lines. e.g. If using C style ‘/*’ and ‘*/’ comments, the
command UnCommentNLines "3" would uncomment

/* 1 */

/* 2 */

/* 3 */

and also
/* 1

2

3 */

UnsetAbort quoted-string

Switches off the feature AbortAtLineMatching.

UseShell ‘‘false’’
Normally cfengine uses a shell based exec function to run scripts during editing.
This involves the inheritance of environment variables and path, which carries
with it an inherent security risk. Setting this value to false causes execution to
execute without an encapsulating shell.

WarnIfFileMissing quoted-string

If the file to be edited does not exist, a visible alert is issued.

WarnIfLineContaining quoted-string

Issue a warning if the quoted string is found as a substring of one or more lines
in the file.

WarnIfLineMatching quoted-regex

Issue a warning if the quoted regular expression matches one or more lines in
the file.

WarnIfLineStarting quoted-string

Issue a warning if the quoted string matches the start of one or more lines in
the file.

Chapter 4: Cfagent reference 83

WarnIfNoLineContaining quoted-string

Issue a warning if the quoted string is not contained in one or more lines in the
file.

WarnIfNoLineMatching reg-ex

Issue a warning if the quoted regular expression does not match one or more
lines in the file.

WarnIfNoLineStarting quoted-string

Issue a warning if the quoted string is not found at the start of one or more
lines in the file.

WarnIfNoSuchLine quoted-regex

Issue a warning if the quoted regular expression does not match one or more
lines in the file.

A limited number of operations can also be performed on purely binary files, e.g. compiled
programs, in order to search for strings or viral code, or to modify strings within a program.
Binary mode is a mutually exclusive, separate mode to normal editing. The limit on the
size of binary files is set by editbinaryfilesize in control.

ReplaceAll regex With literal

Replaces occurrences of the matched regular expression with\ the provided
literal text, only if the length of the literal substitute is less than or equal
to the length of the located string. If the replacement string is shorter, it is
padded with ascii spaces (character 32) by default. The padding character can
be changed by setting BinaryPaddingChar in control. Padding with a null
byte would lead to corruption of text within a program.

WarnIfContainsString regex/literal

Yields a warning if the literal string or regular expression matches. Cfengine
first attempts a literal match and then a regular expression match.

WarnIfContainsFile filename

Yields a warning if the contents of the named file exactly match part of the file
which is being edited. This can be used to search for binary data which cannot
be typed directly into the cfengine program, e.g. virus signatures.

It is suggested that you use these editing functions with caution. Although all possible
safeguards have been incorporated into them, it is still possible through carelessness to do
damage to important files on your system. Always test editing programs carefully before
committing them to your global site configuration.

84 GNU cfengine

4.17 files

The files facility allows you to touch (create), check for the existence, owner and permis-
sions of files, change the permissions and test for setuid root programs.

4.17.1 Syntax

A files-statement can have several options. We can begin by examining the form of the
statement in pseudo-code:� �

files:

classes::

/file-object

mode=mode

owner=uid-list

group=gid-list

action=fixall/other-options/warnall
links=false/stop/traverse/follow/tidy

ignore=pattern

include=pattern

exclude=pattern

filter=filter alias

xdev=true/on/false/off

define=classlist

elsedefine=classlist

checksum=md5

syslog=true/on/false/off
inform=true/on/false/off
ifelapsed=mins

expireafter=mins

Special OS flags:

flags=BSD flags

 	
An example would be the following:

any::

/var/spool/printQ mode=0775 r=0 o=daemon g=daemon act=fixdirs

The meaning of these item is sketched out below and becomes clearer on looking at a number
of examples. Note that, each of the options below can be written in either upper or lower
case and abbreviated by any unique abbreviation.

/file-object

This is the only obligatory part of a file action. This may be a single file or a
directory. If it is a directory then it indicates where does the file search should
begin. The recursion specifier may be used to force cfengine to descend into
subdirectories in a controlled fashion, starting from this point, checking files

Chapter 4: Cfagent reference 85

there also. The wildcard home may also be used. See Section 4.17.4 [home
directive], page 87.
A file object is interpreted as a directory if you write it in the following form:
‘/directory-path/.’. i.e. a trailing dot signifies a directory. This then be-
comes the same as the directory command.

mode=modestring
Specifies what the allowed permissions for files are. If cfengine finds that a file’s
mode is incorrect, the value of the action option determines what will be done
about it. The modestring should consist of either a three digit octal numbers
with ‘+’, ‘-’ or ‘=’ symbols, or a text string like that used by the command
chmod. For instance: mode=u=rwx,og+rx would mean set the read/write and
execute flags for the user (file owner) and add the read/execute flags for others
and group bits. An example of the numerical form might be -002 which would
mean that the read-for-others flag should either not be set or should be unset,
depending on the action you choose. +2000 would mean that the setgid flag
should be present or set, depending on the action. +2000,-002 would be a
combination of these. The ‘=’ sign sets to an absolute value, so =755 would set
the file mode to mode 755.

flags=BSD flags

The free BSD Unices have additional filesystem flags which can be seton files.
Refer to the BSD chflags documentation for this. For example,

/tmp/flags.01 mode=0600 owner=0 group=0

flags=uappnd,uchg,uunlnk,nodump,opaque,sappnd,schg,sunlnk

action=touch

recurse=number/inf
This specifier tells cfengine whether or not to recurse into subdirectories. If the
value is zero, only the named file or directory is affected. If the value is 1, it will
open at most one level of subdirectory and affect the files within this scope. If
the value is inf then cfengine opens all subdirectories and files beginning from
the specified filename.See Section 4.17.2 [Recursion], page 87.

owner=owner list

This is a list of allowed owners, or uids by number, separated by commas. For
example root,2,3,sysadm. In cases where you ask cfengine to fix the ownership
automatically, the owner will be set to the first recogized owner in the list if
and only if it is not one of the named uids in the list.

group=group list

This is a list of allowed groups, or gids by number, separated by commas.
For example wheel,2,3,sysadm. In cases where you ask cfengine to fix the
ownership automatically, the group will be set to the first recognized group in
the list if and only if it is not one of the named gids in the list.

action=action
The action is one of the following keywords.

86 GNU cfengine

warnall warndirs warnplain

fixall fixdirs fixplain

touch linkchildren create compress alert

The upper line results only in warnings being issued. The actions beginning
‘fix’ prompt cfengine to fix encountered problems without bothering the user.
No message is issued unless in verbose mode. The special features on the third
line will be explained separately. Alert is like -print in the find command,
it triggers on the existence of files which have not been ignored, excluded or
filtered. This should normally be used together filter, in order to locate files
of particular types.

include=wildcard/pattern
You can include this option several times to specify specific patterns which are
to be included in the search. Once you specify one pattern you exclude all files
not matching at least one of the patterns. The case be useful for restricting a
search, or for modifying the permissions of only certain files.

exclude=wildcard/pattern
You can include this option several times to specify specific patterns which
are to be excluded from the search. This overrides any patterns given in the
include= list.

ignore This works like the global ignore directive but here you may provide a private
list of ignorable directories and files. Unlike include, exclude this affects the
way cfengine parses directory trees.

links=stop/traverse/tidy
Normally cfengine does not descend into subdirectories which are pointed to by
symbolic links. If you wish to force it to do so (without using the -l command
line option) you may give this option the value true, or traverse, or follow.
To specify no recursion you set the value false or stop. Note that the value set
here in the cfengine program always overrides the value set by the -l command
line option, so you can protect certain actions from this command line option
by specifying a negative value here. If you specify no value here, the behaviour
is determined by what you specify on the command line.
The value links=tidy has the same effect as the ‘-L’ command line option
except that here it may be specified per item rather than globally. Setting this
value causes links which point to non-existent files to be deleted.
If the warn directive is used (for directories, plain files or both) then only a
warning message is issued if the file being tested does not match the speci-
fication given. If the fix directives are used then cfengine does not issue a
warning, it simply fixes the value silently. Non-existent files are created by the
touch command. A directory may be touched (created) by writing the filename
/a/b/c/. with a dot as the last character. (This may also be achieved with the
directories directive, See Section 4.14 [directories], page 67.)

define=classlist
If a file operation results in action being taken to fix a file, the colon, comma
or dot separated list of classes becomes defined. Warnings do not activate the
classes.

Chapter 4: Cfagent reference 87

checksum=md5/sha
If set this option causes cfengine to add a checksum for the named file to a data-
base. Changes in the value of this checksum are then warned as a security issue.
This should normally only be used to monitor binary files which one would not
expect to change often. Note also that the use of this option can mean a sig-
nificant performance penalty. The variable ChecksumDatabase should be set in
control: to the filename of a database file which is used to cache checksum
values. Note that it is also possible to use a database file for cfservd’s remote
copying by checksum. If you use the same file for both purposes you risk losing
warnings. Security warning messages are issued only once and the value in the
database is then changed to the new value of the file automatically i.e. the
behaviour is similar to that of setuid root program detection, See Section 4.9.8
[ChecksumDatabase], page 39.

xdev Prevents cfengine from descending into file systems that are not on the same
device as the root of the rescurion path.

The default values are mode=+000, recurse=0, action=warnall and any owner or group
is acceptable. The default for links is to not traverse links unless the -l option is set on
the command line.

4.17.2 Recursion

The recursion specifier tells cfengine what to do, starting from /directory name. A value
of r=0 means ‘no recursion’ and any checking is limited only to the named file or directory.
A value of r=inf implies unlimited recursion. Cfengine then descends into all subdirectories
checking or setting the permissions of files until it ‘bottoms out’ at a plain file. A value such
as R=4 means descend recursively into subdirectories, but no more than four levels. This is
a useful safety net in preventing unforeseen accidents. A recursive search also bottoms out
on device boundaries and symbolic links (provided the -l option is not used).

4.17.3 Directory permissions

When you specify the permissions for a whole file tree, using the recursion specifier it is
awkward to have to remember that directories must be executable. cfengine will do this
for you automatically. If you specify that a file tree is to have a read flag set, cfengine will
ensure that the corresponding execute flag is also set for directories which live in the tree.
So the command

files:

myclass::

/dir mode=a+rw r=inf fixall

would set all plain files to mode 644 and all directories to 755, that is read/write for everyone
on plain files and read/write/execute for everyone on directories.

4.17.4 home directive

If you want to check the files of all the users who have their login areas on the current host,
you can use a wildcard directive home instead of a directory name. In this case the file action

88 GNU cfengine

iterates over all home directories physically on the current host. The home directories are,
of course, located by searching for files which match

$(mountpattern)/$(homepattern)

i.e. the values which are specified in the control part of the program. For example the
following line is a very useful service to ignorant users.

files:

any::

home mode=o-w r=inf act=fixall

It ensures automatically that no user has files which can be written to by other arbitrary
users.

As a corollary to this, you may write something like

any::

home/www mode=a+r fixall

to specify a special subdirectory of every users’ home directory. This statement would check
that all of the files in users’ world wide web directories were readable for everyone.

4.17.5 Owner and group wildcards

If you do not want to explicitly state the owner or group of a file you may simply omit the
group or owner options.

/file-object m=0664 r=inf

This example generate a warning if any files under the named directory do not have
permission read/write for all users.

4.17.6 Files linkchildren

The linkchildren facility is almost identical to that already described under links. See
Section 4.24.3 [Link Children], page 104. The only difference here is that the ownership
and permissions on the links are set all in one operation. For example:

myclass::

/local/lib/emacs m=0770 o=me g=mygroup act=linkchildren

4.17.7 touch

The touch facility creates a new file with the specified permissions and ownership, or corrects
the permissions and ownership of an existing file, in addition to updating the time stamps.

myclass::

/newfile mode=0644 action=touch

Chapter 4: Cfagent reference 89

4.17.8 create

This is like touch except that an existing file’s time stamps, permissions and ownership will
not be modified if the file already exists. If the file does not exist, the attributes are set to
the values specified, or to the default values of 0644.

90 GNU cfengine

4.18 filters

A filter is a way of selecting or pruning during a search over files or processes. Since filter
rules could apply to several objects, cfengine allows you to define filter conditions as separate
objects to be applied in different contexts.

Filter objects can be used in copy, editfiles, files, tidy and processes. In most
cases one writes

.. filter=<i>filteralias</i>

in the appropriate command. The exception is editfiles, where the syntax is
{

..

Filter "filteralias"

..

}

Example:

files:

/tmp filter=testfilteralias action=alert r=inf

Filters are defined in a separate section. Filters for files and processes are defined to-
gether. They differ only in the criteria they contain. Here is are examples of file filters:

Filters:

{ filteralias1

Owner: "mark|cell|motd"

Group: "ecg|mark"

Mode: "700"

FromCtime: "date(2000,1,1,0,0,0)" # absolute date

ToCtime: "now"

FromMtime: "tminus(1,0,0,2,30,0)" # relative "ago" from now

ToMtime: "inf" # end of time

FromAtime: "date(1997,2,22,0,0,0)"

ToAtime: "inf"

FromSize: "10000" # File size interval

ToSize: "10mb"

ExecRegex: "/usr/bin/file $(this) (.*ascii.*)"# Result from "files" command

Type: "dir|link" # reg|link|dir|socket|fifo|door|char|block

NameRegex: ".*.asc" # regex matching file name

IsSymLinkTo: "/dev/null" # True if file is a link to object name regex

Result: "Type" # Result which shouldbe returned

}

Chapter 4: Cfagent reference 91

###

{ testfilteralias2

ExecProgram: "/bin/ls $(this)" # True if the program returns true. $(this) is the cur-

rent object

}

###

{ testfilteralias3

Owner: "mark"

}

Filters are evaluated like classes. In fact, the filtering works by evaluating the class
attributes for each file.

File filters:

Owner: and Group can use numerical id’s or names, or ‘‘none’’ for users or groups
which are undefined in the system passwd/group file.

Mode: applies only to file objects. It shares syntax with the mode= strings in
the files command. This test returns true if the bits which are specified as
‘should be set’ are indeed set, and those which are specified as ‘should not be
set’ are not set.

Atime:,Ctime:,Mtime:
apply only to file objects. These specify ranges From and To. If the file’s time
stamps lie in the specified range, this returns true. Times are specfied by a six
component vector

(year,month,day,hour,minutes,seconds)

This may be evaluated as two functions: date() or tminus() which give absolute
times and times relative to the current time respectively. In addition, the words
now and inf may be used. e.g.

FromCtime: "date(2000,1,1,0,0,0)" # absolute date

ToCtime: "now"

FromMtime: "tminus(1,0,0,2,30,0)" # relative "ago" from now

ToMtime: "inf" # end of time

Type: applies only to file objects may be a list of file types which are to be matched.
The list should be separated by the OR symbol ‘|’, since these types are mu-
tually exclusive. The possible values are currently

file|reg|link|dir|socket|fifo|door|char|block

Note that file and reg are synonymous.

ExecRegex:
matches the test string against the output of the specified command.

NameRegex:
matches the name of the file with a regular expression.

92 GNU cfengine

IsSymLinkTo:
applies only when the file object $(this) is a symbolic link. It is true if the
regular expression matches the contents of the link.

ExecProgram:
matches if the command returns successfully (with return code 0). Note that
this feature introduces an implicit dependency on the command being called.
This might be exploitable as a security weakness by advanced intruders.

Result: specifies the way in which the above elements are combined into a single filter.

Process filters:

Owner process owner UID (quoted regex)

PID: process ID (quoted regex)

PPID: parent process ID (quoted regex)

PGID: process group ID (quoted regex)

RSize: resident size (quoted regex)

VSize: virtual memory size (quoted regex)

Status: status (quoted regex)

Command: CMD or COMMAND fields (quoted regex)

(From/To)TTime:
Total elasped time in TIME field (accumulated time)

(From/To)STime:
Starting time for process in STIME or START field (accumulated time)

TTY: terminal type, or none (quoted regex)

Priority:
PRI or NI field (quoted regex)

Threads: NLWP field for SVR4 (quoted regex)

Result: logical combination of above returned by filter (quoted regex)

Examples: processes started between 18th Nov 2000 and now.
{ filteralias

FromSTime: "date(2000,11,18,0,0,0)"

ToSTime: "now"

}

All processes which have accumulated between 1 and 20 hours of CPU time.
{ filteralias

FromTTime: "accumulated(0,0,0,1,0,0)"

ToTTime: "accumulated(0,0,0,20,0,0)"

}

Chapter 4: Cfagent reference 93

4.18.1 Complete filter examples

Here is an example filter to search for all files which are either directories or links, or any
kind of file owned by mark, in group cfengine.

control:

actionsequence = (files)

files:

/tmp filter=testfilteralias action=alert r=inf

/cfengine filter=testfilteralias action=fixall r=inf mode=644

filters:

{ testfilteralias

Owner: "mark"

Group: "cfengine"

Type: "dir|link"

Result: "Type|(Owner.Group)" # Both owner AND group required correct

}

Find all ELF executables using data from the Unix file command. Caution, this takes
a long time if used indescriminately.

control:

actionsequence = (files)

files:

/tmp filter=testfilteralias action=alert r=inf

/cfengine filter=testfilteralias action=fixall r=inf mode=644

filters:

{ testfilteralias

ExecRegex: "/bin/file (.*ELF.*)"

Result: "ExecRegex"

}

Here is an example which warns of any process coupled to a terminal started in November:
control:

actionsequence = (processes)

filters:

{ filteralias

FromSTime: "date(2000,11,0,0,0,0)"

ToSTime: "date(2000,11,30,0,0,0)"

TTY: ".*pt.*"

Result: "TTY.STime"

94 GNU cfengine

}

processes:

"." filter=filteralias action=warn

Chapter 4: Cfagent reference 95

4.19 groups/classes

The groups action (equivalently referred to as classes as of version 1.4.0) is used to define
classes which stand for groups of hosts. If you use the NIS (network information service)
facility for defining netgroups then this idea will already be familiar to you and you can
probably use your already-defined netgroups in cfengine.

To define a group, you simply make a list and assign it a name. Here is an example of
the syntax:

groups:

ANDed_class::

science = (saga tor odin)

packages = (saga)

AllHomeServers = (saga)

AllBinaryServers = (saga)

OIH_servers = (saga)

OIH_clients = (tor odin)

notthis = (!this)

ip_in_range = (IPRange(129.0.0.1-15)) # host is in ip address range

ip_in_range = (IPRange(129.0.0.1/24)) # host is in ip address range (CIDR notation)

compute_nodes = (HostRange(cpu-,1-32)) # host name in the cpu-01 through cpu-32 range

To include a list of hosts from a NIS netgroup, you use the ‘+’ symbol, or the ‘+@’ construc-
tion. For example:

groups:

science = (+science-allhosts)

physics = (+physics-allhosts)

physics_theory = (+@physics-theory-sun4 dirac feynman schwinger)

Using an enormous netgroup does not use up any space. A group declaration results in the
storage of only the class name regardless of how many hosts are in the list. The rule is that
the left hand side of the assignment becomes defined (true) if the list on the right hand side
includes the host which is parsing the file — i.e. $(host).

In some cases your netgroups will not correspond exactly to the list you want, but it
might be more convenient to use a netgroup except for certain hosts. You can ‘undefine’ or
remove hosts from the netgroup list by using the minus ‘-’ symbol. For example:

group = (+mynetgroup -specialhost -otherhost)

96 GNU cfengine

which means, of course, all hosts in netgroup mynetgroup except for specialhost and
otherhost. Finally, you may also subtract two netgroups in the following manner.

group = (+bignetgroup -smallnetgroup)

The ‘minus’ command effectively eliminates its members from bignetgroup if they exist
within that group. If none of the hosts in smallnetgroup exist in bignetgroup then the
command has no effect.

Groups may contain previously defined cfengine groups too. This allows one class to
inherit the attributes of another class, for instance:

AllSun4Hosts = (sonny sunny solar stella)

AllUltrixHosts = (ully olly wally golly)

AllBSD = (AllSun4Hosts AllUltrixHosts)

The classes on the right hand side are effectively ORed together into the left hand side.
This enables complex classes to be constructed from several other basic classes, e.g.

SpecialTimes = (Hr00 Monday Day1)

which evaluates to true every day when it between 00:00 hours and 00:59, all day Monday
and all day on the first day of every month.

If you apply a class predicate before a definition then the result is effectively the AND
of the classes:

Hr00::

SpecialTime = (Monday Tuesday)

defines SpecialTime at Hr00 on Monday or Tuesday.
Finally, you can define groups (strictly classes) by the result of a shell command. A

shell command or program is deemed to be ‘true’ if it exits with a status of zero, i.e. it
calls exit(0). Any other value is taken to be false. You can include shell commands as the
members of groups in order to define classes based on the outcomes of your own scripts by
enclosing the script in single or double quotes:

have_cc = (’/bin/test -f /usr/ucb/cc’)

The class have_cc will then be defined if the shell command returns true. Of course, you
can put any script or program in the single quotes as long as they adhere to the convention
that zero exit status means true. If you have several members which are shell commands,
then the effect is to make the class the logical OR of the scripts’ results.

Chapter 4: Cfagent reference 97

4.20 homeservers

The homeservers declaration need only be used if you are using cfengine’s model for mount-
ing NFS filesystems. This declaration informs hosts of which other hosts on the network pos-
sess filesystems containing home directories (login areas) which client hosts should mount.

A sample homeserver declaration looks like this:

homeservers:

Physics:: einstein

Math:: riemann euler

The meaning of this declaration is the following. Any host which finds itself to be a mem-
ber of the classes on the left hand side of the assignment need to mount all home directory
resources from the hosts on the right hand side of the assignment. The pattern vari-
able homepattern is used to determine which resources are home directories in the list of
mountables. See Section 4.28 [mountables], page 115.

Let us consider an example in which homepattern is set to the wildcard value ‘home?’
and the mountables list is given by

mountables:

einstein:/mysite/einstein/home1

einstein:/mysite/einstein/home2 mountoptions=soft,bg,intr,rsize=8192,wsize=8192

riemann:/mysite/riemann/local readonly=true

euler:/mysite/euler/home1

Any host in the group Physics would now want to mount all home directories from the
host einstein. There are two of these. Both the filesystems listed for einstein match the
homepattern variable since they end in ‘home?’. cfengine would therefore take this to mean
that all hosts in Physics should mount both of these filesystems.

Hosts in Math, on the other hand, should mount only homedirectories from the hosts
riemann and euler. There is only a single filesystem on riemann and it does not match
homepattern, so it is not mounted. On euler there is a match, so this filesystem will be
added to the appropriate hosts.

Cfengine picks out home directory resources from the mountables list by trying to match
the homepattern variable, starting from the end of the directory name. You do not therefore
have to use the designation /site/host/home? but this is a simple choice and is highly
recommended.

98 GNU cfengine

4.21 ignore

When you specify a recursive search as part of a files, tidy or copy action, you would
sometimes like to exclude certain directories from the list of sub directories. In most cases
you will want to do this on a per-command basis (see the pages for these actions separately),
but you can also make a global ignore list. This can be accomplished by adding the directory
to the ignore-list. The syntax is� �

ignore:

wildcards/directories/filenames
 	
For example:

ignore:

any::

#

Prevent tidying .X11 directories in /tmp where

window managers write semaphores

#

.X11

#

Don’t tidy emacs locks

#

!*

/local/lib/gnu/emacs/lock/

/local/tmp

/local/bin/top

/local/lib/tex/fonts

/local/etc

/local/www

/local/mutils/etc/finger.log

None of the above directories will be checked or entered during recursive descents unless a
specific command is initiated to search those directories with their names as the top of the
search tree.

A handy tip if you are tidying ‘/tmp’ recursively is to include the directory ‘.X11’ here.
This directory is used by the X-windows system and deleting it while a window manager
has an open session can cause the user some trouble.

Ignore refers to all recursive searches in tidy, files, copy and links.

Chapter 4: Cfagent reference 99

4.22 import

To break up a large configuration file into smaller files you can use the include directive.
This conditionally reads in files if the class on the left hand side of the assignment matches
the host parsing the file. This enables also a variety of cfengine configuration scripts to read
in a standard set of default settings. The syntax of the statement is:

import:

any::

cf.global_classes

linux::

cf.linux_classes

Note that, if you define variables in an imported file they will not be defined for operations
in their parent files. This because cfengine reads in all the import files after the main file
has been parsed—not at the place where you call import in your script. This means that
variables or macros defined in imported files are only defined after the main program.
Variables from earlier files are inherited by later includes, but not vice-versa.

100 GNU cfengine

4.23 interfaces� �
interfaces:

classes::

interfacename netmask=netmask broadcast=broadcast
 	
If you have more than one network interface, or you do not wish to use the default inter-

face name, this section may be used to define further interfaces to be checked. This feature
can replace the older method of setting netmask and broadcast address in control:. If the
netmask variable is not set, cfengine ignores the default interface configuration. Example:

interfaces:

"le1" netmask=255.255.255.0 broadcast=ones

"le2" netmask=255.255.255.0 broadcast=ones

Chapter 4: Cfagent reference 101

4.24 links

The symbolic links function is one of the greatest plusses in cfengine as a system administra-
tion tool. It allows you to do two things: check single links for correctness and consistency
(or make them if they do not exist), and check or make links to every file in a designated di-
rectory. This latter feature is called multiple linking or linking children. The linkchildren
feature is also available from the files action See Section 4.17 [files], page 84. The syntax
of a link item is:� �

from-link ->[!] to-object

or

from-link +>[!] to-object

type=symbolic/absolute/abs/hard/relative/rel
copy=pattern

recurse=number/inf/0
copytype=checksum/ctime
include=pattern

exclude=pattern

ignore=pattern

action=silent

deadlinks=kill/force
define=classlist

nofile=kill/force
syslog=true/on/false/off

inform=true/on/false/off

ifelapsed=mins

expireafter=mins
 	
The special variable $(binserver) can be used in links.

4.24.1 Single links

To define a single link, you create an entry of the following form:

links:

class::

linkname -> object_to_link_to

linkname -> ./relative_link

linkname -> ../relative_link

If links exists and point to their intended destinations then no action is taken. If a link
exists but points incorrectly then a warning is issued, unless the pling operator ‘!’ is given,
in which case the correct value is forced. If the link exists and points to a file which does
not exist a warning is issued unless the command line option -L is used, in which case the
link is deleted.

Here is an example of some valid link statements.

links:

102 GNU cfengine

Physics.sun4::

/usr/local -> /$(site)/$(host)/local

/home -> /$(site)/$(host)/u1

/etc/sendmail.cf -> /usr/local/mail/etc/global-sendmail.cf

/usr/lib/sendmail ->! /local/lib/sendmail

cfengine makes any directories which are required leading up to the link name on the left
hand side of the arrow automatically. In the last example the ‘pling’ forces cfengine to
make the link even if a file for link exists previously. Plain files are saved by appending
‘.cfsaved’ to the filename, or by moving to a repository, whereas old links are removed.
The same effect can be enforced globally using the -E option, but only if the program is
run interactively. (In this case a prompt is issued to make sure that you wish to use such a
big hammer on your system!)

The link operation accepts a number of parameters

type=hard/relative/absolute
If the link type is hard, a hard link is created See Section 4.24.5 [Hard links],
page 105. Symbolic links may specify two special types. If relative is selected,
and the ‘to’ object is an absolute path name, the link name will be rewritten as
a pathname relative to the source file, using ‘.’ and ‘..’ to move relative to the
current directory. For instance, a link from ‘/usr/local/file’ to ‘/usr/file’
would be linked as ‘./../file’. If the ‘to’ object is already relative, this has
no effect.
If absolute is specified, cfengine will try to resolve the true path location of
the ‘to’ object, expanding any symbolic links or dots in the path name, up to
a maximum of four levels of symbolic links.

copy=pattern
This option can be repeated any number of times to build up a list of filenames
or wildcards which are to be copied rather than linked symbolically. The copy
is made on an age-comparison basis. A global variable may also be set to invoke
this feature See Section 4.9.13 [copylinks], page 40. Directories cannot be copied
in this way.

copytype=checksum/ctime
This specifies the basis for deciding whether to update a file which is to be
copied instead of linked See Section 4.11 [copy], page 57.

nofile=kill/force
This decides what happens to links which point to non-existent files. The
default action is to remove such links, or refuse to create them. By setting
the force option you can force cfengine to make symbolic links to files which
do not exist. This is useful for setting up links to filesystems which are not
permanently mounted.

exclude=pattern
This option can be repeated any number of times to build up a list of filenames
or wildcards which are to be excluded from the linking process. A global variable
may also be set to invoke this feature See Section 4.9.28 [excludelinks], page 43.

Chapter 4: Cfagent reference 103

ignore This works like the global ignore directive but here you may provide a private
list of ignorable directories and files. Unlike include, exclude this affects the
way cfengine parses directory trees.

recurse=number/inf
This option can only be used with multiple link operations See Section 4.24.2
[Multiple Links], page 103. If this option is specified, cfengine links only non-
directory objects. Directories are instead created and links within those direc-
tories are also created. The value of this option specifies the maximum number
of levels to which cfengine should recursively descend a link tree. inf means
infinite recursion. Cfengine also ignores files and directories in the ignore list
See Section 4.21 [ignore], page 98.

define=classlist
If a link is created or replaced, the colon, comma or dot separated list of classes
becomes defined.

The final feature of the links facility is connected to the use of the cfengine model for
mounting NFS filesystems. In particular it concerns the variable $(binserver). The easiest
way to understand this feature is to illustrate a couple of examples. Consider the following:

links:

any::

/local -> /${site}/${binserver}/local

The result of this command is quite different depending on which host is executing it. The
variable $(site) clearly has a fixed value, but the variable $(binserver) might expand
to any valid binary server for the host executing the program. See Section 4.7 [binservers],
page 30. The procedure cfengine adopts is to go through its list of mountables, keeping
only those mountable resources which belong to defined binary servers for the current host.
It then attempts to match a filesystem by substituting $(binserver) with each of its valid
binservers in turn and it matches the first one binary server which yields an existing file.

Note that every host is a binary server for itself, so that the value of $(binserver)
which has absolute priority is alway the same as the value of $(host). This ensures that
the link will always be made to a local filesystem if the rules of the model are upheld.

4.24.2 Multiple Links

With the link symbol +>, you opt to link all of the files in a directory to corresponding
files in another directory. This procedure is sometimes useful for installing software. In the
example

links:

myclass::

/usr/local/bin +> /usr/local/lib/perl/bin

/opt +>! /local

every file in the directory /usr/local/lib/perl/bin is linked symbolically to a corre-
sponding file in /usr/local/bin. The ‘pling’ character forces cfengine to replace old links

104 GNU cfengine

or plain files already existing. Old links are removed, whereas old files are saved by append-
ing ‘.cfsaved’ to the filename See Section 4.9.47 [repository], page 49.

Each time cfengine runs it goes through all of the files in the directory concerned and
checks the appropriate link accordingly. If new files appear, new links will be added. If a
file disappears but the link to it remains, a warning will be issued, unless the -L command
line option is used, in which case the link is deleted.

4.24.3 Link Children

The linkchildren directive is a closely related to the cfengine model for NFS filesystems. It
is a way of making links which embodies a rudimentary kind of ‘intelligence’.

Consider the following:
links:

any::

/usr/local/lib/emacs +> linkchildren

The word linkchildren automatically tells cfengine that it should look for an appropriate
file to link to on a binary server for the current host. The exact meaning of the above
statement is as follows. cfengine begins searching though the list of mountable resources,
discarding any filesystems which do not belong to valid binary servers. It looks for a
filesystem ending in ‘emacs’ (the last link of the left hand side). If all is well, these file
systems are already mounted and they can be searched. If no resource is found ending
in ‘emacs’, we go to the next link lib and look for a filesystem ending in ‘lib’. If this
is not found we go to local and so on. When a match is made, cfengine then tries to
locate the file by checking whether it exists relative to the matched filesystem. For exam-
ple, suppose ‘local’ matched with host:/site/host/local. It would then try to locate
host:/site/host/local/lib/emacs and link all of the children therein to the local file
directory /usr/local/lib/emacs.

Here is another example which makes reference to the cfengine model for mounting NFS
filesystems. Suppose you have a host with some spare disk space. You want to mount
/usr/local from the binary architecture server, but you also want to use the disk you have
locally. The following lines

links:

electron::

/$(site)/electron/local +> linkchildren

any::

/usr/local -> /$(site)/$(binserver)/local

have the effect of creating a directory /$(site)/electron/local and filling it with links
to all of the files and directories on the binary server’s mounted filesystem. It results in an
exact copy (by linkage) on the local disk, but does not use up your local disk space. The
space you have remaining could, for example, be used for software with a special license
for that host. The second link links /usr/local to the ‘nearest’ binary server. But the

Chapter 4: Cfagent reference 105

nearest binary server is always $(host) which means this evaluates to a file which now exists
because of the first command, so on the host ‘electron’ the directory /usr/local ends up
being a link to /$(site)/electron/local which is full of links to the binary server.

If you’ve caught your breath after that mouthful you probably have mixed feelings about
creating a bunch of links in this way. What happens if the files they point to are removed?
Then you are left with a lot of useless links. Actually this is no problem for cfengine, since
you can ask cfengine to simply remove links which point to non-existent files See Section 4.17
[files], page 84. Nevertheless, this feature clearly requires some caution and is mainly a spice
for advanced users of the cfengine model.

4.24.4 Relative and absolute links

When specifying symbolic linking, you can ask cfengine to change the link type to be either
relative to the source or to be an absolute path. What this means is the following. Consider
the following link:

/var/tmp/cfengine -> /local/cfengine

If we add the option type=relative, then instead of creating a link which points to
‘/local/cfengine’, the link is created pointing to the location

./../../local/cfengine

In other words, the link is relative to the calling directory ‘/var/tmp’.
If a link is specified as being absolute with the option type=absolute, then cfengine

attempts to resolve to value of the link so as to be the true path of the target. If the target
name contains a symbolic link, then this is expanded as far as possible to give the true path
to the file. For example, if ‘/local’ is really a link to ‘/site/myhost/local’ then the link
would point to ‘/site/myhost/local/cfengine’.

4.24.5 Hard Links

Cfengine will also allow you to create hard links to regular files. A hard link is in every way
identical to the original file, it merely has a different name (technically, it is a duplicate
inode). To create a hard link you use the link-option type=hard. For example:

links:

/directory/newname -> /directory/othername type=hard

Cfengine will not create hard links to directories or other special files. This is always a
slightly dubious practice and is best avoided anyway. POSIX says that the hard link can be
on a different device to the file it points to, but both BSD and System V restrict hard links
to be on the same device as their predecessors. Cfengine has no policy on this, but—in the
theoretical case in which the hard link and the predecessor were on different file systems—it
becomes near impossible to determine with certainly between a hard link and a very similar
regular file, and thus cfengine issues a warning in verbose mode about this eventuality.
Provided both link and predecessor are on the same filesystem cfengine determines the
status of hard links by comparing the device and inode numbers of the file pointed to.

106 GNU cfengine

4.25 mailserver

The mailserver declaration need only be used if you are using cfengine’s model for mount-
ing NFS filesystems. This declaration informs hosts of which NFS filesystem contains mail
for its users. All hosts apart from the mail-host itself must then mount the mail spool
directory across the network. The declaration looks like this:

mailserver:

class:: mailhost:/var/spool/mail

The result of the mailcheck command in the action-sequence is now to mount the filesystem
/var/spool/mail on the host mailhost. This action is carried out on any machine which
does not already have that filesystem mounted.

The mail spool directory is mounted, by default, onto the official mail spool directory
for the system which is parsing the program. In other words, on an HPUX system, the
spool directory is mounted on /usr/mail by default, whereas on a Sun system it would be
mounted on /var/spool/mail. The default location can be changed by using the resource
file. See Section 7.2 [cfrc resource file], page 150.

Chapter 4: Cfagent reference 107

4.26 methods

From version 2.1.0, cfagent provides for the execution of closed functions or "methods".
Methods are similar to the old idea of modules, but they are implemented in a way that
allows collaboration between different hosts within a network, using a common standard.
Methods must be cfengine programs however, wheras the module interface can be written
in any script language.

Modules are designed to offer a firewall-like proxy interface for remote method execution.
We can call methods a form of ‘voluntary RPC’, in which hosts execute methods for one
another on a purely voluntary basis. This builds in anti-spamming protection. The principle
used is that hosts should be immune to Denial of Service attacks; they should only be able
to disadvanatge themselves with the attempt.

(Remote method execution was not implemented until version 2.1.3. It is still consid-
ered experimental and is not recommended for large production environments until this
paragraph is removed from the documentation.)

Methods allow you to call an independent cfengine program, pass it arguments and
classes, and collect the results for use in your main program. It thus introduces parent-
child semantics into cfengine "imports". A method is more than an import. (Import is
analagous to a C #include, while a method is like a C function.) Communication is peer
to peer, by mutual consent. There is no "method server" that executes methods on remote
hosts. Hosts exchange information by invitation only. This is an unreliable service (in the
sense of UDP).

The order of method exeuction is not guaranteed. This results from the decoupling
between client request and service provision.� �

methods:

class::

function_name(parameters or none)

action=‘filename’

sendclasses=comma separated class list

returnvars=comma separated variable list or void

returnclasses=comma separated class list

server=ip-host/*

forcereplyto=ip address

owner=setuid

group=setgid

chdir=cd for child

chroot=sandbox directory
 	

108 GNU cfengine

Most of these functions will be familiar from other cfengine commands. Some special
ones are noted below:

action The name of the method file that should be defined in the modules directory
of the server host.

forcereplyto
Sometimes nameservice problems (especially with remote devices) can lead to
confusion about where a method should be sent. The caller can therefore declare
to the server which address it wants the reply to be marked for.

returnvars
Returns the values of the variables to the parent process. This acts as an access
control list for variable names transmitted by the child process. The names
returned by the child must match this list.

returnclasses
Returns the classes to the parent process, if and only if they are defined at the
end of the current method. This acts as an access control list for class names
transmitted by the child process. The names returned by the child must match
this list.

sendclasses
Transmits the current status of the named classes to the child process. In
other words, if the listed classes are defined, they become defined in the child
process, else they remain undefined. The class may still be defined in the child
by independent local definitions.

The function arguments may not be empty, but a null value can be transmitted with a
dummy value, e.g. Function(null) or function(void). Here is an example method call.

cfagent.conf

control:

actionsequence = (methods)

###

methods:

any::

SimpleMethod(null)

action=cf.simple

returnvars=null

returnclasses=null

server=localhost

With method file (located in the ModulesDirectory),

cf.simple

Chapter 4: Cfagent reference 109

control:

MethodName = (SimpleMethod)

MethodParameters = (null)

actionsequence = (timezone)

classes:

dummy = (any)

##

alerts:

dummy::

"This simple method does nothing"

ReturnVariables(void)

ReturnClasses(void)

On executing this example, the output is:

nexus$./cfagent -f ./cftest
cfengine:myhost:SimpleMethod: cfengine:nexus: This simple method does nothing

If the server name is a wildcard, e.g. * then this acts as a multicast or broadcast.

4.26.1 Localhost examples

The following example collects the tar file, unpacks it, configures and compiles it, then tidies
its files.

##

#

This is a cfengine file that calls a method.

It should be in the usual place for cfinputs

#

##

control:

actionsequence = (methods)

###

methods:

InstallTar(cfengine-2.1.0b7,/local/gnu)

action=cf.install

returnvars=null

returnclasses=null

server=localhost

110 GNU cfengine

We must install the method in the trusted modules directory (normally
/var/cfengine/modules or WORKDIR/modules).

##

#

This is an example method file, that needs to be

in the module directory /var/cfengine/modules

since this is the trusted directory

#

e.g. InstallFromTar(cfengine-2.1.0,/usr/local/gnu)

#

##

control:

MethodName = (InstallTar)

MethodParameters = (filename gnuprefix)

path = (/usr/local/gnu/bin)

TrustedWorkDir = (/tmp)

TrustedSources = (/iu/nexus/ud/mark/tmp)

TrustedSourceServer = (localhost)

actionsequence = (copy editfiles shellcommands tidy)

##

classes:

Force = (any)

##

copy:

$(TrustedSources)/$(filename).tar.gz

dest=$(TrustedWorkDir)/$(filename).tar.gz

server=$(TrustedSourceServer)

##

shellcommands:

"$(path)/tar zxf $(filename).tar.gz"

chdir=$(TrustedWorkDir)

"$(TrustedWorkDir)/$(filename)/configure --prefix=$(gnuprefix)"

chdir=$(TrustedWorkDir)/$(filename)

define=okay

okay::

Chapter 4: Cfagent reference 111

"$(path)/make"

chdir=$(TrustedWorkDir)/$(filename)

##

tidy:

$(TrustedWorkDir) pattern=$(filename) r=inf rmdirs=true age=0

##

#editfiles:

#

#{ $(TrustedWorkDir)/$(filename)/configure-opts

#

#AppendIfNoSuchLine "Something ???"

#}

##

alerts:

Force::

ReturnVariables(none)

ReturnClasses(success)

A more complex example is given below:

GetAnalysis("${parent1}",param2,ReadFile("/etc/passwd",300))

The name of the method that is in modulesdir

action=cf.methodtest

The variables that we get back should be called these names

with method name prefix

returnvars=a,b,c,d

This is an access list for returned classes. Classes will

only be handed back if they are included here

returnclasses=define1,define2,class1

The host(s) that should execute the method

server=localhost

Only localhost can decide these - not a remote caller

owner=25

group=root

chdir=/var/cfengine

chroot=/tmp

112 GNU cfengine

Here the function being called is the cfengine program ‘cf.methodtest’. It is passed
three arguments: the contents of variable parent1, the literal string "param2" and the first
300 bytes of the file ‘/etc/passwd’. On return, if the method gets executed, the values will
be placed in the four variables:

$(GetAnalysis.a) $(GetAnalysis.b) $(GetAnalysis.c) $(GetAnalysis.d)

If the classes define1 etc, are returned by the method, then we set them also in the
main program as

GetAnalysis_define::

In other words, the class name is also prefixed with the method name to distinguish it.
(returnclasses works like an access control list for setting classes, deciding whether or not
the main script should accept the results from the child method.). The remaining options
are as those for executing shell commands, and apply only on the host that executes the
function.

Both the client and server hosts must have a copy of the same method declaration.
The client should have a non-empty server= declaration. The server side should have no
server= declaration unless it is sending the request on recursively to other hosts. At present
only requests to localhost are allowed, so only there is automatic access to the rule.

The cfagent file that contains the method code must have the following declarations:� �
control:
MethodName = (identifier) MethodParameters = (spaced list of recipient variables or

files)
....
alerts:
Return variables are alerts to parent
ReturnVariables(comma separated list of variables or functions or void) Return-

Classes(comma separated list of classes)
 	
e.g.

control:

MethodName = (GetAnalysis)

MethodParameters = (value1 value2 /tmp/file1)

....

alerts:

Return variables are alerts to parent

ReturnVariables("${var1}","${var2}","var3",literal_value)

ReturnClasses(class1,class2)

The parameters transmitted by the parent are read into the formal parameters value1,
value2 and the the file excerpt is placed in the temporary file ‘/tmp/file1’.

The return classes are passed in their current state to the parent; i.e. if class1 is defined
then it is offered to the parent, but if it is not defined in the method, it is not passed on.
The parent can then choose to accept or ignore the value.

Chapter 4: Cfagent reference 113

4.26.2 Remote host examples

Methods can also be scheduled for execution on remote hosts.

• Both hosts must have an identical copy of the method stanza

• Public keys must be exchanged between the cooperating hosts

• Access must be granted to ‘/var/cfengine/rpc_out’ in cfservd.

Remote method execution is the same as local method execution except for some addi-
tional requirements. A list of collaborating peers must be added to the control section of
‘update.conf’.

control:

MethodPeers = (hostname list)

This list tells the agent which remote hosts to collaborate with, i.e. whom should we
contact to look for work that we have promised to perform? For example, to make two
hosts collaborate:

methods:

host1|host2::

MethodTest("my test!")

action=cf.methodtest

server=host2.iu.hio.no

returnclasses=null

returnvars=retval

ifelapsed=120

Note that an important aspect of remote method invocation is that there is only volun-
tary cooperation between the parties. A reply bundle from a finished method can collected
from a server by the client many times, causing the classes and variables associated with
it to be defined at regular intervals, controlled by the ifelapsed time. To avoid multiple
actions, you should lock methods or their follow-up actions with long ifelapsed times. This
is a fundamental ‘feature’ of voluntary cooperation: each party must take responsibilty for
the sense of what it receives from the other. This feature will not be to everyone’s taste,
and it is unconventional. However, voluntary cooperation provides a way of collaborating
without trust in a framework that forces us to confront the security issues directly. As such,
it is a successful experiment.

4.27 miscmounts

If you do not use the cfengine model for statically mounting NFS filesystems (or if there
are filesystems which do not naturally fall into the bounds of that model) then you can still
statically mount miscellaneous filesystems using a statement of the form:

114 GNU cfengine

� �
miscmounts:

class::

infohost:source-directory destination mode

infohost:source-directory destination mode=mode

ifelapsed=mins expireafter=mins
 	
For example

physics::

old syntax

libraryserver:/$(site)/libraryserver/data1

/$(site)/libraryserver/data1 ro

consistent syntax

libraryserver:/$(site)/libraryserver/data2

/$(site)/libraryserver/data2 mode=ro

host:/foo /foo mode=rw,bg,hard,intr

This statement would mount the directory ‘/$(site)/libraryserver/data’ physically at-
tached to host libraryserver onto a directory of the same name on all hosts in the group
physics. The modes ro and rw signify read-only and read-write respectively. If no mode
is given, read-write is assumed.

Chapter 4: Cfagent reference 115

4.28 mountables

The mountables declaration need only be used if you are using cfengine’s model for mount-
ing NFS filesystems. This declaration informs hosts of what filesystem resources are avail-
able for mounting. This list is used in conjunction with binservers and homeservers to
determine which filesystems a given host should mount, according to the cfengine model.

The syntax of the list is:
mountables:

class::

"filesystem to mount"

readonly=false/off/true/on
mountoptions=nfs-options

e.g.

mountables:

class::

server:/site/server/u1

server:/site/server/local

linuxhost:/site/linuxhost/local

linuxhost:/site/linuxhost/u1

Notice that binary and home-directory filesystems are mixed freely here. Cfengine deter-
mines which of the entries are homedirectories using the homepattern variable.

Every time you add a disk or a mountable partition to your network, you should add
the partition to the list of mountables.

NOTE: This list is read in order, top down. Cfengine looks for the first filesystem
matching a given binary server when expanding the variable $(binserver), so sometimes
the ordering of filesystems matters.

This list can be accessed in editfiles, to allow straightforward configuration of the auto-
mounter, using the command AutomountDirectResources.

116 GNU cfengine

4.29 processes

Using the processes facility, you can test for the existence of processes, signal (kill) processes
and optionally restart them again. Cfengine opens a pipe from the system ps command
and searches through the output from this command using regular expressions to match
the lines of output from ‘ps’. The regular expression does not have to be an exact match,
only a substring of the process line. The form of a process command is� �
processes:

class::

"quoted regular expression"

restart "shell command"

useshell=true/false/dumb
owner=restart-uid

group=restart-gid

chroot=directory

chdir=directory

umask=mask

signal=signal name

matches=number

define=classlist

elsedefine=classlist

action=signal/do/warn/bymatch
include=literal

exclude=literal

filter=filter_name

syslog=true/on/false/off

inform=true/on/false/off

ifelapsed=mins

expireafter=mins

SetOptionString "quoted option string"
 	
By default, the options sent to ps are "-aux" for BSD systems and "-ef" for System

V. You can use the SetOptionString command to redefine the option string. Cfengine
assumes only that the first identifiable number on each line is the process identifier for
the processes, so you must not choose options for ps which change this basic requirement
(this is not a problem in practice). Cfengine reads the output of the ps-command normally
only once, and searches through it in memory. The process table is only re-consulted if
SetOptionString is called. The options have the following meanings:

signal=signal name

This option defines the name of a signal which is to be sent to all processes
matching the quoted regular expression. If this option is omitted, no signal is
sent. The signal names have the usual meanings. The full list, with largely
standardized meanings, is

hup 1 hang-up

Chapter 4: Cfagent reference 117

int 2 interrupt

quit 3 quit

ill 4 illegal instruction

trap 5 trace trap

iot 6 iot instruction

emt 7 emt instruction

fpe 8 floating point exception

kill 9 kill signal

bus 10 bus error

segv 11 segmentation fault

sys 12 bad argument to system call

pipe 13 write to non existent pipe

alrm 14 alarm clock

term 15 software termination signal

urg 16 urgent condition on I/O channel

stop 17 stop signal (not from tty)

tstp 18 stop from tty

cont 19 continue

chld 20 to parent on child exit/stop

gttin 21 to readers pgrp upon background tty read

gttou 22 like TTIN for output if (tp->t_local<OSTOP)

io 23 input/output possible signal

xcpu 24 exceeded CPU time limit

xfsz 25 exceeded file size limit

vtalrm 26 virtual time alarm

prof 27 profiling time alarm

winch 28 window changed

lost 29 resource lost (eg, record-lock lost)

usr1 30 user defined signal 1

usr2 31 user defined signal 2

Note that cfengine will not attempt to signal or restart processes 0 to 3 on any
system since such an attempt could bring down the system. The only exception
is that the hangup (hup) signal may be sent to process 1 (init) which normally
forces init to reread its terminal configuration files.

restart "shell command"
Note the syntax: there is no equals sign here. If the keyword ‘restart’ appears,
then the next quoted string is interpreted as a shell command which is to be
executed after any signals have been sent. This command is only issued if the
number of processes matching the specified regular expression is zero, or if the
signal sent was signal 9 (sigkill) or 15 (sigterm) , i.e. the normal termination
signals. This could be used to restart a daemon for instance. Cfengine executes
this command and waits for its completion so you should normally only use this
feature to execute non-blocking commands, such as daemons which dissociate
themselves from the I/O stream and place themselves in the background. Some
unices leave a hanging pipe on restart (they never manage to detect the end of
file condition). This occurs on POSIX.1 and SVR4 popen calls which use wait4.
For some reason they fail to find and end-of-file for an exiting child process and
go into a deadlock trying to read from an already dead process. This leaves a
zombie behind (the parent daemon process which forked and was supposed to
exit) though the child continues. A way around this is to use a wrapper script
which prints the line "cfengine-die" to STDOUT after restarting the process.

118 GNU cfengine

This causes cfengine to close the pipe forcibly and continue. Cfengine places
a timeout on the restart process and attempts to clean up zombies, but you
should be aware of this possibility.

owner=,group=
Sets the process uid and gid (setuid,gid) for processes which are restarted. This
applies only to cfengine run by root.

chroot Changes the process root directory of the restarted process, creating a ‘sandbox’
which the process cannot escape from. Best used together with a change of
owner, since a root process can break out of such a confinement in principle.

chdir Change the current working directory of the restarted process.

useshell=true/false/dumb
When restarting processes, cfengine normally uses a shell to interpret and exe-
cute the restart command. This has inherent security problems associated with
it. If you set this option to false, cfengine executes restart commands without
using a shell. This is recommended, but it does mean that you cannot use any
shell operators or features in the restart command-line.
Some programs (like cron) do not handle I/O properly when they fork their
daemon parts, this causes a zombie process and normally hangs cfengine. By
choosing the value ‘dumb’ for this, cfengine ignores all output from a program
and does not use a startup shell. This prevents programs like cron from hanging
cfengine.

matches=number
This option may be used to set a maximum, minimum or exact number of
matches. If cfengine doesn’t find a number of matches to the regular expression
which is in accordance with this value it signals a warning. The ‘<’, ‘>’ symbols
are used to specify upper and lower limits. For example,

matches=<6 # warn number of matches is greater than or equal to 6

matches=1 # warn if not exactly 1 matching process

matches=>2 # warn if there are less than or equal to 2 matching processes

include=literal
Items listed as includes provide an extra level of selection after the regular
expression matches have been expanded. If you include one include option,
then only lines containing one or more of the literal strings or wildcards will be
matched.

exclude=literal
Process lines containing literal strings or wildcards in exclude statements are
not matched. Excludes are processed after regular expression matching and
after includes.

define=classlist
The colon, comma or dot separated list of classes becomes activated if the
number of regular expression matches is non-zero.

elsedefine=classlist
The colon, comma or dot separated list of classes becomes activated if the
number of regular expression matches is zero.

Chapter 4: Cfagent reference 119

action=signal/do/warn/bymatch
The default value of this option is to silently send a signal (if one was defined
using the signal option) to matching processes. This is equivalent to setting
the value of this parameter to ‘signal’ or ‘do’. If you set this option to ‘warn’,
cfengine sends no signal, but prints a message detailing the processes which
match the regular expression. If the option is set to bymatch, then signals are
only sent to the processes if the matches criteria fail.

Here is an example script which sends the hang-up signal to cron, forcing it to reread
its crontab files:

processes:

"cron" signal=hup

Here is a second example which may be used to restart the nameservice on a Solaris system:

processes:

solaris::

"named" signal=kill restart "/usr/sbin/in.named"

A more complex match could be used to look for processes belonging to a particular user.
Here is a script which kills ftp related processes belonging to a particular user who is known
to spend the whole day FTP-ing files:

control:

actionsequence = (processes)

#

Set a kill signal here for convenience

#

sig = (kill)

#

Better not find that dumpster here!

#

matches = (1)

processes:

#

Look for Johnny Mnemonic trying to dump his head, user = jmnemon

#

".*jmnemon.*ftp.*" signal=$(sig) matches=<$(matches) action=$(do)

No mercy!

120 GNU cfengine

The regular expression ‘.*’ matches any number of characters, so this command searches for
a line containing both the username and something to do with ftp and sends these processes
the kill signal.

You can arrange for signals to be sent, only if the number of matches fails the test. The
action=bymatch option is used for this. For instance, to kill process ‘XXX’ only if the
number of matches is greater than 20, one would write:

processes:

"XXX" matches=<20 action=bymatch signal=kill

See also filters See Section 4.18 [filters], page 90, for more complex searches.

Chapter 4: Cfagent reference 121

4.30 packages

The packages action allows you to check for the existance of packages on the system, as
determined by the package database you select. Optionally, if a package install command
was specified, the package can be installed if it is not there.

This operation is set up such that it tries not to make assumptions about the package
manager in use. For example, it should be possible to use RPM on a Solaris box.

The syntax summary is:� �
packages:

class::

package-name

pkgmgr=none/rpm/dpkg/sun
cmp=eq/lt/gt/ge/le/ne
version=version-string

define=class-list(,:.)

elsedefine=class-list(,:.)

action=none/install/remove

ifelapsed=mins

expireafter=mins
 	
cmp Determines how the version of the installed package will be compared to that

specified by the version attribute. Possible values include:
• eq The version installed must be equal to version

• lt The version installed must be less than version

• gt The version installed must be greater than version

• le The version installed must be less than or equal to version

• ge The version installed must be creater than or equal to version

• ne The version installed must not be equal to version

The default value for this attribute is eq.

version Specifies the package manager specific version string to match. If this is not
specified, then any version matches, and the value of the cmp attribute is ig-
nored. See the allowed values of pkgmgr below for an explation of how each
package manager will interpret this.

pkgmgr Selects the package manager database to query. This defaults to either the
value of the DefaultPkgMgr variable, or if that is not set, there is no default.
In that case, no checking will be done unless pkgmgr is set explicitly for each
package. Note that the default value ’‘none’’ listed is merely a pseudo-value,
and cannot actually be used, since it would make no sense anyway.
Each package manager will interpret the version and cmp attributes in its own
way. So, for example, when you use pkgmgr=rpm, the comparison will be done
with the same rules that RPM use if it were not being run through cfengine.

122 GNU cfengine

Currently, the following values are accepted:

rpm This uses the rpm command, which cfengine expects to find as
‘/bin/rpm’ to query the machine’s RPM database. The rpm check
assumes that you are using a version of RPM that understands the
concept of an epoch, which means that you will want to use RPM
version 3.0.3 or greater. Versions as early as 2.5.6 may work, but
it is doubtful. If multiple packages of the same name are installed
(i.e. kernel), then the check considers the package to be installed
at the specified version if at least one of them satisifies the criteria
specified by cmp and version.
The format of a RPM version string is: [epoch:]version[-release].
The version[-release] can be seen by simply running: rpm -q <pkg>.
In order to see the epoch, you must use a query format, like this:
rpm -q --queryformat "%{EPOCH}:%{VERSION}-%{RELEASE}\n"
<pkg>. Most packages do not have an epoch, and will print
‘(none)’ in the epoch space. In recent incarnations of RPM,
the absense of an epoch is interpreted as 0. This is also how
cfengine will interpret it. Be careful with this. If the installed
version of a package has an epoch greater than 0, and you do not
specify the epoch, unexpected results may happen. For example,
if you have a package installed, ‘foo-1:2.0-1’, and you specify
a version=3.0-1 and a cmp=gt, the check will be true, because
the installed version has an epoch of 1, and you did not specify
an epoch, which implies you wanted an epoch of 0. The rule here
is basically to always check the epoch of the package you really
want, and specify it. It may take a few extra extra seconds to
check, but it will save you lots of headaches later.

dpkg Please document me!

sun Please document me!

define Specifies the list of classes to define if the specified package is installed.

elsedefine
Specifies the list of classes to define if the specified package is not installed.

action Specifies whether the packages should actually do anything about the situation
it finds. The default for this is to do nothing. Of course, the classes in define
and elsedefine will alwass be defined, as applicable, regardless of the action
specified.

install Installs the package using the command associated with the se-
lected package manager, if it is not currently on the system at the
requested version, as follows:
• RPM - RPMInstallCommand
• DPKG - DPKGInstallCommand
• SUN - SUNInstallCommand

Each variable is of the format:

Chapter 4: Cfagent reference 123

FOOInstallCommand = ("/usr/bin/foo --args %s --more-args")

The —args are of course optional. The %s is replaced with a space-
separated list of the package names that were checked, and found
to not be installed.

remove CURRENTLY PARSED BUT NOT IMPLEMENTED

NOTE: classes are defined according to the result of the check, not any action performed as
a result of that check. In otherwords, if for example you have a situation where a package
is not installed, and the action= is set to install, the classes in elsedefine will be defined
regardless of whether or not the install was successful. Assuming the package installed, the
next run of cfagent will pick up that fact. This has to be done since the package installs
are batched, so there is no reliable way to know if a given package was installed.
Examples:

packages:

redhat_8_0::

m4 version=0:1.4.1-11 cmp=eq pkgmgr=rpm elsedefine=needsm4

In this first example, we are looking for the m4 package at exactly version 0:1.4.1-11. The
installed m4 package on a redhat 8 0 box has no epoch which is the same as zero. Specifying
it will keep you out of trouble. This check will cause needsm4 to be defined if the exact
version of m4 specified is not installed.

control:

redhat:;

DefaultPkgMgr = (rpm)

packages:

redhat_8_0::

make version=0:4.5-2 cmp=ge define=hasmake elsedefine=needsmake

In the second example, we use the DefaultPkgMgr variable to set the default for the pkgmgr
attribute to rpm. The actual version of make installed on recent redhat 8 0 machine is
1:3.79.1-14. Since the check is for greater than or equal to this version, the hasmake class
will be defined.

control:

redhat:;

DefaultPkgMgr = (rpm)

RPMInstallCommand = ("/usr/sbin/up2date %s")

packages:

redhat_8_0::

make define=hasmake elsedefine=needsmake action=install

This example is much like the second example, except that if the package is not installed,
cfengine will attempt to install it using the command in RPMInstallCommand, replacing
the %s with the package name, make. If there were multiple packages specified in this way,
the package installation would occur at the end of the package checks, and one command
would be run, with %s replaced with a list of all package names. In this example we chose
not to use a version spec, but it is allowed, and as always, is optional.
NOTE here that if make was not installed when the check is made, needsmake is defined,
regardless of whether or not the install succeeds. If the install is successful, the next cfagent
run will define hasmake.

124 GNU cfengine

4.31 rename

As of version 2.1.0 rename is a synonym for disable, See Section 4.15 [disable], page 69.

Chapter 4: Cfagent reference 125

4.32 required

This is a synonym for disks, See Section 4.13 [disks], page 66. This action tests for the
existence of a file or filesystem. It should be called after all NFS filesystems have been
mounted. You may use the special variable $(binserver) here.� �

required:

/filesystem freespace=size-limit define=class-list(,:.)

ifelapsed=mins expireafter=mins
 	
Files or filesystems which you consider to be essential to the operation of the system

can be declared as ‘required’. Cfengine will warn if such files are not found, or if they look
funny.

Suppose you mount your filesystem /usr/local via NFS from some binary server. You
might want to check that this filesystem is not empty! This might occur if the filesystem
was actually not mounted as expected, but failed for some reason. It is therefore not enough
to check whether the directory /usr/local exists, one must also check whether it contains
anything sensible.

Cfengine uses two variables: sensiblesize and sensiblecount to figure out whether
a file or filesystem is sensible or not. You can change the default values of these variables
(which are 1000 and 2 respectively) in the control section. See Section 4.9 [control],
page 33.

If a file is smaller than sensiblesize or does not exist, it fails the ‘required’ test. If a
directory does not exist, or contains fewer than sensiblecount files, then it also fails the
test and a warning is issued.

required:

any::

/$(site)/$(binserver)/local

If you set the freespace variable to a value (the default units are kilobytes, but you
may specify bytes or megabytes), e.g.

required:

/site/host/home1 freespace=50mb define=dotidy

/site/host/home2 freespace=10% define=dotidy

then cfengine will warn when the filesystem concerned has less than this amount of free
space. By adding a define tag, you can switch on any number of classes if this happens.
This allows you to activate special measures for dealing with a filesystem which is in danger
of becoming full.

126 GNU cfengine

4.33 resolve

The file /etc/resolv.conf specifies the default nameserver for each host, as well as the
local domain name. This file can also contain other information, but these are the only two
things cfengine currently cares about. In specifying nameservers you should use the dotted
numerical form of the IP addresses since your system may not understand the text form
if it is not correctly configured. You may list as many nameservers as you wish, with the
default server at the top of the list. The resolver normally ignores entries if you add more
than three. The statement:

resolve:

mygroup::

129.240.22.35

129.240.22.222

129.240.2.3

declares a list of nameservers for hosts in the group or class mygroup. When you add
the resolve command to the actionsequence, this declaration together with the domain
variable (set here to uio.no) results in a /etc/resolv.conf file of the form:

domain uio.no

nameserver 129.240.22.35

nameserver 129.240.22.222

nameserver 129.240.2.3

Note that the resolve action does not delete anything from the file /etc/resolv.conf
unless the EmptyResolveConf variable is set to ’true’ . It adds nameservers which do not
previously exist and reorders the lines of servers which do exist.

As of version 1.3.11, you may use a quoted string to add non-nameserver lines to this
file. For example:

resolve:

mygroup::

129.240.22.35

129.240.22.222

"# Comment line"

"order bind, files"

If the line begins with a non-numeric character, the word ‘nameserver’ is not added to the
line.

Chapter 4: Cfagent reference 127

4.34 shellcommands

Cfengine focuses on fairly simple-minded tasks in order to be as general as possible. In many
cases, you will therefore want to write a script to do something special on your system. You
can still take advantage of the classes you have defined by executing these scripts or shell
commands from this section.

The syntax is simply to quote the command you wish to be executed.� �
shellcommands:

class::

"command-string"

timeout=seconds

useshell=true/false
umask=octal number

owner=uid

group=gid

background=false/true
chdir=directory

chroot=directory

preview=true/false
inform=false/true

noabspath=false/true

ifelapsed=mins

expireafter=mins

define=class-list

elsedefine=class-list
 	
command-string

This is the command to be executed.

timeout If you set the optional timeout parameter, then cfengine will abort the specified
shellcommand if it exceeds the given time-limit (specified in seconds). This can
be useful for avoiding hung programs caused by hung network connections, etc.

useshell Some program lines, especially those that do not use any shell-specific capabil-
ities (such as redirection and wildcard expansion) can be run without the shell.
This is typically more secure, as the command line is not altered by the user
or by the system. It is also faster, as the shell does not have to be spawned in
order to run the given command. Use the useshell parameter to tell cfengine
to not use the shell to run this shellcommand.

umask The umask affects the permissions given to a file created by this shellcommand.
The umask specifies, specifically, the permissions that are to be taken away.

owner

128 GNU cfengine

group The user and group ID’s of the process can be set (using the owner and group
parameters respectively) to restrict the permissions of the shellcommand. This
can only be done if cfengine is executed by root; otherwise, the user and group
will remain that of the the user who started cfengine.

background

Run this command in the background if this is specified true. This will make
cfengine run faster, but no tests can be made (at least directly) on the results
of this command.

chdir Change to the specified directory before running this command.

chroot The chroot option changes the process root directory of the command, creating
a ‘sandbox’ which the process cannot escape from. Best used together with a
change of owner (using the owner parameter), since a root process can break
out of a chrooted environment.

preview The preview option means that the shellcommand will also be executed during
the --dry-run (-n) options. This allows cfengine to be more aware of the
results of scripts which define classes. This option should be used with care.
Scripts should conform to the protocol of not executing unnecessary commands
when the classes opt_dry_run is defined.

inform

noabspath

Normally, cfagent requires the command string to begin with a ‘/’ since it is
dangerous to rely on an implicit path. However, sometimes it it is appropriate to
override this. This behavior can be overridden using the noabspath parameter.

ifelapsed

The shellcommand specified will not be run unless the specified amount of time
(in minutes) has elapsed since the command was previously run.

expireafter

If this amount of time (in minutes) has elapsed since the command started,
then the command is aborted.

define Define the specified classes if the command finishes successfully.

elsedefine

Define the specified classes if the command does not finish successfully.

Variable substitution works within the strings. Here are some examples.

shellcommands:

sun4::

"/usr/lib/find/updatedb"

AllHomeServers.Sunday::

"/dir/noseyparker /$(site)/$(host)/u1 $(sysadm) nomail"

Chapter 4: Cfagent reference 129

AllBinaryServers.sun4.Saturday::

"/usr/etc/catman -w -M /usr/local/man"

"/usr/etc/catman -w -M /usr/local/X11R5/man"

"/usr/etc/catman -w -M /usr/man"

"/usr/etc/catman -w -M /usr/local/gnu/man"

If you need to write more advanced scripts which make detailed use of the classes defined
by cfengine, use the $(allclasses) variable to send a complete list of classes to your script.
An enviornment variable, CFALLCLASSES, is set and is in the format

CFALLCLASSES=class1:class2:class3...

This variable is kept up-to-date at any given time with only the classes which are defined.
The command line option ‘-u’ or ‘--use-env’ can be used to define an environment variable
which will be inherited by all scripts and contains the same information. This is not the
standard approach, since some systems cannot cope with this rapid change of environment
and generate a Bus Error.

Commands can be iterated over variable lists, provided there is at least one space between
each variable. For example:

control:

actionsequence =

(

shellcommands

)

var1 = (a:b:c)

var2 = (x:y:z)

shellcommands:

"/bin/echo $(var1) $(var2)"

This iterates over all values of the list variables. See 〈undefined〉 [Iterating over lists],
page 〈undefined〉. If you are iterating over a list, the time limit (in seconds) which is
specified in the timeout parameter applies to each separate iteration, not to the sum total
of all the iterations.

130 GNU cfengine

4.35 strategies

Strategies (introduced in cfengine version 2.0) are a way of picking from a set of classes
randomly. Each class is a possible course of action. A strategy group (of classes) is defined
as follows:

strategies:

{ my_strategy_alias

class1: "2"

class2: "3"

class3: "$(value)"

class4: "6"

class5: "1"

}

tidy:

class1.Hr00::

/home pat=*.mp3 age=0

class2.Hr02::

/home pat=*.wav age=0

The idea here is to randomly pick from a selected set of classes.
Specifically, each strategy is a class which is defined with a certain probability. An

integer weight is provided in quotes to represent the probability weight of the associated
class. When cfengine is run, it randomly picks one of the classes from each strategy. Using
strategies, you can choose different ways of configuring or protecting a system, at random,
thus confounding environmental attempts to break into the system.

Note that each strategy has a formal name (such as ‘my_strategy_alias’ in the exam-
ple), but this name is not used to attach a strategy to an action the same way that filters
or ACLs are.

Chapter 4: Cfagent reference 131

4.36 tidy

The tidy function is used to delete (remove permanently) unwanted files from a system. It
is useful for tidying up in /tmp or cleaning out core files from users’ home directories. The
form of an entry is:� �
tidy:

class::

/directory

pattern/include=wildcard

recurse=number/inf

age=days

size=number/empty

type=ctime/mtime/atime
dirlinks=keep/tidy/delete

rmdirs=[true/all]/[false/none]/sub
links=stop/keep/traverse/tidy

define=classlist

elsedefine=classlist

syslog=true/on/false/off

inform=true/on/false/off

ifelapsed=mins

expireafter=mins

filter=filter alias

ignore=pattern

exclude=pattern

xdev=true/on/false/off
 	
Note that, each of the options below can be written in either upper or lower case and
abbreviated by any unique abbreviation.

/directory

This is the directory name to directories which mark the start of a search for
files matching certain wildcards. The wildcard home may be used instead of an
explicit directory, in which case cfengine iterates over all home directories. It
is compulsory to specify a directory.

pattern=wildcard or include=wildcard
A wildcard or filename to match the files you wish to be deleted. The pattern
may contain the special symbols ‘?’ which matches a single character and ‘*’
which matches any number of characters as in the shell. These two options are
synonymous, as of version 2.0.x. Note that, this pattern is processed as a filter
before any other filter and, for safety reasons, it defaults to nothing. Thus, if
you want to use a filter to select the files, you should set ‘pattern=*’, else the
filter will not see any files at all.

132 GNU cfengine

exclude=wildcard
This does not work for the home directive; use the global ignore list for this.

ignore=wildcard
This does not work for the home directive; use the global ignore list for this.

recurse=number/inf
This specifier tells cfengine whether or not to recurse into subdirectories. If the
value is zero, only the named file or directory is affected. If the value is 1, it will
open at most one level of subdirectory and affect the files within this scope. If
the value is inf then cfengine opens all subdirectories and files beginning from
the specified filename. See Section 4.17.2 [Recursion], page 87.

age=days The age of a file in days represents a minimum access time elapsed before the
file will be deleted. In other word a file will be deleted if it has not been accessed
for days days.

links=stop/traverse/tidy
Normally cfengine does not descend into subdirectories which are pointed to by
symbolic links. If you wish to force it to do so (without using the -l command
line option) you may give this option the value true, or traverse, or follow.
To specify no recursion you set the value false or stop. Note that the value set
here in the cfengine program always overrides the value set by the -l command
line option, so you can protect certain actions from this command line option
by specifying a negative value here. If you specify no value here, the behaviour
is determined by what you specify on the command line.
The value links=tidy has the same effect as the ‘-L’ command line option
except that here it may be specified per item rather than globally. Setting this
value causes links which point to non-existent files to be deleted. This feature
will not work on commands with the ‘home’ wildcard feature. If you want to
clean up old links you should either user a files command or the command
line option which sets the tidy feature globally.

size=>number/empty
Old syntax size=number/empty . The value of this parameter decides the size
of files to be deleted. Files larger than this value will be deleted if they also
are older than the time specified in age. The default size is zero so that any
file which gets matched by another critereon is deleted. However, if you want
to single out only totally empty files, the empty may be used. With this option
only empty files, nevery files with anything in them, will be deleted, if older than
age. By default, the filesizes are in kilobytes, but kilobytes and megabytes may
also be specified by appending b,k,m to the numbers. Only the first character
after the number is significant so you may write the numbers however it might
be convenient, e.g. 14k, 14kB, 14kilobytes, the same as for disable.

type=ctime/mtime/atime
This value is used to set the type of time comparison made using age. The
default is to compare access times (atime) or the last time the file was read. A
comparison by modification time (mtime) uses the last time the contents of the
file was changed. The ctime parameter is the last time the contents, owner or

Chapter 4: Cfagent reference 133

permissions of the file were changed. Note that on directories, mtime is always
used for comparisons, since the very act of stat’ing alters atime and makes this
comparison meaningless.

dirlinks=keep/tidy/delete
This value is used to decide whether cfengine will delete links which point to
directories. The default value is to keep the links. Note that, if the travlinks
option is switched on, cfengine will not tidy or delete links which point to
directories, instead it follows them into the subdirectory. This is a supplement
to the rmdirs option. You need both to make links to directories disappear.
Note that, even if travlinks is set to true, cfagent will not follow symbolic links
that are not owned by the agent user ID; this is to prevent link race attacks,
in which users with write access could divert the agent to another part of the
filesystem,

rmdirs=true/false/all/sub
Normally cfengine will not delete directories. If this option is set to ‘true’ then
cfengine will delete any directories which are empty. Non-empty directories will
not be touched and no message will be given unless in verbose mode. Note that
this option overrides the above option dirlinks, so that even links which point
to empty directories will be removed. If this is set to ‘sub’ then the topmost
directory will not be removed, only sub-directories.

define=classlist
The colon, comma or dot separated list of classes becomes defined if any file
matching the specified pattern is deleted.

xdev Prevents cfengine from descending into file systems that are not on the same
device as the root of the rescurion path.

Take a look at the following example:
tidy:

AllHomeServers::

home pattern=core R=inf age=0

home pattern=*~ R=inf age=7

home pattern=#* R=inf age=30

any::

/tmp/ pat=* R=inf age=1

/ pat=core R=2 age=0

/etc pat=hosts.equiv r=0 age=0

In the first example, all hosts in the group AllHomeServers iterate a search over all user
home directories looking for ‘core’ files (older than zero days) and emacs backup files ‘*~’,
‘#*’ older than seven days.

The default values for these options are the empty string for the wildcard pattern, zero
for the recursion and a specification of the age is compulsory.

134 GNU cfengine

When cfengine tidies users’ home directories, it keeps a log of all the files it deletes each
time it is run. This means that, in case of accidents, the user can see that the file has been
deleted and restore it from backup. The log file is called .cfengine.rm and it is placed
in the home directory of each user. The file is owned by root, but is readable to the user
concerned.

Chapter 4: Cfagent reference 135

4.37 unmount

The unmount function unmounts non-required filesystems and removes the appropriate
entry from the filesystem table (/etc/fstab or equivalent). The syntax is simply� �
unmount:

class::

mounthost:filesystem

deletedir=true/false
deletefstab=true/false
force=true/false
ifelapsed=mins

expireafter=mins
 	
The options allow you to temporarily unmount a directory without actually removing it
from the filesystem table. The option force is not currently implemented and will likely
have to be system dependent. For example:

unmount:

physics::

libraryserver:/$(site)/libraryserver/data

If the device is busy then the actual unmount will not take place until it becomes free,
or the machine is rebooted. This feature should work on AIX systems, in spite of these
machines inherent peculiarities in the form of the filesystem table.

Some users do not mount filesystems on a directory of the same name as the source
directory. This can lead to confusion. Note, if you have problems removing a mounted
filesystem, try using the mountpoint of the filesystem, rather than the name of the filesystem
itself, in the unmount command.

136 GNU cfengine

Chapter 5: Cfservd and cfrun reference 137

5 Cfservd and cfrun reference

The server daemon is controlled by a file called ‘cfservd.conf’. The syntax of this con-
figuration file is deliberately modelled on cfengine’s own configuration file, but despite the
similarities, they are separate.

You can use groups and import in both files to break up files into convenient modules
and to import common resources, such as lists of groups.

Note that the classes in the ‘cfservd.conf’ file do not tell you the classes of host which
have access to files and directories, but rather which classes of host pay attention to the
access and deny commands when the file is parsed.

Authentication is not by class or group but by hostname, like the ‘/etc/exports’ file
on most Unix systems. The syntax for the file is as follows:

138 GNU cfengine

� �
control:

classes::

domain = (DNS-domain-name)

cfrunCommand = ("script/filename") # Quoted

MaxConnections = (maximum number of forked daemons)

ChecksumDatabase = (filename)

IfElapsed = (time-in-minutes)

DenyBadClocks = (false)

AllowConnectionsFrom = (IP numbers)

DenyConnectionsFrom = (IP numbers)

AllMultipleConnectionsFrom = (IP numbers)

TrustKeysFrom = (IP numbers)

AllowUsers = (mark systemuser)

LogAllConnections = (false/true)

SkipVerify = (IP numbers)

DynamicAddresses = (IP numbers)

BindToInterface = (IP number/hostname)

HostnameKeys = (true/false)

groups:

Group definitions

import:

Files to import

admit: | grant:

classes::

/file-or-directory

wildcards/hostnames

deny:

classes::

/file-or-directory

wildcards/hostnames root=hostlist encrypt=true/on
 	

Chapter 5: Cfservd and cfrun reference 139

Iteration of variables is allowed, hence:

control:

Split = (" ")

hostlist = ("10.10.10.1 10.10.10.2 10.10.10.3")

dirs = ("bin etc lib")

base = (/usr)

###

admit:

$(base)/$(dirs) $(hostlist)

results in:
Path: /usr/bin (encrypt=0)

Admit: 10.10.10.1 10.10.10.2 10.10.10.3 root=

Path: /usr/etc (encrypt=0)

Admit: 10.10.10.1 10.10.10.2 10.10.10.3 root=

Path: /usr/lib (encrypt=0)

Admit: 10.10.10.1 10.10.10.2 10.10.10.3 root=

The file consists of a control section and access information.

5.1 control

5.1.1 IP address ranges

In the access control lists below, host ranges can be specified in a number of ways i) as
substrings, ii) as address ranges denoted by the "-" hyphen, or iii) as CIDR (Classless Inter
Domain Routing) notation. For example

128.39.73

128.39.74.10/23

128.39.74-75.10-22

2001:700:700:3:290:27ff:fea2:4730-4790

2001:700:700:3:290:27ff:fea2:4730/64

In the CIDR notation, the slash followed by a number indicates the netmask, or the
number of bits which are common to a group of hosts. Normally, this is connected to a
specific subnet, but here it simply represents the number of bits from the left which are
fixed for matching; all remaining bits are wildcards. The following forms are equivalent:

128.39.74.

128.39.74.10/24

128.39.74.1-254

5.1.2 AllowConnectionsFrom

This variable allows a list of numerical IP masks to be specified, which cfservd will allow
connections from. If the list is not empty and a host whose IP address is not specified
attempts to connect to the daemon, its connection will be closed immediately. This can be
used to prevent hanging connection attacks from malicous hosts and other denial of service
attacks which would bind thread resources.

control:

AllowConnectionsFrom = (128.39.89 192.2.0.10)

140 GNU cfengine

5.1.3 AllowMultipleConnectionsFrom

This variable should contain a list of IP wildcards to hosts which are allowed simultaneous
sessions on the server. Hosts which are not in this list are allowed to connect only once,
i.e. they must terminate and reconnect in order to establish a new session. This is to
prevent a possible attacker from opening multiple sockets and never closing them, resulting
in a denial of service attack. Hosts IP’s can be placed here if they could have overlapping
copy sessions (e.g. long backup transfers which can run over time). This prevents the error
message "Multiple connections denied/spam shield".

5.1.4 AllowUsers

This list determines which users are to be allowed to connect to the daemon. Note that
there is no way of identifying users except by their public keys. If a malicious asserts their
identity, when no public key for the named user is known to the server, then they could
spoof the identity of that user. All users who should be allowed to connect need to be here.
This applies to use of cfrun.

AllowUsers = (mark root)

In other words, this is a "security by obscurity" first defence against picking up bad
keys, when the server is in trust mode, with respect to a host. The attacker must know a
valid user name in order to even try their luck entering into a key dialogue.

This reduces the probability that spoofing can be successful. The only real defence
against spoofing is to make sure that all required public keys are installed in advance, and
to switch off trust.

5.1.5 AutoExecCommand

This variable no longer exists in cfengine version 2.

5.1.6 AutoExecInterval

This variable no longer exists in version 2 of cfengine.

5.1.7 BindToInterface

If this is set to a specific IP address of an IP configured interface, cfservd will listen for
connections only on that interface. On Multi-homed hosts this allows one to restrict the
traffic to one interface. Note, Unix only allows one or all interfaces to be selected. An
interface must be configured with an IP address in order to be bound.

5.1.8 ChecksumDatabase

This is the path and filename to a database which will cache MD5 checksum values server-
side. This optimization is only available if you have the Berkeley database library ‘libdb’ on
your system. If this variable is not defined, no database caching will be used and checksum
values will be computed directly on request. The utility of this solution is a trade-off
between the time it takes to compute the checksum versus the time for a disk-based lookup.

Chapter 5: Cfservd and cfrun reference 141

5.1.9 cfrunCommand

This string is the command which you would like to be executed remotely by the cfrun
command.

5.1.10 DenyBadClocks

If this is set to off, cfservd will not deny access to clients whose clocks are off by more than
one hour. The default is to deny access to systems whose clocks differ by more than one
hour. This can prevent messages of the form ‘Can’t stat’ file when remote copying.

5.1.11 DenyConnectionsFrom

Hosts which are included by the allow-list above can be explicitly denied access using this
list.

control:

DenyConnectionsFrom = (128.39.89.76) # rogue host

5.1.12 HostnameKeys

If this variable is set to true/on, it causes cfservd to lookup and store trusted public keys
according to their DNS fully qualified host name, instead of using the IP address. This can
be useful in environments where hosts do not have fixed IP addresses, but do have fixed
hostnames.

HostnameKeys = (on)

This method of storing keys is not recommended for sites with fixed IP addresses, since it
removes one security barrier from a potential attacker by potentially allowing DNS spoofing.

5.1.13 IfElapsed

The IfElapsed anti-spamming filter is also built into cfservd so that a remote user cannot
even get as far as causing cfengine to parse its input files (which could be used for spamming
in itself). The time is in minutes, the default is one hour.

5.1.14 LogAllConnections

If set to true, every successful connection will be logged to syslog. This could be useful for
identifying abuses of the service, if the server should come under attack, e.g. a denial of
service attack. The IP address can then be excluded from the allowed connections list.

5.1.15 MaxConnections

This integer value sets a limit on the maximum number of child daemon threads which
cfservd will ‘fork’ in order to handle remote requests. The default value is ten.

5.1.16 TrustKeysFrom

Hosts which are included in this list are automatically trusted, if cfservd does not know
their public key. This allows public keys to be exchanged. Cfservd will not automatically
accept a public key from a host it does not know, since the key will be used to assert strong

142 GNU cfengine

authentication later. Once a public key has been associated with an IP address, it will never
be updated, unless the existing key is deleted by hand.

control:

TrustKeysFrom = (128.39.89.76) # trusted host

TrustKeysFrom = (128.39.89.76/24) # trusted subnet

5.1.17 DynamicAddresses

Hosts which are included in this list are assumed to have IP addresses which can change
with time, e.g. hosts which are given IP addresses by DHCP or a BOOTP like protocol.

control:

DynamicAddresses = (128.39.74.100-200) # DHCP range

If cfservd receives a connection from an IP address that is in this list, and trustkey is
true, the existing key for that IP address can be replaced with a new key, and the old key is
recorded in a "used keys" list, access is granted. If trust is switched off, the server looks in
the "used key list" to see if the key has been seen before. If not access is refused. If it has
been seen before – it uses this earlier trust to accept the connection and replace the IP-key
binding.

Note that used keys are kept in a database for easy lookup, whereas fixed keys are kept
in files for easy administration. If host keys change or are reinstalled on the dynamically
allocated hosts, then this database should probably be deleted to purge keys that become
illegal.

5.2 admit, grant and deny

5.2.1 root=

This list specifies the names of hosts which are to have read access to files, regardless of
the owner of the file. This effectively gives root users on connecting hosts privileges to
non-root owned files on the server, but not vice-versa, similar to the NFS root mapping,
except that there is no question of a client being able to modify files on the server. Caution:
cfservd trusts the DNS service, so be aware that cache poisoning attacks are a possible way
of bypassing access controls.

As of version 2.0.4: Once a verified host address has been identified with a functioning
public/private key authentication, the IP address is added to the SkipVerify list, so that
time is not wasted in verifying reverse lookups, when the identify can be verified more
efficiently and securely by a key mechanism.

5.2.2 encrypt=true

If this option is set, cfservd will only serve the named files if the copy access type is secure,
i.e. on an encrypted link. This presupposes that cfengine has been compiled with a working
OpenSSL library.

Chapter 5: Cfservd and cfrun reference 143

5.2.3 SkipVerify

If connecting hosts use a Network Address Translator in order to share an IP address, reverse
lookup will fail to give a correct verification of host identity. You can switch off cfservd’s
verification of IP host identity for specific IP addresses or patterns using this command.
E.g.

SkipVerify = (192.0.0.10 192.0.2.)

This does not affect key verification.

NOTE!! This is a security risk because it means that cfservd implicitly trusts the
connecting hosts! You should be very careful in using Network Address Translators in a
secure environment. It is not recommended for sites which require a high level of security.

5.3 cfrun

The general syntactic form of the cfrun command is� �
cfrun -option --longoption class1 class2 ...
 	

Since cfrun addresses remote hosts, there is an ambiguity in whether options are intended
for the cfrun command itself, on the local host, or whether they are to be passed on to
the agent on the remote hosts. To clarify this distinction, the arguments are organized as
follows:� �

cfrun -local options -- remote options -- remote classes
 	
Local options are processed by cfrun on the local host; remote options are passed on as
options to the remote cfagent (actually to the command defined in cfrunCommand in the file
‘cfservd.conf’; remote classes are processed by the remote cfservd service, and specifiy
classes which must be satisfied by the remote host in order to invoke the remote command.

The ‘-q’ and ‘-I’ options are always assumed when executing cfengine remotely, so that
SplayTime is effectively zero when polling hosts serially, and the output always shows what
is happening on the remote hosts.

On connecting to a remote host, cfengine attempts to obtain credentials by exchanging
keys. Unknown keys, in a key exchange, need to be explicitly accepted on trust. Normally,
the interactive cfrun program prompts the user explicitly, (like in the secure shell, ssh,
connections). This can be annoying if there are many hosts to connect to. The ‘-T’ option
tells cfengine to trust all new keys. This option should be used with caution, and only at
times when one is sure that the hosts one is connecting to are trustworthy.

Each host evaluates the classes sent by cfrun and decides whether cfengine should be
invoked. Only hosts which belong to the classes defined on the cfrun command line are
executed. This allows you to single out groups of hosts which should execute cfengine, based

144 GNU cfengine

on the very classes which you have defined for your configuration. If no classes are sent on
the command line, then all hosts are run.

cfrun uses a configuration file which is located under the CFINPUTS directory in order to
determine which hosts and in which order it should try to connect. Because cfengine always
uses a reliable TCP protocol for connections, it verifies each connection rather than simply
broadcasting openly. Using this file you can even simulate broadcasting to hosts outside
your subnet.

This file should contain every host name you ever want to configure remotely, because you
can still select subsets of the file by specifying classes which the remote host will understand.
If the remote host is not in one of the classes you specify when you run cfrun, then it will
simply ignore the request. Conversely, if you do not place a host in this file, it will never
be contacted when you use the cfrun command. The format of the file is as follows� �
#

Comment ..

#

domain=my.domain

access=user1,user2

outputdir=directory

maxchild=number limit

hostnamekeys=true/false

hostname1 options

hostname2:port options

...

include=cfrun.site1.external.hosts

include=cfrun.site1.internal.hosts

include=cfrun.site2.private.hosts

include=cfrun.site2.shared.hosts
 	
If the option outputdir is present, cfrun forks a separate process for each host and passes
the output to files in a named directory. The maxchild line limits the number of forked
processes.

It is important to add the domain-name to this file. The options you specifiy in this file,
per host, are added to those you might specify on the command line when invoking cfengine
remotely. For instance, you might know of a bug on one host and decide not to perform
interface configuration on that one machine. You would write a line like this:

funny.domain -- -i # problem host

You could use cfrun inside one of your cfengine configuration files in order to remotely
execute cfengine on all of the other network machines, by setting up a host list. The
disadvantage however is that cfengine has to poll the systems on the network, which means
that cfengine cannot be working in parallel on all hosts.

Some other examples:

e.g. cfrun -- -- linux Run on all linux machines

Chapter 5: Cfservd and cfrun reference 145

cfrun -- -p Ping and parse on all hosts

cfrun -v -- -p Ping all, local verbose

cfrun -v -- -k -- solaris Local verbose, all solaris, but no copy

Amongst the local options, one may specify a subset of the hosts which are to be con-
tacted by cfrun, i.e. to avoid processing the entire list of hosts. For example, to contact
only host1 and host2, given that they are already in the list of hosts.

cfrun -v host1 host2

cfrun -v host1 host2 -- -p

5.4 Firewalls and NATs

Firewalls and Network Address Translators (NAT) can be a problem for addressing. Suppose
you have a firewall and with a private IP-range behind the firewall. You want to update the
nodes from a central host. You can do a two stage configuration: first update the firewall
and then update from the firewall to the nodes.

But suppose you already use SNAT (Source Network Address Translation) and DNAT
(Destination ...) for the nodes. With DNAT you can say that socket 22000 on the firewall
is routed to host-name:5308. DNAT gives us the possibilty to update the nodes from a
central server in one step instead of two.

If the port command is given cfrun uses this to connect to the client instead of the default
(5308) one. Here is an example (‘cfrun.hosts’):

domain=example.org

access=mark,sigmund

hostnamekeys=true

node1.example.org

node2.example.org:22000 -DNis

node2.example.org:22001

This connects to: 1) node1 with standard port, 2) node2 with port 22000 and extra
options -DNis and, 3) node2 with port 22000.

146 GNU cfengine

Chapter 6: Cfexecd reference 147

6 Cfexecd reference

In wrapper mode (non-forking, non-daemon mode), cfagent is run by adding a line to the
root crontab file of each system:

0,30 * * * * /usr/local/sbin/cfexecd -F

This is enough to ensure that cfengine will get run. Any output generated by this job,
will be stored in ‘/var/cfengine/outputs’.

The program cfexecd operates as a wrapper for cfagent. It has the following options:
-h (--help)

-d (--debug)

-v (--verbose)

-f (--file)

-q (--no-splay)

-F (--no-fork)

-1 (--once)

-g (--foreground)

-p (--parse-only)

-L (--ld-library-path)

In addition, if you add the following to the file ‘cfagent.conf’, the system administrator
will be emailed a summary of any output:

control:

smtpserver = (mailhub.example.org) # site MTA which can talk smtp

sysadm = (mark@example.org) # mail address of sysadm

EmailMaxLines = (n) # max lines of output to email

OutputPrefix = ("!") # Line prefix

Fill in suitable values for these variables. EmailMaxLines may be set to 0 to disable email
output, a postive integer to set a limit, or inf to email the whole output regardless of its
size. If undefined, EmailMaxLines defaults to 100.

An alternative, or additional way to run cfengine, is to run the ‘cfexecd’ program is dae-
mon mode (without the ‘-F’) option. In this mode, the daemon lives in the background and
sleeps, activating only in accordance with a scheduling policy. The default policy is to run
once every hour (equivalent to Min00_05). Here is how you would modify ‘cfagent.conf’
in order to make the daemon execute cfagent every half-hour:

control:

When should cfexecd in daemon mode wake up the agent?

schedule = (Min00_05 Min30_35)

Note that the time specifications are the basic cfengine time classes. Although one of
these methods should suffice, no harm will arise from running both cron and the cfexecd
side-by-side. Locking mechanisms are used by cfagent to ensure that no contention will
occur.

Note, that if problems with library path for compiled-in libraries occur, an explicit library
path can be specified with the ‘-L’ option.

0,30 * * * * /usr/local/sbin/cfexecd -F -L /local/iu/lib:/local/lib:/local/gnu/lib

148 GNU cfengine

Chapter 7: Problem solving 149

7 Problem solving

7.1 ‘cf.preconf’ bootstrap file

In some cases you will want to run cfengine on a system to configure it from scratch. If the
system is in a very bad way, it might not even be able to parse the cfengine configuration
file, perhaps because the network was not properly configured or the DNS (Domain Name
Service) was out of action. To help prevent this situation, cfengine looks for a script called
cf.preconf which gets executed prior to parsing and can be used to perform any emergency
tests. This file needs only contain enough to get the system to parse the configuration files.

cf.preconf may be any script in any language. It need not exist at all! It is fed one
argument by cfengine, namely the system hard-class for the current system (e.g. ultrix).
Here is an example:

#!/bin/sh

#

cf.preconf is an emergency/bootstrap file to get things going

in case cfengine is unable to parse its config file

#

backupdir=/iu/nexus/local/iu/etc

#

If these files don’t exist, you might not be able to parse cfagent.conf

#

if [! -s /etc/resolv.conf]; then

echo Patching basics resolv.conf file

cat > /etc/resolv.conf << XX

domain iu.hioslo.no

nameserver 128.39.89.10

XX

fi

#

SVR4

#

if ["$1" = "solaris"]; then

if [! -s "/etc/passwd"]; then

echo Patching missing passwd file

/bin/cp $backupdir/passwd /etc/passwd

fi

if [! -s "/etc/shadow"]; then

echo Patching missing passwd file

/bin/cp $backupdir/shadow /etc/shadow

fi

fi

150 GNU cfengine

#

BSD 4.3

#

if ["$1" = "linux"]; then

if [! -s "/etc/passwd"]

then

echo Patching missing passwd file

/bin/cp $backupdir/passwd.linux /etc/passwd

fi

fi

Note - in some circumstances, it might be appropriate to exit cfengine altogether after
this script. If the script outputs a string containing the text "cfengine-preconf-abort", then
cfagent will abort execution immediately after this.

7.2 ‘cfrc’ resource file

If, for some reason you are not satisfied with the defaults which cfengine uses, then you can
change them by making an entry in the resource file. The default values are defined in the
source code file classes.c in the distribution. The format of the resource file is:

hardclass.variable: value

For example, you might want to forget about where your HPUX system mounts its mail
directory and mount it under /usr/spool/mail. In this case you would add the line:

hpux.maildir: /usr/spool/mail

To redefine the filesystem table for GNU/linux, you would write:
linux.fstab: /etc/linuxfstab

The full list of re-definable resources is:
mountcomm # command used to mount filesystems

unmountcomm # command used to unmount filesystems

ethernet # name of the ethernet device

mountopts # options to above mount command

fstab # the name of the filesystemtable

maildir # the location of the mail directory

netstat # the full path to netstat and options

pscomm # the path to the system’s ps command

psopts # the options used by ps (default aux/ef)

You should never need to redefine resources unless you decide to do something non-
standard. Interested readers are referred to the values in classes.c.

Cfengine is easily extensible so as to support a variety of architectures. You can even
add your own. To do so you need, first of all, to define a new class for the operating system
concerned. The file classes.c has been separated off from the remainder of the source code
so that you can easily see which data structures need to be extended.

To make life as straightforward as possible, three unused classes have been defined. They
are called (unremarkably) unused1, unused2 and unused3. If you add any further classes,
it will be necessary to increase the constant clssattr defined in cf.defs.h by one for every
new addition. You do not need to change clssattr if you simple replace one of the unused
classes by a real class.

Chapter 7: Problem solving 151

To see fully the impact of what you need to do, you should make a search for the strings
unused? in all of the source files. Certain special cases need to be handled for each operating
system. For example, the form of the filesystem table is quite radically different on some
systems such as AIX. One thing you must do is to fill in the default values for the new
operating system in the file classes.c.

If you fill in the details for a new operating system before it finds its way into a new
release, you might consider sending the details to the bug list in the next paragraph.

152 GNU cfengine

Chapter 8: Example configuration files 153

8 Example configuration files

Here is a sample from a large configuration file, just to give you some ideas. The file is
broken up into manageable pieces for convenience.

8.1 cfagent.conf

###

#

CFENGINE CONFIGURATION FOR site = iu.hioslo.no

#

This file is for root only.

#

##

###

#

BEGIN cfagent.conf

#

###

import:

#

Split things up to keep things tidy

#

any::

cf.groups

cf.main

cf.site

cf.motd

hpux:: cf.hpux

linux:: cf.linux

solaris:: cf.solaris

sun4:: cf.sun4

ultrix:: cf.ultrix

freebsd:: cf.freebsd

#

Do you want to do this ?

#

AllHomeServers:: cf.users

###

#

END cfengine.conf

#

###

8.2 cf.groups

154 GNU cfengine

##

#

cf.groups - for iu.hioslo.no

#

This file contains all group/class definitions

#

###

###

#

BEGIN cf.groups

#

###

groups:

#

Define some groups

#

iu = (nexus ferengi regula borg dax lore axis worf daystrom voyager

aud1 aud2 aud3 aud4 bajor ds9 takpah takpeh nostromo galron

thistledown rama chaos pc-steinarj pc-hildeh way jart kosh)

diskless = (regula ferengi lore)

standalone = (nexus axis dax borg worf daystrom voyager

aud1 aud2 aud3 aud4 bajor ds9 takpah takpeh

nostromo galron thistledown rama pc-torejo

pc-steinarj pc-hildeh)

AllHomeServers = (nexus)

AllBinaryServers = (nexus borg)

XBootServer = (nexus)

WWWServers = (nexus)

FTPserver = (nexus)

NameServers = (nexus)

PasswdServer = (nexus)

BackupHost = (nexus)

MailHub = (nexus)

MailClients = (iu -nexus)

###

#

END cf.groups

#

###

8.3 cf.main

##

#

cf.main - for iu.hioslo.no

#

Chapter 8: Example configuration files 155

This file contains generic config stuff

#

###

###

#

BEGIN cf.main

#

###

control:

access = (root) # Only root should run this

site = (iu)

domain = (iu.hioslo.no)

sysadm = (drift@iu.hioslo.no)

repository = (/var/spool/cfengine)

netmask = (255.255.255.0)

timezone = (MET)

nfstype = (nfs)

sensiblesize = (1000)

sensiblecount = (2)

editfilesize = (20000)

mountpattern = (/$(site)/$(host))

homepattern = (u?)

#

If we undefine this with cfengine -N longjob

then we switch off all jobs labelled with this class

#

addclasses = (longjob)

#

Macros & constants are inherited downwards in imports

but are not passed up to parent files. Good idea to

define them all here

#

masterfiles = (/iu/nexus/local/iu)

main_server = (nexus)

cfbin = (/iu/nexus/local/gnu/lib/cfengine/bin)

gnu = (/local/gnu)

ftp = (/local/iu/ftp)

nisslave = (dax)

nisfiles = (/iu/nexus/local/iu/etc)

#

The action sequence for daily (full) runs and

for hourly updates (called with -DHourly)

#

Hr00::

156 GNU cfengine

actionsequence =

(

copy

mountall

mountinfo

checktimezone

netconfig

resolve

unmount

shellcommands

addmounts

links.Prepare

files.Prepare

directories

links.Rest

mailcheck

mountall

required

tidy

disable

editfiles

files.Rest

processes

)

!Hr00::

actionsequence =

(

resolve

shellcommands

copy

editfiles

processes

links

)

force::

actionsequence =

(

files.Prepare.Rest

tidy

)

##

homeservers:

iu:: nexus

binservers:

iu.solaris:: nexus

iu.linux:: borg

mailserver:

Chapter 8: Example configuration files 157

any:: nexus:/var/mail

mountables:

any::

nexus:/iu/nexus/u1

nexus:/iu/nexus/u2

nexus:/iu/nexus/u3

nexus:/iu/nexus/u4

nexus:/iu/nexus/u5

nexus:/iu/nexus/u6

nexus:/iu/nexus/ua

nexus:/iu/nexus/ud

nexus:/iu/nexus/local

nexus:/opt/NeWSprint

nexus:/opt/AcroRead

borg:/iu/borg/local

dax:/iu/dax/local

miscmounts:

linux||freebsd:: nexus:/iu/nexus/local /iu/nexus/local ro

##

broadcast:

ones

defaultroute:

cadeler30-gw

##

resolve:

128.39.89.10 # nexus

158.36.85.10 # samson.hioslo.no

129.241.1.99

##

tidy:

#

Some global tidy-ups

#

/tmp/ pat=* r=inf A=1

/var/tmp pat=* r=inf A=1

/ pat=core r=1 A=0

/etc pat=core r=1 A=0

##

ignore: # Don’t check or tidy these directories

158 GNU cfengine

/local/lib/gnu/emacs/lock/

/local/tmp

ftp

projects

/local/bin/top

/local/lib/tex/fonts

/local/iu/etc

/local/etc

/local/iu/httpd/conf

/usr/tmp/locktelelogic

/usr/tmp/lockIDE

RootMailLog

#

Emacs lock files etc

#

!*

/local/lib/xemacs

#

X11 keeps X server data in /tmp/.X11

better not delete this!

#

.X11

#

Some users like to give a file or two 777 protection here

so netsurfers can update a log or counter when running as

‘nobody’

#

www

###

disable:

/etc/hosts.equiv

/etc/nologin

/usr/lib/sendmail.fc

###

#

END cf.main

#

###

8.4 cf.site

##

#

cf.site - for iu.hioslo.no

Chapter 8: Example configuration files 159

#

This file contains site specific data

#

###

###

#

BEGIN cf.site

#

###

links:

Prepare::

/local -> /$(site)/$(binserver)/local

/usr/local -> /local

dax::

/iu/dax/local +> /iu/nexus/local

/projects -> /iu/dax/local/projects

/iu/nexus/u1/sowille/data -> /iu/dax/scratch/data

XBootServer::

#

Set up a /local/tftpboot area where all X terminal

stuff will be kept.

#

/tftpboot -> /local/tftpboot

/local/tftpboot/td/configs -> /local/tftpboot/td/examples/configs

/etc/bootptab -> /tftpboot/bootptab

/tftpboot/usr/lib/X11/td -> /tftpboot/td

NameServers::

/etc/named.boot -> /local/iu/named/named.boot

MailHub::

/etc/mail/sendmail.cf ->! /iu/nexus/local/mail/sendmail.cf

MailClients.solaris::

/etc/mail/sendmail.cf ->! /iu/nexus/local/mail/client.cf

nexus::

/local/bin +> /local/latex/bin

###

disable:

#

We run Berkeley sendmail and the config files are

160 GNU cfengine

all under /iu/nexus/local/lib/mail

#

/etc/aliases

WWWServers.Sunday::

#

Disabling these log files weekly prevents them from

growing so enormous that they fill the disk!

#

/local/iu/httpd/logs/access_log rotate=empty

/local/iu/httpd/logs/agent_log rotate=empty

/local/iu/httpd/logs/error_log rotate=empty

/local/iu/httpd/logs/referer_log rotate=empty

#

CERT warning, security fix

#

any::

/usr/lib/expreserve

FTPserver.Sunday.Hr00::

/local/iu/xferlog rotate=3

###

files:

Prepare::

/etc/motd m=0644 r=0 o=root act=touch

/.cshrc m=0644 r=0 o=root act=touch

PasswdServer::

/local/iu/etc/passwd m=0644 o=root g=other action=fixplain

/local/iu/etc/shadow m=0644 o=root g=other action=fixplain

WWWServers.Rest::

/local/iu/www m=775 g=www act=fixall r=inf

/local/iu/httpd/conf m=664 o=root g=www act=fixall r=inf

/local/iu/www/cgi-bin-public/count_file m=777 o=root g=www act=fixplain

FTPserver::

#

Make sure anonymous ftp areas have the correct

protection, or logins won’t be able to read

files - or perhaps a security risk. This is

Solaris 2 specific...

#

Chapter 8: Example configuration files 161

$(ftp)/pub mode=755 o=ftp g=ftp r=inf act=fixall

$(ftp)/Obin mode=111 o=root g=other act=fixall

$(ftp)/etc mode=111 o=root g=other act=fixdirs

$(ftp)/usr/bin/ls mode=111 o=root g=other act=fixall

$(ftp)/dev mode=555 o=root g=other act=fixall

$(ftp)/usr mode=555 o=root g=other act=fixdirs

Prepare::

/etc/shells mode=0644 action=touch

AllBinaryServers.Rest.longjob::

/local mode=-0002 r=inf owner=root,bin group=0,1,2,3,4,5,6,7,staff

links=tidy action=fixall

/local/iu/RootMailLog m=0666 action=touch

dax.Rest::

/iu/dax/scratch r=0 o=root mode=1777 action=fixall

/iu/dax/local/projects r=0 o=root mode=755 action=fixdirs

nexus::

/local/mail/sendmail.cf o=root m=444 act=fixplain

/iu/nexus/ua/robot/.rhosts o=robot m=600 act=touch

/local/iu/named/pz o=root m=644 act=fixall r=1

/local/latex/lib/tex/texmf/fonts owner=root

mode=1666

recurse=inf

action=fixall

###

tidy:

#

Make sure the file repository doesn’t fill up

#

/var/spool/cfengine pattern=* age=3

/var pattern=core age=0 r=inf

/var/spool/mqueue pattern=* age=14 type=mtime

BackupHost::

Here we tidy old backup tar files from the backup area

A special tmp area gets cleared every 4 days. The files

are created by Audun’s backup help script (see shellcommands)

/iu/nexus/backup1 pat=* age=7

###

162 GNU cfengine

shellcommands:

PasswdServer::

Build and install the BSD compatible passwd file

from the master passwd/shadow file on Solaris

"/local/iu/bin/BuildPasswdFiles"

"/local/iu/bin/BuildGroupFiles"

BackupHost.Sunday.Hr00|BackupHost.Wednesday.Hr00::

#

Make a system backup of /iu/nexus/u? with Audun’s script

#

"$(cfbin)/cfbackup -p -f /iu/nexus/backup1 -s /iu/nexus/ud"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup1 -s /iu/nexus/ua"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup1 -s /iu/nexus/u1"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup1 -s /iu/nexus/u2"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup2 -s /iu/nexus/u3"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup2 -s /iu/nexus/u4"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup2 -s /iu/nexus/u5"

"$(cfbin)/cfbackup -p -f /iu/nexus/backup2 -s /iu/nexus/u6"

nexus.Sunday.longjob.Hr00::

#

See how much rubbish users have accumulated each Sunday

#

"$(cfbin)/noseyparker /iu/nexus/u1 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/u2 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/u3 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/u4 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/u5 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/u6 $(sysadm) "

"$(cfbin)/noseyparker /iu/nexus/ua $(sysadm) nomail"

"$(cfbin)/noseyparker /iu/nexus/ud $(sysadm) nomail"

nexus.longjob.Hr00::

#

Update the GNU find/locate database each night

#

"$(gnu)/lib/locate/updatedb"

"/local/iu/bin/newhomepage.sh"

###

editfiles:

#

cfengine installs itself as a cron job - sneaky! :)

#

Chapter 8: Example configuration files 163

{ /var/spool/cron/crontabs/root

AppendIfNoSuchLine "0 * * * * $(cfbin)/cfwrap $(cfbin)/cfhourly"

}

FTPserver::

{ /etc/shells

AppendIfNoSuchLine "/bin/tcsh"

AppendIfNoSuchLine "/local/gnu/bin/bash"

}

XBootServer::

{ /etc/inetd.conf

AppendIfNoSuchLine

"bootp dgram udp wait root /local/bin/bootpd bootpd -i -d"

}

nexus::

{ /iu/nexus/ua/robot/.rhosts

AppendIfNoSuchLine "borg"

AppendIfNoSuchLine "borg.iu.hioslo.no"

AppendIfNoSuchLine "aud4"

AppendIfNoSuchLine "aud4.iu.hioslo.no"

}

dax::

{ /etc/system

AppendIfNoSuchLine "set pt_cnt=128"

}

##

required:

#

Any host must have a /local, /usr/local fs. Check that

it exists and looks sensible. (i.e. not empty)

#

/$(site)/$(binserver)/local

##

copy:

#

NIS seems broken at IU, so here we use NFS to fudge

164 GNU cfengine

a file distribution as a temporary solution. Actually

this makes the system work faster without NIS!

#

$(nisfiles)/services dest=/etc/services o=root g=other mode=0644

$(nisfiles)/hosts.deny dest=/etc/hosts.deny o=root mode=0644

!debian::

$(nisfiles)/hosts dest=/etc/hosts o=root g=other mode=0644

PasswdServer::

/etc/passwd dest=$(nisfiles)/passwd o=root g=other mode=0644

/etc/shadow dest=$(nisfiles)/shadow o=root g=other mode=0644

nexus::

/local/iu/etc/dfstab dest=/etc/dfs/dfstab o=root mode=0744

solaris.!PasswdServer::

$(nisfiles)/passwd dest=/etc/passwd o=root g=other mode=0644

$(nisfiles)/shadow dest=/etc/shadow o=root g=other mode=0600

$(nisfiles)/group.solaris dest=/etc/group o=root g=other mode=0644

linux::

$(nisfiles)/passwd.linux dest=/etc/passwd o=root g=other mode=0644

$(nisfiles)/group.linux dest=/etc/group o=root g=other mode=0644

###

processes:

"eggdrop" signal=kill

"irc" signal=kill

"ping" signal=kill

"NetXRay" signal=kill

"netxray" signal=kill

"ypserv" signal=kill

"ypbind" signal=kill

"rarpd" signal=kill

"rpc.boot" signal=kill

"README" signal=kill # You don’t sh README !

!XBootServer::

"bootp" signal=kill

#

These processes are not killed every hour, but once a day

when cfengine runs at night. Note that there are often

hanging pine and elm processes. These programs crash and

go berserk, using hundreds of hours of CPU time.

#

Hr00::

Chapter 8: Example configuration files 165

"cron" signal=hup # HUP these to update their config

"inetd" signal=hup

"/local/sdt/sdt/bin" signal=term # For those elektro dudes who forget

to log out

"netscape" signal=kill

"pine" signal=kill

"elm" signal=kill

###

#

END cf.site

#

###

8.5 cf.motd

##

#

cf.motd

#

This file is used to set the message of the day file on

each host

#

##

#####

#

BEGIN cf.motd

#

#####

control:

#

This points to the file containing general text

#

masterfile = (/iu/nexus/local/iu/etc/motd-master)

local_message = (/etc/motd.local)

editfiles:

{ /etc/motd

BeginGroupIfFileIsNewer "$(masterfile)"

EmptyEntireFilePlease

InsertFile "$(masterfile)"

InsertFile "$(local_message)"

PrependIfNoSuchLine "This system is running $(class):$(arch)"

EndGroup

}

166 GNU cfengine

#####

#

BEGIN cf.motd

#

#####

8.6 cf.users

Whether or not you perform any special services for users, with or without their consent
is entirely a matter of local policy. In a school or college situation, users are often unco-
operative and some are even irresponsible. This file shows you what you could do in an
environment with inexperienced users, but please don’t feel as though you have to be this
totalitarian.

###

#

cf.users - for iu.hioslo.no

#

This file contains user specific actions

#

###

###

#

BEGIN cf.users

#

###

ignore:

robot

tidy:

longjob::

#

Some users just don’t understand what they are doing

and this is safest, allbeit totalitarian

#

home pat=.rhosts age=0

#

Tidy up users’ home dirs

#

home pat=core r=inf age=0

home pat=a.out r=inf age=1

home p=*% r=inf age=2

home p=*~ r=inf age=2

home p=#* r=inf age=1

home p=*.dvi r=inf age=14 type=ctime

home p=*.log r=inf age=2

home p=Log.* r=inf age=3

Chapter 8: Example configuration files 167

home p=CKP r=inf age=1

home p=BAK r=inf age=1

home p=log r=inf age=0

home p=*.o r=inf age=0

home p=*.aux r=inf age=3

home p=*.zip r=inf age=7

home/.deleted p=* r=inf age=0

home/.wastebacket p=* r=inf age=14

home/www p=*~ r=inf age=1

#

Clear the big cache files netscape creates

#

home/.netscape-cache p=cache????* r=inf age=0

home/.MCOM-cache p=cache????* r=inf age=0

home/.netscape/cache p=* r=inf age=0

###

files:

AllHomeServers.longjob.rest::

#

Check users files are not writable to the world

and there are no stale links (pointing nowhere)

#

home mode=o-w recurse=inf action=fixall # links=tidy

home/.xsession mode=755 action=fixall

home/.cshrc mode=755 action=fixall

###

copy:

Hr00.longjob::

#

Make sure each user has an up to date standard

setup. Cshrc just sources in a big standard file

which is kept in ~user/../.setupfiles/cshrc

to reduce disk wastage

#

$(masterfiles)/lib/Cshrc dest=home/.cshrc

$(masterfiles)/lib/tkgrc dest=home/.tkgrc

$(masterfiles)/lib/fvwm2rc dest=home/.fvwm2rc

###

#

END cf.users

#

###

168 GNU cfengine

8.7 cf.solaris

###

#

cf.solaris - for iu.hioslo.no

#

This file contains Solaris specific patches

#

###

###

#

BEGIN cf.solaris

#

###

directories:

#

httpd/netscape want this to exist for some bizarre reason

#

/usr/lib/X11/nls

##

tidy:

/var/log pattern=syslog.* age=0

MailHub::

/var/mail pattern=lp age=0

###

files:

#

If this doesn’t exist fork will not work and the

system will not even be able to run the /etc/rc

scripts at boottime

#

/etc/system o=root g=root m=644 action=touch

/var/log/syslog o=root m=666 action=touch

###

copy:

#

Some standard setup files, can’t link because

machine won’t boot if their not on / partition.

#

/local/bin/tcsh dest=/bin/tcsh mode=755

Chapter 8: Example configuration files 169

/local/iu/etc/nsswitch.standalone dest=/etc/nsswitch.conf

#

Our named server uses a newer BIND

Put this here so that it will be preserved under

Solaris reinstallation

#

NameServers::

/local/iu/sbin/in.named dest=/usr/sbin/in.named mode=555

/local/iu/sbin/in.named.reload dest=/usr/sbin/in.named.reload mode=555

/local/iu/sbin/in.named.restart dest=/usr/sbin/in.named.restart mode=555

/local/iu/sbin/in.ndc dest=/usr/sbin/in.ndc mode=555

/local/iu/sbin/named-xfer dest=/usr/sbin/named-xfer mode=555

/local/iu/lib/nslookup.help dest=/usr/lib/nslookup.help mode=444

any::

/local/iu/lib/libresolv.a dest=/usr/lib/libresolv.a mode=444

/local/iu/lib/libresolv.so.2 dest=/usr/lib/libresolv.so.2 mode=444

/local/bin/nslookup dest=/usr/sbin/nslookup mode=444

##

editfiles:

{ /etc/netmasks

AppendIfNoSuchLine "128.39 255.255.255.0"

}

{ /etc/defaultrouter

AppendIfNoSuchLine "128.39.89.1"

}

{ /usr/openwin/lib/app-defaults/XConsole

AppendIfNoSuchLine "XConsole.autoRaise: on"

}

#

CERT security patch for vold vulnerability

#

{ /etc/rmmount.conf

HashCommentLinesContaining "action cdrom"

HashCommentLinesContaining "action floppy"

}

##

disable:

/etc/.login type=file

/etc/aliases

170 GNU cfengine

#

These files are ENORMOUS, don’t let them fill the disk

#

Wednesday::

/var/lp/logs/lpsched rotate=empty

/var/adm/wtmpx rotate=empty

/var/adm/wtmp rotate=empty

##

files:

/etc/passwd m=0644 o=root g=other action=fixplain

/etc/shadow m=0600 o=root g=other action=fixplain

/etc/defaultrouter m=0644 o=root g=other action=touch

/var/adm/wtmpx m=0664 o=adm g=adm action=touch

/var/adm/wtmp m=0644 o=root g=adm action=touch

/var/adm/utmp m=0644 o=root g=adm action=fixplain

/var/adm/utmpx m=0664 o=adm g=adm action=fixplain

/tmp m=1777 action=fixdirs

##

disable:

#

CERT security patch

#

/usr/openwin/bin/kcms_calibrate

/usr/openwin/bin/kcms_configure

/usr/bin/admintool

##

shellcommands:

AllBinaryServers.Saturday.longjob.Hr00::

#

Make sure the man -k / apropos data are up to date

#

"/usr/bin/catman -M /local/man"

"/usr/bin/catman -M /local/X11R5/man"

"/usr/bin/catman -M /usr/man"

"/usr/bin/catman -M /local/gnu/man"

"/usr/bin/catman -M /usr/openwin/share/man"

"/usr/bin/catman -M /local/X11R5/man"

"/usr/bin/catman -M /usr/share/man"

##

Chapter 8: Example configuration files 171

editfiles:

#

A painless way to add an rc.local script to the rc files

under Solaris without having to fight though inittab

#

{ /etc/rc3.d/S15nfs.server

AppendIfNoSuchLine "sh /local/iu/etc/rc.local"

}

#

umask defined when inetd starts is inherited by all subprocesses

including ftpd which saves with mode 666 (!) unless we do this

#

{ /etc/rc2.d/S72inetsvc

PrependIfNoSuchLine "umask 022"

}

###

#

END cf.solaris

#

###

8.8 cf.linux

###

#

cf.linux - for iu.hioslo.no

#

This file contains debian linux specific patches

#

###

###

#

BEGIN cf.linux

#

###

files:

/etc/printcap m=644 o=root action=fixplain

#

Cert advisories

#

/bin/mount m=755 o=root action=fixall

/bin/umount m=755 o=root action=fixall

172 GNU cfengine

###

disable:

#

Cert advisories

#

/sbin/dip-3.3.7n

##

links:

/local/bin/tcsh -> /bin/tcsh

/local/lib/mail -> /$(site)/$(main_server)/local/lib/mail

##

editfiles:

#

Samba default mode needs to be set...

#

{ /etc/smb.conf

ReplaceAll "700" With "644"

}

#

Linux date is very stupid and needs a very careful

TZ definition, otherwise it loses

#

{ /etc/csh.cshrc

AppendIfNoSuchLine "setenv TZ ’MET-1MET DST-2,M3.5.0/2,M10.5.0/3’"

}

#

resolv+ ordering

#

{ /etc/host.conf

PrependIfNoSuchLine "order bind"

}

#

Should have been configured already (!)

#

{ /etc/ld.so.conf

Chapter 8: Example configuration files 173

AppendIfNoSuchLine "/usr/X11R6/lib"

}

#

Kill annoying messages

#

{ /etc/cron.daily/standard

HashCommentLinesContaining "security"

}

###

shellcommands:

Hr00::

#

Find/locate database

#

"/usr/bin/updatedb"

###

#

END cf.linux

#

###

8.9 cf.freebsd / cf.netbsd

FreeBSD, OpenBSD and NetBSD are sufficiently similar to have a single file for all.
###

#

cf.bsd - for iu.hioslo.no

#

This file contains bsd specific patches

#

###

###

#

BEGIN cf.bsd

#

###

links:

/usr/spool -> /var/spool

/local/bin/tcsh -> /bin/tcsh

/local/bin/perl -> /usr/bin/perl

/usr/lib/sendmail -> /usr/sbin/sendmail

###

174 GNU cfengine

files:

/usr/tmp mode=1777 owner=root action=fixall

###

editfiles:

#

Comment out all lines to shut up this annoying cfengine-like

script, which sends mail every day!!!

#

{ /etc/crontab

HashCommentLinesContaining "daily"

HashCommentLinesContaining "weekly"

HashCommentLinesContaining "monthly"

}

###

copy:

$(masterfiles)/etc/printcap.client dest=/etc/printcap mode=0644

###

shellcommands:

Hr00::

"/usr/libexec/locate.updatedb"

"/usr/bin/makewhatis /usr/share/man:/usr/X11R6/man"

###

#

END cf.bsd

#

###

8.10 cfservd.conf

###

#

This is a cfservd config file

#

###

#

Could import cf.groups here and use a structure like

in cfengine.conf, cf.main, cf.groups

#

control:

Chapter 8: Example configuration files 175

public = (/usr/local/publicfiles)

almost_public = (/usr/local/almostpublicfiles)

cfrunCommand = (/iu/nexus/ud/mark/comp/Tests/cfrun-command)

MaxConnections = (10)

###

admit: # or grant:

$(public) *

$(almost_public) *.iu.hioslo.no *.gnu.ai.mit.edu

/etc/passwd *.iu.hioslo.no

#

Who can exec cfengine remotely?

#

$(cfrunCommand) *.iu.hioslo.no

###

deny:

$(public)/special *.moneyworld.com

176 GNU cfengine

Chapter 8: Variable Index 177

Variable Index

!
! . 22

$
$(arch) . 17
$(binserver) . 17
$(class) . 18
$(colon) . 19
$(cr) . 19
$(date) . 18
$(dblquote) . 19
$(dollar) . 19
$(domain) . 18
$(faculty) . 18
$(fqhost) . 18
$(host) . 18
$(ipaddress) . 18
$(lf) . 19
$(n) . 19
$(quote) . 19
$(site) . 19
$(spc) . 19
$(sysadm) . 19
$(tab) . 19
$(timezone) . 19
$(version) . 19
$(year) . 19
${EmailMaxLines} . 18

+
+ . 95

-
-D option . 22, 37
-l . 86, 132
-L . 101
-N option . 22, 37
-x option . 150

.

.cfengine.rm . 133

/
/etc/host.conf . 150
/var/cfengine/output. 147

A
a= . 84, 131
AccessedBefore() . 4
action . 84
actionsequence . 34
AddClasses . 37
AddInstallable . 37
addmounts . 34
age . 131
alerts . 28
AllowUsers . 140

B
backup= . 59
BindToInterface. 39, 140
binserver . 103, 104
binservers . 30
broadcast . 32
bymatch . 118

C
cf.preconf . 149
CFALLCLASSES . 13, 17
cfrc . 150
ChangedBefore() . 4
ChecksumDatabase . 39
ChecksumPurge . 39
ChecksumUpdates . 39
checktimezone . 34
childlinks . 34
cmp= . 121
control . 33
create . 89

D
directories . 34
disable . 34, 69
domain . 34, 41
DryRun . 41

E
editbinaryfilesize . 42
editfiles . 34
editfilesize . 34, 42
EmailMaxLines . 147
empty . 70
EmptyResolvConf . 42
Exclamation . 42
exclude= . 86
exec . 14

178 GNU cfengine

F
FileExtensions . 46
files . 34, 84
filter . 90
force= . 63, 67
freespace= . 66, 125

G
g= . 84
group . 84
groups . 95

H
home . 85
homepattern . 115
HomePattern . 43
homeservers . 97

I
import . 99
include= . 86
interface configuration 100
InterfaceName . 45
IsDir() . 4
IsLink() . 4
IsNewerThan() . 4
IsPlain(). 4

L
l= . 84
LastSeen . 46
LastSeenExpireAfter . 45
LD_LIBRARY_PATH . 34
link . 84
linkchildren . 88, 104
links . 34, 101

M
m= . 84
mailcheck . 34, 106
mailserver . 106
MaxCfengines . 18
methods . 107
miscmounts . 113
mode . 84
module . 34
moduledirectory . 47
mountables . 97, 115
mountall . 34
mountinfo . 34
mountpattern . 47

N
netconfig . 34
netmask . 34, 47
nfstype . 34, 48
noabspath . 128

O
o= . 84
ones . 32
OutputPrefix . 19
owner . 84

P
p= . 131
packages . 34
pattern . 131
pkgmgr= . 121
processes . 34
purge= . 62

R
r= . 84, 131
Randomizing strategy . 130
recurse . 84, 131
repchar . 19
RepChar . 49
required . 34
resolve . 34, 126
Restricting access . 34
ReturnsZero() . 4
rotate= . 70

S
scanarrivals= . 67
scheduling . 49
SecureInput . 50
sensiblecount . 34
SensibleCount . 50
sensiblesize . 34
SensibleSize . 50
shellcommands . 34
ShowActions . 50
signal . 118
singlelinks . 34
site . 34, 51
SkipVerify . 142
smtpserver . 147
split . 19, 21, 52
SpoolDirectories . 52
SuspiciousNames . 52
sysadm . 34, 52, 147

Chapter 8: Variable Index 179

T
tidy . 34, 131
timezone . 34
touch . 88
truncate . 70
type= . 70, 105

U
underscoreclasses . 19
unmount . 34, 135

V
version= . 121

W
Wildcards . 131

Z
zeroes . 32
zeros . 32

180 GNU cfengine

Chapter 8: Concept Index 181

Concept Index

!
! . 22

-
--dry-run option . 128
-D option . 37
-l option . 86, 132
-L option . 101
‘-T’ in cfrun. 143
-x option . 150

.

.cfdisabled . 69

.cfengine.rm . 133
‘.cfnew’ files . 57
‘.cfsaved’ files . 104
.X11 directory . 98

/
/etc/host.conf . 150
‘/etc/hosts.equiv’ . 69
/var/cfengine/output . 147

<
< . 3

>
> . 3

A
Abort cfengine after cf.preconf 150
Absolute links . 102
Access control . 34
Access control lists . 23
ACL key . 24
ACLs . 23
action sequence . 34
Adding defined classes . 37
Adding new classes . 150
AFS . 49
Alerts . 28
allclasses variable . 129
AllowConnectionsFrom variable 139
AllowUsers in cfservd . 140
Andrew filesystem . 49
AppendIfNoSuchLinesFromFile 75
Array example . 17
Array from file . 17

Associative arrays. 14, 15
atime tidies . 133
AutoCreate . 75
AutoExecInterval variable 140
automounter . 75
awk, editing . 72

B
Backup . 75
Backup of files in copy . 59
BeginGroupIfDefined . 75
BeginGroupIfFileExists . 75
BeginGroupIfFileIsNewer 76
BeginGroupIfNotDefined . 75
Binary servers and links 103, 104
Binary servers, defining . 30
Binary servers, priority 31, 103
Binding to one interface only 39, 140
Bootstrap file. 149
Broadcast address . 32
Broadcasts to the cfengine service. 144
Broken resolver . 46
Built-in functions . 14

C
Caching of reverse lookups 142
CatchAbort . 76
‘cf.groups’ . 153
‘cf.main’ . 154
‘cf.motd’ . 165
cf.preconf bootstrap file . 149
‘cf.site’ . 158, 174
‘cfagent.conf’ . 153
CFALLCLASSES . 17, 129
cfenvd and key entropy . 7
cfexecd . 147
cfrc resource file . 150
cfrun, limiting users on server. 140
cfrunCommand variable . 141
‘cfservd.conf’ file . 137
cfservd.conf iteration . 138
Changing cfengine port. 145
Checking for installed packages 121
Checksum warning, turning off exclamation 42
ChecksumDatabase . 39
ChecksumDatabase variable 140
ChecksumPurge . 39
ChecksumUpdates . 39
CIDR . 95
Class data and scripts . 17
Class decided by shell command 96
Class dependencies . 96

182 GNU cfengine

Class information, passing to scripts. 129
classes . 21
classes . 56, 95
Classes, adding and defining 37
Classes, built-in functions . 4
Classes, compound . 21
Classes, defining and undefining 22
Classless IP addresses . 95
Comparing file objects . 4
Compound classes . 21
Contacting specific hosts with cfrun 145
control section . 33
Controlling the size of log files 70
copy . 57
Copy, exact filetree images 62
Copying files . 57
Creating files . 89
ctime tidies . 133

D
DCE key . 25
Deadlock . 149
Deadlock zombie bug in restart 118
Debian Package Database Queries 122
Declaring classes . 37
Decrementing line pointer in editfiles 79
Defining a binary server . 30
Defining a home server . 97
Defining a mail server . 106
Defining a mountable . 115
Defining before use . 37
Defining classes . 37, 56
Defining groups . 95
DeleteNonOwnerMail . 41
DeleteNonUserFiles . 41
DeleteNonUserMail DeleteNonUserFiles 41
Deleting directories . 133
Deleting files . 131
Deleting stale links . 86, 132
DenyBadClocks variable . 141
DenyConnectionsFrom variable 141
Dependencies . 96
Device boundaries . 60
Device boundaries and files 87
DFS . 49
DHCP . 36, 142
Directories, deleting . 133
Directories, hidden . 46
Directories, making . 67
Directory for cfengine modules 47
Directory permissions . 87
Disabling file types. 70
Disabling files . 69
disks actions . 66
DNS . 126
domain . 41
Domain name . 47

Dots in hostnames . 23

Double quotes . 73

DryRun . 41

Dual homed hosts . 100

Dynamic addresses . 142

DynamicAddresses variable 142

E
Emergency abort . 150

Empty files . 132

Emptying old nameservers from
‘/etc/resolv.conf’ . 42

Environment variable CFALLCLASSES 13

Example configuration files 153

Exclamation marks, turning off 42

Excluding classes . 37

Excluding files from a file sweep 86

F
failover . 61

Field separator in editfiles . 81

File images (copy) . 57

File management . 84

File sizes, specifying . 132

File tree images. 62

File types . 4

Files, breaking up into several 99

Files, checking permissions 84

Files, home wildcard . 87

Files, importing . 99

Files, ownership . 88

Files, recursion . 87

Files, setting owner . 84

Files, syntax . 84

Force copying . 63

freespace= . 66, 125

FriendStatus . 30

Full disk warnings . 66, 125

Fully qualified names. 23

Functions, built-in . 14

G
Gaming stratgies . 130

Group dependencies. 96

Group field, editing . 81

groups . 56

groups . 95

Groups, defining . 95

Chapter 8: Concept Index 183

H
Hanging processes . 46
Hard class name collision . 19
Hardlinks . 105
Hashes of files . 39, 87
home directive . 87
Home directories, creating . 67
Home path . 43
Home servers, defining . 97
home wildcard . 85
Homepattern variable. 115
Host name gets truncated . 23
Hostname collision . 19
hostnamekeys . 144
HostnameKeys . 145
Hung machine . 149

I
ignore command . 98
Import files, variables in . 99
Importing files . 99
include in cfrun . 144
Incrementing line pointer in editfiles 79
Interface name, redefining by class 45
InterfaceName . 45
Internal classes, switching off 12
Internet address . 47
IP address . 47
IsGreatThan . 3
IsLessThan . 3
Iterating over lists in shellcommands 129
Iteration in server rules . 138
Iteration over lists . 21, 52

K
Key entropy and cfenvd . 7
Key security of users . 140
Key, ACL . 25
Kilobyte, filesize unit . 132

L
Last Seen database . 30, 45
LastNode literal . 67
LastSeen . 46
Linkchildren . 88, 104
Links and binary servers 103, 104
Links, absolute . 102
Links, deleting stale . 86, 132
Links, forcing for non-existent files 102
Links, making . 101
Links, multiple . 103
Links, removing dead . 102
Links, single . 101
Links, traversing in searches 86, 132

Local disk space, make use of 104
Log files, controlling the size of 70
Logical NOT . 22

M
Mail server, defining . 106
Mailhost . 51
Mailing output . 147
Making directories . 67
Making links . 101
Making paths . 67
Making use of local disk space 104
MaxConnections variable . 141
Megabytes, filesize unit . 132
Merging files. 74
Message digests . 39, 87
Methods . 107
Methods, remote caution . 107
Miscellaneous mount operations 113
Module directory . 3, 47
Modules executed immediately 3
Modules, user defined . 35
Monitoring other hosts . 30
Mount paths . 47
Mountable resources, defining 97, 115
Mounted filesystems . 60
Mounting filesystems. 113
mtime tidies . 133
Multihomed hosts . 39, 140
Multiple links . 103

N
Name collision . 19
NAT . 145
Negating classes . 36
Negating entries from netgroups 95
Netgroups . 95
Netgroups, negating entries 95
netmask . 47
Netmask . 47
Network Address Translation 51
Network address translator 145
Network Address Translators 143
Network interfaces, several 100
New systems, support for . 150
nfs. 48
NFS filesystems and disk checking 67
NFS mount model and automounter 75
nfstype . 48
NIS, netgroup support . 95
no default route class . 65
noabspath . 128
NOT operator . 22
NT, ACL . 26

184 GNU cfengine

O
ones . 32
Operator ordering . 23
Output logs . 147
Ownership of files . 88

P
packages . 121
Password file, editing. 81
Path to home directories . 43
Path to mounted filesystems 47
Paths, making . 67
Pattern matching in file sweeps 86
pattern= and filtering . 131
Peer to peer methods . 16, 17
Peer watching (FriendStatus) 30
Percentage disk space . 125
Permissions, directories. 87
Port, connecting to different 145
PrepModule . 3
Preserving file times in copy 60
Previewing shellcommands 128
Private modules . 107
PRNG not seeded. 7
Processes, 0 to 3 . 117
Processes, checking existence of 119
Processes, counting . 118
Processes, signalling . 119
Public keys . 61
Purge, excluding files . 60

Q
Quoted strings. 73

R
Random numbers . 14
RandomInt() function . 33
Read array from file. 17
Read array from table . 15
ReadArray . 17
ReadFile . 15
ReadFile() function . 33
ReadTable . 15
Recursion in files . 87
Redefinition of macros . 38
Relative links . 102
Removing directories . 133
Removing entries from netgroups 95
Renaming files . 69
Replacing file by link . 70
Repository filenames, changing. 49
resolv.conf . 126
Resolver configuration. 126
Resource file . 150

Restart zombie deadlock bug 118
Restricting the size of binary files to be edited . . 42
Restricting the size of files to be edited 42
Reverse lookup and SkipVerify 142
rmdirs . 133
Rotating log files . 70
RPM Database Queries . 122
Running cfengine from a single master host . . . 144
Running cfrun . 143

S
scanarrivals= . 67
scheduling . 49
Scripts and class information 129
Scripts, passing classes to . 17
Search patterns in files . 86
Searching for home directories 44
Searching, advanced . 90
Secure input . 50
Security risk. 143
Security, link races and travlinks 133
sed, editing . 72
Selecting files in searches . 90
SelectPartitionGroup . 16
SelectPartitionLeader . 17
Sensible file sizes. 50
Sensible limits on files in a directory 50
SetState() . 29
Setting classes based on non-local disks 67
Setting uid on restarted processes 118
Several files . 99
Shell command to decide class 96
ShowState() . 29
Single links . 101
Single quotes . 73
site . 51
size field in disable . 71
SkipIdentify . 51
SkipVerify and public-private keys 142
smtpserver . 51
Specifying file sizes . 132
SplayTime in cfrun . 143
split . 21, 52
SplitOn . 81
SpoolDirectories . 52
Strategy, random . 130
Subnet mask . 47
Sun Package Database Queries 122
Support for new systems . 150
suspiciousnames . 52
Switching off backup in copy. 59
Switching off built-in classes 12
Symbolic links, absolute . 102
Symbolic links, relative . 102
sysadm . 52
SysLog() . 29

Chapter 8: Concept Index 185

T
Testing files . 4
Tidy by ctime, mtime, atime 133
Tidy log files for users . 46
Tidying empty files . 132
Tidying files . 131
timeout= in shellcommands 127
Timeouts during iterations 129
Too many open files error . 64
Touching files . 88
travlinks . 133
Tree copying, exact . 62
Tripwire functionality . 39, 87
Truncating log files . 70
Trust, key exchange with cfrun 143
Trusted hosts . 61
TrustKeysFrom variable . 142

U
umask . 82, 116, 127
underscoreclasses . 19
Unmounting filesystems . 135
UnsetState() . 29

‘update.conf’ . 2

V
Variables in import files . 99
Variables, setting to result of a shell command . . 14

W
Warning about full disks 66, 125
Warning remote methods . 107
Wildcard home . 85
Wildcards in homepattern . 44
WWW server logs . 70

X
xdev . 60, 87, 133
xdev (File system boundaries) 87

Z
zeros . 32

186 GNU cfengine

Chapter 8: FAQ Index 187

FAQ Index

A
Absolute path and shellcommands 128

B
Brackets (parentheses) in classes. 23

C
Can’t stat error when remote copying 141
Changing repository name conventions 49
Checksums take too long to compute. 140
copy doesn’t always copy files 60
ctime copy doesn’t always copy files 60

D
Denial of service attacks . 139

H
Hanging commands, timeouts 127
Hanging connections attacks 139
Hey! Cannot stat file error 61
How can I avoid hanging shellcommands?. 127
How can I set a timeout for a shell command?

. 127
How to create files while editing 75

I
Iterating over lists . 21, 52

L
locahost in copy . 61

M
MD5 checksums take a long time to compute.

. 140

P
Parentheses in classes.. 23

R
Remote copy problems, can’t stat 61

S
Shellcommands must start with absolute path

. 128

T
Too many open files error . 64

188 GNU cfengine

i

Table of Contents

1 Introduction to reference manual 1
1.1 Installation . 1
1.2 Work directory . 1
1.3 Cfengine hard classes . 2
1.4 Evaluated classes and special functions . 2
1.5 Filenames and paths . 4
1.6 Debugging with signals . 5

2 Cfkey reference . 7

3 Cfshow reference . 9

4 Cfagent reference . 11
4.1 Cfagent intro . 11

4.1.1 The file cfagent.conf . 11
4.1.2 Cfagent runtime options . 11

4.2 Variable expansion and contexts . 13
4.2.1 Setting variables with functions . 14
4.2.2 Special variables . 17
4.2.3 Iteration over lists . 20

4.3 Cfengine classes . 21
4.4 acl . 23

4.4.1 Access control entries . 24
4.4.2 Solaris ACLs . 25
4.4.3 DFS ACLs . 25
4.4.4 NT ACLs . 26

4.5 ACL Example . 27
4.5.1 ACL Example . 27

4.6 alerts . 28
4.7 binservers. 30
4.8 broadcast . 32
4.9 control . 33

4.9.1 access . 34
4.9.2 actionsequence . 34
4.9.3 AddClasses . 37
4.9.4 AddInstallable . 37
4.9.5 AllowRedefinitionOf . 38
4.9.6 AutoDefine . 38
4.9.7 BinaryPaddingChar . 38
4.9.8 ChecksumDatabase . 39
4.9.9 BindToInterface . 39
4.9.10 ChecksumPurge . 39

ii GNU cfengine

4.9.11 ChecksumUpdates . 39
4.9.12 ChildLibPath . 40
4.9.13 CopyLinks . 40
4.9.14 DefaultCopyType . 40
4.9.15 DefaultPkgMgr . 40
4.9.16 DeleteNonUserFiles . 41
4.9.17 DeleteNonOwnerFiles . 41
4.9.18 DeleteNonUserMail . 41
4.9.19 DeleteNonOwnerMail . 41
4.9.20 domain . 41
4.9.21 DPKGInstallCommand . 41
4.9.22 DryRun . 41
4.9.23 editbinaryfilesize . 42
4.9.24 editfilesize . 42
4.9.25 EmptyResolvConf . 42
4.9.26 Exclamation. 42
4.9.27 ExcludeCopy . 42
4.9.28 ExcludeLink . 43
4.9.29 ExpireAfter . 43
4.9.30 HomePattern . 43
4.9.31 HostnameKeys . 44
4.9.32 IfElapsed . 44
4.9.33 Inform . 45
4.9.34 InterfaceName . 45
4.9.35 LastSeenExpireAfter . 45
4.9.36 FileExtensions . 45
4.9.37 LastSeen . 46
4.9.38 LinkCopies . 46
4.9.39 LogDirectory . 46
4.9.40 LogTidyHomeFiles . 46
4.9.41 moduledirectory . 47
4.9.42 mountpattern . 47
4.9.43 netmask . 47
4.9.44 NonAlphaNumFiles . 48
4.9.45 nfstype . 48
4.9.46 RepChar . 49
4.9.47 Repository . 49
4.9.48 RPMcommand . 49
4.9.49 RPMInstallCommand . 49
4.9.50 Schedule . 49
4.9.51 SecureInput . 50
4.9.52 SensibleCount . 50
4.9.53 SensibleSize . 50
4.9.54 ShowActions . 50
4.9.55 SingleCopy . 50
4.9.56 site/faculty . 51
4.9.57 SkipIdentify . 51
4.9.58 smtpserver . 51

iii

4.9.59 SplayTime . 51
4.9.60 Split . 51
4.9.61 SpoolDirectories . 52
4.9.62 SUNInstallCommand . 52
4.9.63 suspiciousnames . 52
4.9.64 sysadm . 52
4.9.65 Syslog . 52
4.9.66 SyslogFacility . 53
4.9.67 timezone . 53
4.9.68 TimeOut . 53
4.9.69 Verbose . 53
4.9.70 Warnings . 54
4.9.71 WarnNonUserFiles . 54
4.9.72 WarnNonOwnerFiles . 54
4.9.73 WarnNonUserMail . 54
4.9.74 WarnNonOwnerMail . 55

4.10 classes . 56
4.11 copy . 57

4.11.1 Hard links in copying . 63
4.11.2 Too many open files . 64

4.12 defaultroute . 65
4.13 disks . 66
4.14 directories . 67
4.15 disable . 69
4.16 editfiles . 72
4.17 files . 84

4.17.1 Syntax . 84
4.17.2 Recursion . 87
4.17.3 Directory permissions . 87
4.17.4 home directive . 87
4.17.5 Owner and group wildcards . 88
4.17.6 Files linkchildren . 88
4.17.7 touch . 88
4.17.8 create . 89

4.18 filters . 90
4.18.1 Complete filter examples . 93

4.19 groups/classes . 95
4.20 homeservers . 97
4.21 ignore . 98
4.22 import . 99
4.23 interfaces . 100
4.24 links . 101

4.24.1 Single links. 101
4.24.2 Multiple Links. 103
4.24.3 Link Children . 104
4.24.4 Relative and absolute links . 105
4.24.5 Hard Links . 105

4.25 mailserver . 106

iv GNU cfengine

4.26 methods . 107
4.26.1 Localhost examples . 109
4.26.2 Remote host examples . 113

4.27 miscmounts . 113
4.28 mountables . 115
4.29 processes . 116
4.30 packages . 121
4.31 rename . 124
4.32 required . 125
4.33 resolve . 126
4.34 shellcommands . 127
4.35 strategies . 130
4.36 tidy . 131
4.37 unmount . 135

5 Cfservd and cfrun reference 137
5.1 control . 139

5.1.1 IP address ranges . 139
5.1.2 AllowConnectionsFrom . 139
5.1.3 AllowMultipleConnectionsFrom . 140
5.1.4 AllowUsers . 140
5.1.5 AutoExecCommand. 140
5.1.6 AutoExecInterval . 140
5.1.7 BindToInterface . 140
5.1.8 ChecksumDatabase . 140
5.1.9 cfrunCommand . 141
5.1.10 DenyBadClocks . 141
5.1.11 DenyConnectionsFrom . 141
5.1.12 HostnameKeys . 141
5.1.13 IfElapsed . 141
5.1.14 LogAllConnections . 141
5.1.15 MaxConnections . 141
5.1.16 TrustKeysFrom . 141
5.1.17 DynamicAddresses . 142

5.2 admit, grant and deny . 142
5.2.1 root= . 142
5.2.2 encrypt=true . 142
5.2.3 SkipVerify. 142

5.3 cfrun . 143
5.4 Firewalls and NATs . 145

6 Cfexecd reference . 147

7 Problem solving . 149
7.1 ‘cf.preconf’ bootstrap file . 149
7.2 ‘cfrc’ resource file . 150

v

8 Example configuration files 153
8.1 cfagent.conf . 153
8.2 cf.groups . 153
8.3 cf.main . 154
8.4 cf.site . 158
8.5 cf.motd . 165
8.6 cf.users . 166
8.7 cf.solaris . 168
8.8 cf.linux . 171
8.9 cf.freebsd / cf.netbsd . 173
8.10 cfservd.conf . 174

Variable Index . 177

Concept Index . 181

FAQ Index . 187

vi GNU cfengine

	Introduction to reference manual
	Installation
	Work directory
	Cfengine hard classes
	Evaluated classes and special functions
	Filenames and paths
	Debugging with signals

	Cfkey reference
	Cfshow reference
	Cfagent reference
	Cfagent intro
	The file cfagent.conf
	Cfagent runtime options

	Variable expansion and contexts
	Setting variables with functions
	Special variables
	Iteration over lists

	Cfengine classes
	acl
	Access control entries
	Solaris ACLs
	DFS ACLs
	NT ACLs

	ACL Example
	ACL Example

	alerts
	binservers
	broadcast
	control
	access
	actionsequence
	AddClasses
	AddInstallable
	AllowRedefinitionOf
	AutoDefine
	BinaryPaddingChar
	ChecksumDatabase
	BindToInterface
	ChecksumPurge
	ChecksumUpdates
	ChildLibPath
	CopyLinks
	DefaultCopyType
	DefaultPkgMgr
	DeleteNonUserFiles
	DeleteNonOwnerFiles
	DeleteNonUserMail
	DeleteNonOwnerMail
	domain
	DPKGInstallCommand
	DryRun
	editbinaryfilesize
	editfilesize
	EmptyResolvConf
	Exclamation
	ExcludeCopy
	ExcludeLink
	ExpireAfter
	HomePattern
	HostnameKeys
	IfElapsed
	Inform
	InterfaceName
	LastSeenExpireAfter
	FileExtensions
	LastSeen
	LinkCopies
	LogDirectory
	LogTidyHomeFiles
	moduledirectory
	mountpattern
	netmask
	NonAlphaNumFiles
	nfstype
	RepChar
	Repository
	RPMcommand
	RPMInstallCommand
	Schedule
	SecureInput
	SensibleCount
	SensibleSize
	ShowActions
	SingleCopy
	site/faculty
	SkipIdentify
	smtpserver
	SplayTime
	Split
	SpoolDirectories
	SUNInstallCommand
	suspiciousnames
	sysadm
	Syslog
	SyslogFacility
	timezone
	TimeOut
	Verbose
	Warnings
	WarnNonUserFiles
	WarnNonOwnerFiles
	WarnNonUserMail
	WarnNonOwnerMail

	classes
	copy
	Hard links in copying
	Too many open files

	defaultroute
	disks
	directories
	disable
	editfiles
	files
	Syntax
	Recursion
	Directory permissions
	home directive
	Owner and group wildcards
	Files linkchildren
	touch
	create

	filters
	Complete filter examples

	groups/classes
	homeservers
	ignore
	import
	interfaces
	links
	Single links
	Multiple Links
	Link Children
	Relative and absolute links
	Hard Links

	mailserver
	methods
	Localhost examples
	Remote host examples

	miscmounts
	mountables
	processes
	packages
	rename
	required
	resolve
	shellcommands
	strategies
	tidy
	unmount

	Cfservd and cfrun reference
	control
	IP address ranges
	AllowConnectionsFrom
	AllowMultipleConnectionsFrom
	AllowUsers
	AutoExecCommand
	AutoExecInterval
	BindToInterface
	ChecksumDatabase
	cfrunCommand
	DenyBadClocks
	DenyConnectionsFrom
	HostnameKeys
	IfElapsed
	LogAllConnections
	MaxConnections
	TrustKeysFrom
	DynamicAddresses

	admit, grant and deny
	root=
	encrypt=true
	SkipVerify

	cfrun
	Firewalls and NATs

	Cfexecd reference
	Problem solving
	cf.preconf bootstrap file
	cfrc resource file

	Example configuration files
	cfagent.conf
	cf.groups
	cf.main
	cf.site
	cf.motd
	cf.users
	cf.solaris
	cf.linux
	cf.freebsd / cf.netbsd
	cfservd.conf

	Variable Index
	Concept Index
	FAQ Index

